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Abstract: This paper analyzes a non-uniform structure known as a tapered waveguide in integrated optics applications 
using locally the conventional electromagnetic wave theory. Hereby, the tapered structure is visualised as a series of 
uniform steps, in which conventional wave theory for uniform guides holds. The solution of Helmoltz equation is 
accomplished by suggesting in each medium, as well as in each region, appropriate solutions of the field which satify the 
local boundary conditions. 
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1. Introduction 

 This article analyzes the plane parallel waveguide using the conventional electromagnetic wave theory which provides a 
framework for comparison with other references. We consider the structure and co-ordinate system shown in Fig. 1, 
where a film of range dependent thickness T and a uniform index n1 is shown. As light propagating in the structure of Fig.1, 
it is confined by total internal reflection. In order to achieve true mode guidance, it is necessary to require that  

 n1n2n3. (1) 

For numerical purposes, we shall mostly fix the indices as follows:  

 n12 ; n2  1.76 ; n3 1 . (2)  

These values are not intended to be exactly typical in integrated optics devices, but have been chosen arbitrary. 
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We shall assume throughout this article that the waveguides of Fig. 1 consist of media which are lossless and isotropic. For 
a discussion of lossy and anistropic media, the reader should refer to refs. 1-3 . 

The physical picture of light guidance is one of the light rays tracing a multiple-reflected path in the tapered film (n1), (see 
Fig. 1).  

We establish the convention that the Bij boundaries refer to the interface between media of refractive index ni and nj. As 
such zigzag rays propagate into the tapered film (n1), and each successive pair of reflections at the boundaries B12 and B31 
increase the angle of incidence  by twice the wedge angle  . Eventually, this angle  will be higher than the critical angle 
c (defined as c  Acos n2  n1), for total reflection at B12 then, some energy begins to leak into the medium (n2). Note that 
the critical angle at B31 is higher than the critical angle at B12, as one has appropriately chosen the indices in Eq. (2). Hence, 
radiation leaks (coupling) occur at the B12 boundary before they occur at B31 boundary. 

The tapered waveguide (n1) constitutes the main body of the structure of Fig. 1 to be analysed. In order to enable the 
derivation of mode characteristics and to analyze this structure, that is to say to elaborate and predicates the field 
distribution behaviour along the guiding structure; we could approximate the tapered film (n1) by sequence of steps that 
discretely represent the taper of Fig. 1. Obviously, the result improves as the steps are made smaller in size and greater in 
number (see Fig. 2). Within each step the solutions for the modes are simply those of a waveguide with parallel 
boundaries. Each step will be characterized by its thickness T. 

 

The problem of calculating the amplitude characteristic of the transmitted and reflected modes at each step , for a given 
incident ray , is done by matching the incident , reflected and transmitted field components at each step boundary 4 . We 
shall therefore analyze the structures locally as though they were translation-invariant in configuration. Such planar 
structure is illustrated in Fig. 3 corresponding to the structure of Fig. 1. Thereby we define the co-ordinate systems. We 
use the conventional electromagnetic wave formalism to introduce the basic concept and terminology of the structure of 
Fig. 3, including the nature of mode propagation, waveguide cut-off and propagation constants. We assume invariance of 
the physical geometries along the y-axis which symbolically expresses the fact that all derivatives with respect to the y-
axis are zero. When a wave propagates inside the structure, one dimension of the beam cross-section is guided by the 
stratification of the layers in x; but in the z-direction, the wave can propagate freely. Also fields of the guided modes must 
vanish at x   . An appropriate field pattern is required inside and outside the film (n1) so that the desired coupling to 
adjacent layers can be achieved.  
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The modal field for a plane parallel structure can be derived from the one-dimensional modal equation (for TE modes) [3]. 

2

2

dx

Ed y
  (nj k0  ) Ey  0, (3) 

 where : 

   k0 nj cos (j), (4) 

 k0 is the free-space wave number. The subscripts j and nj respectively relate to the angle of modal plane wave and the 
index of the layer concerned. Equation (4) defines the so-called modal propagation constant.  

Mathematically, problems involving Maxwell’s equation have solutions that match the boundary conditions at interfaces. 
Various modes of propagation can be discerned in these geometric configuration of Fig. 3. Thereby, modal fields are either 
trapped in the film layer (n1) or are radiation modes in the surrounding materials; medium (n2) or medium (n3). In each of 
the layers of Fig. 3, we shall postulate plane-wave electric fields Ey. As the TE mode has only three field components Hx and 
Hz can be derived straight away from Ey by means of Maxwell’s equations 5. The customary time dependence in complex 
notation can be expressed by exp(-i  t), and will be omitted throughout the equations still to come. We shall use the 
subscript j 3 for the quantities that belong to free-space 2 and 1 ; for the quantities that belong respectively to the films 
(n2) and (n1), see Fig. 3. We shall denote the complex amplitude of the downward and upward plane waves by Aj and A’j in 
each medium. Conventionally, all Aj waves propagate towards the lower boundary, and the A’j towards the upper 
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boundary, see Fig. 3. When coupling of waves in each medium occurs, all waves have the same propagation constant  , 
defined in Eq. (4). 

2. Analysis of Cross Section of Field Pattern 

 We shall consider two cases as waves propagate along the parallel films of Fig. 3. 

a) Guided Wave Region  

 In this region, plane waves in the film (j  1) impinge at an incident angle 1 to the boundaries which renders the effective 
index (defined as k0) in the interval n2  k0  n1.In others words, 1  c. The guided wave modes are the transverse 
elctromagnetic waves trapped inside the film (j1) by total internal reflection between B12 and B31 boundaries. 

Because of the total internal reflection in the film (j 1), the electromagnetic field is non zero in the lower-index regions 
but, the amplitude of the wave decays exponentially as a function of the cross distance x in those regions. 

We define the transverse propagation constants as: 

 2
j  n2

j k0  2 j  1, (5) 

 j    nj k0 j  2,3 , (6) 

   k0 nj cos (j) j  1,2,3, (7) 

where  is the longitudinal propagation constant , j is the real transverse propagation constant in a medium where 
oscillating waves are present and j is the evanescent transverse decay constant corresponding to a medium where 
evanescent waves are present . 

The distribution of the electromagnetic field component has the form of a standing wave in the film (j1), and exponential 
in mediums (j2) and (j3). That is to say: 

 Ey  Aj Exp ( x j  ) j  3, (8a)  

 Ey  Aj Exp ( j x j ) + Aj' Exp ( j x j ) j  1 , (8b)  

and  

 Ey  Aj Exp ( x j ) j 2 . (8c) 

We also define the derivatives of the electromagnetic field components as : 

 i   Hx  

dz

dE y
  , (9a) 

and  

i   Hz  

dx

dEy  , (9b) 

where  and  are the pulsation of the wave and the permeability of the concerned solid media , respectively .  

The boundary conditions demand that the field Ey and its normal derivatives be continuos across the boundaries : 

 x  0 and x  T , (10) where T represents the physical local thickness of the film (j1) . 

 Normalizing the modes to a unit power P, requires : 
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P  
2

1
 Real  dxHE xy

*






   1 , (11) 

where P represents the total transverse power across the structure , and the asterisk denotes the complex conjugate of the 
Hx component defined in Eq. (9) . Application of Eqs. (8) through (11) leads to the determination of the field amplitudes Aj 

and A’j . and to the characteristic equation : T 1  Atan (

1

3




 )  Atan (

1

2




 )  q  , (12) 

where the integer q is the mode number , and the transverse propagation constants are given by Eqs. (5) and (6) . 
Equation (12) is the characteristic equation for the structure of Fig. 2 in the pure guided wave region . 

b) Leaky Wave Region 

 In this region, the effective index is less than n2 . That is k0  n2 . Leaky waves occupy the medium (j2) which behaves as 
an infinite substrate. 

The transverse propagation constants are defined by : 

 2
j  n2

j k0  2 j  1 ,2 , (13a) 

and  

 j    nj k0 j  3 . (13b)  

The distribution of the field is a standing wave in the film (j1) , evanescent wave in medium (j3) and outward 
propagating wave in medium (j2) ; hence  

 Ey  A'j Exp (  x j  ) j  3 , (14a)  

 Ey  Aj Exp (  j x j  ) + A'j Exp ( j x j  ) j  1 , (14b) 

and  

 Ey  Aj Exp (  j x j  ) j  2 . (14c) 

Combining Eqs. (9) , (10) , (11) , (13) and (14) , one obtains the characteristic equation in the leaky wave region as : 

 1 T  Atan ( 

1

3




 ) + Atan ( j 

1

2




)  q  , (15) 

where q still represents the mode number and the transverse propagation constants are given by Eq. (13) . 

3. Numerical Results and Discussion 

 The numerical solutions of all characteristic equations (also known as the eingenvalue equation) are achieved by 
executing the Newton-Raphson algorithm. For simplicity, the boundary to the free-space medium (j3) is taken as 
perfectly reflecting. This can be justified by the fact that n31 and is largely inferior to n1 (typical practical value in 
integrated optics). Such an assumption is equivalent to determining the phase of Fresnel reflection coefficient at the 
boundary B31 as  . Consequently , in all equations , each term like Atan (3 / 1) must be substituted by the number +   
2 . Also as all characteristic equations involve a branch point at k0 n2 (singularity at critical angle c ), it is necesary to 
specify a convention that decides which branch in the computer program to choose . For this purpose we set Imag  n2  
k0 1/2  0 , for an exp ( i  t ) time convention . As far as the tapered structure of Fig. 1 is concerned ; the eigenvalue 
equation , Eq. (15) , elaborated through this very simple approach agrees very closely with the eigenvalue equation found 
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by mean of another different and more complicated approach based on the concept of Intrinsic modal analysis 6-7 . We 
consider the characteristic equation, Eq. (15), governing the propagation mechanism of the Fig. 1 . It determines the 
allowed values of the normalized propagation constant k0 and describes the modes propagating not only in the guided 
wave region, but also in the leaky wave region. By solving Eq. (15) for complex , the real solutions will mathematically 
represent the modes in the guided wave region , whereas the complex solutions will represent the modes in the leaky 
wave region . Consider first the real solutions of the eigenvalue Eq. (15); their computation for the ten lowest modes is 
depicted by Fig. 4 . It describes the possible real normalized propagation constants k0 ranging in the interval n2 k0  
n1 . Notice that as the normalized thickness (k0 T ) of the structure represented in Fig. 2 increases ; all propagation 
constants tend to have the same value ( modes degeneressences ) . From Fig. 4, one can deduce that as the thickness 
diminishes , modes cut-off occur . So these results are very useful as long as they permit us to determine numerically the 
exact knowledge of the cut-off thickness corresponding to different modes to exist along the structure of Fig. 1. Such 
solutions in Fig. 4 represent the modes in the guided region. As the normalized thickness k0 T of the film (j1) narrows 
down, k0 approaches the cut-off (k0  n2) . By further reducing T, complex solutions of Eq. (15) need to be taken into 
account; when cut-off occurs (incident angle  approaches c). No real solutions of the eigenvalue equation are present . 
Hence, k0 becomes complex with a positive imaginary part. These solutions represent the modes in a new region known 
as the leaky wave region. 

Normalized propagation 

Constant (/k0 

 

Fig. 4 : Computation of eigenvalue equation in the guided wave region for the ten lowest order modes.  

Figure 5 shows systematically the behaviour of the trajectory of the leaky wave solutions for the ten lowest modes of the 
structure of Fig. 1 in the complex plane as T changes from a maximum normalized value ( k0 T  100) to a minimum value ( 
k0 T  0 ) . Any real solution in Fig. 5 represents the guided waves in the interval n2 k0  n1 , whereas complex solutions 
that exist past the transition region (k0  n2 ) belongs to leaky modes .  
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Fig. 5: Computation of eigenvalue equation in the leaky wave region for the ten lowest modes. 

 Solution are the complex normalized propagation constants (/k0) as the thickness T of the tapered waveguide 
diminishes (from right to left of figure). 

For any modes illustrated in the complex plane of Fig. 5, it can be observed that the imaginary part of k0 is positive. This 
is crucial to the vanishing of such leaky waves away from the transition region. Also, as the thickness T is reduced, each 
point on the locus sees its imaginary part getting higher in magnitude. This emphasises the fact that as the thickness T of 
the film (j1) diminishes, the corresponding leaky wave launched in medium (j2) decays more rapidly. Physically, the 
leaky waves describe the radiation which occurs past the transition region as the incident angle  exceeds the critical angle 
c of the tapered structure of Fig. 1. This physical phenomenon illustrates the coupling mechanism from medium (n1) to 
medium (n2). Figure 6 illustrates the computation of the incident angle  defined by   Acos ( n1 k0). 
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Fig. 6: Computation of eigenvalue equation in the leaky wave region for the ten lowest modes. 

Solution are the complex incident angle  (in radians) as the thickness T of the tapered waveguide is reduced (from left to 
right of figure). 

As the thickness T varies from a maximum to a minimum value , and for the ten lowest modes of the stucture , the real 
solutions of  corresponding to the guided wave region are restricted in the interval 0    c , whereas the complex 
solutions of  coresponding to the leaky wave region are confined in the interval c  Real ( )    2 . 

4. Conclusion  

 We have analyzed the tapered waveguide as illustrated by Fig. 1, using locally the conventional electromagnetic wave 
theory. Hereby, the tapered structure is visualized as a series of uniform steps, in which conventional wave theory for 
uniform guides holds. The solution of Helmoltz’s equations is accomplished by suggesting in each medium as well as in 
each region with respect to cut-off; appropriate solutions of the field which satisfy the local boundary conditions. In this 
respect, we have been able to present interesting numerical results for the configuration of Fig. 1 by investigating the 
mode propagation in plane parallel waveguides, as the thickness T diminishes. Such a requirement is accommodated by 
the natural geometrical configuration of the tapered waveguide which constitutes the main body of the structure in Fig. 1. 
In this sense, one can unquestionably apply all numerical results concerning Fig. 2 related to structure of Fig. 1. 
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