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Abstract - This article discusses the concept of Boolean 
linear combinations over Quadratic Boolean modules. The 
concept actually mimics the famous Inclusion- Exclusion 
Formula in set theory or combinatorics. The Boolean 
representation of elements of the Quadratic Boolean Module 
allows us to study the concept of partition matrices and 
study some properties which is very interesting in its own 
way. Finally, Boolean generators and free 

Boolean modules have been studied. 
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1. Preliminaries  

1.1 On the Structure of Boolean Like Rings (BLR for 
short):  

A commutative ring R with 1 is called a Boolean Like Ring 
([3]) (BLR) if it satisfies the following conditions: 

1. R has characteristic two 

2.  (     ) (     )                     

It turns out that 

   *       + 

is a subring, denoted by B or B(R), which consists of all 
idempotent elements of R. It is a Boolean ring, named as the 
Boolean subring of R. Let N or N(R) denote the ideal of all 
nilpotents elements of R. We have 

1.         for all nilpotent elements         
2.    *            + 
3.              * + 
4.        

Note that N is a B-module (in the normal sense of module 
theory). Alternatively, a BLR can be characterized as a zero- 
extension     of a Boolean ring by an arbitrary B-module 
N. The addition is clear. Concerning multiplication, we have: 

(     )(     )         (       ) 

where                : 

Throughout this paper we keep the notation: R for the BLR, 
B its subring of idempotent elements, N its ideal of nilpotent 
elements, elements of R are 

written as         , those of B as          and those of N as 
         The group of units of R will be denoted by   or 
 ( ), and elements of units will be represented by      . It 
is known that  

   *            +  *        + 

The multiplicative group   and the additive group   are 
isomorphic via the isomorphism                 
  with inverse                 

1.1.  Special elements in BLRs. 

For any given      the element a2 is idempotent. Hence, 
                         ([4]) and a; a2; a3 is the 
list of all powers of a which actually occur. It may happen 
that not all of them are distinct. An element     is 
idempotent 

If     , it is called weakly idempotent if      , and it is 
called weakly nilpotent if      . Note that a is weakly 
idempotent and weakly nilpotent if and only of a is 
idempotent. Idempotents and units are samples of weakly 
idempotent elements, and idempotents and nilpotents are 
samples of weakly nilpotent elements. The weakly 
idempotent elements play a big role in the study of 
quadratic 

Boolean modules. In fact, one is dealing with finite 
sequences               subject to the conditions 

∑  
                  

 

   

 

Necessarily, each   is weakly idempotent. Every     has a 
unique decomposition of the type  

          where   is idempotent,   is nilpotent  

Proposition 1.1: Let           where   is idempotent,   
is nilpotent. Then 

1.   is weakly idempotent iff       , 
2.   is weakly nilpotent iff        
3.   is weakly idempotent iff       for some 

idempotent  , unit   . It is      in this 
decomposition. 

Proposition 1.2. ([4]) Given     , there is a unique 
decomposition of the type           where   is weakly 
idempotent, n is nilpotent and          In this 
decomposition we have            . 
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1.2 Primary Ideals 

A BLR has Krull dimension zero, so every prime ideal is 
maximal. The maximal ideals of R, denoted by M, lie over the 
maximal ideals of B, denoted by m. Regarding the 
intersection of all maximal (=prime) ideals we obtain, 

        * + 

A commutative ring R is called primary if every zero divisor 
is nilpotent, an ideal I of R is called primary if the residue 
ring     is a primary ring. A primary ideal Q of the BLR R 
restricts, by intersecting with B, to a maximal ideal m of B. 
So,        The ideal        is a primary ideal of R since 

          

and the latter ring is primary due to the following 
statement. 

Proposition 1.3.([2]) The following statements are 
equivalent for a BLR R: 

1. R is a local ring, 
2.                  
3. R is a primary ring. 

Theorem 1.4. ([2]) 

1. * +    , Q ranging over all primary ideals of R, 

2. R is a subdirect product of BLRs of the type     , i.e. of 
primary BLRs, 

3. if R has only finitely many idempotents, then R is a finite 
product of primary BLRs. 

1.3 Quadratic Boolean Modules 

Let   be a BLR,   an abelian group, and a mapping  

       (   )     be given. Elements of   are 
denoted by       . This setting is called a Quadratic 
Boolean Module over R ([2]) if the following axioms are 
satisfied: 

1.   (     )            

2.  (  )    (  )  if either   is idempotent or both 
    are units 

3.        

4. (     )                      

Lemma 1.5.([2]) 

1.   (     )                   for all 
                

2.           (  )                     

3.                     . 

Proposition 1.6 .            (         )    (  
   )  for all       

Lemma 1.7. ([2]) 

1.                      (   ) for all units     and 
all        , 

2.                    (     )  for all nilpotent 
elements    . 

2. The Inclusion-Exclusion Formula. 

Suggested by this formula one is directed to introducing 
the notion of sets of Boolean generators of the section (5). 
Boolean generators present a feature that is distinctive for 
Boolean modules and has no counterpart in the usual 
module theory. The name of this formula stems from the 
well-known inclusion-exclusion formula of set theory or 
combinatorics, paraphrased in the context of Boolean 
rings. Given two subsets                then 

     (      )   (     )   (     )   (     )   

In Boolean rings this decomposition reads: 

    (    )(     )     (    )    (    )       

Given a                 (        ) and elements 
     , we derive the following formula 

Proposition 2.1. Given elements                in a 
            

          (    )(   )    ( (    ))  

  ((    ) )      (     )  

Proof. The proof uses the fact        for every 
idempotent   as well as axioms ( ) ( )  The coefficients 
        satisfy the two conditions 

                   ∑   
 

 

   

   

where    (    )(   )      ( (    ))    

 ((    ) )        

This proposition already displays the essential features of 
the general inclusion-exclusion formula. This formula 
starts with a general sum ∑     

 
    with a      , 

                     , elements                    
       are given. It then presents a new representation 
with distinguished properties of the coefficients. To 
express these new coefficients, we introduce the following 
notation: 
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Let   *     +, set 

   (∏  )(∏(    
 ))    ∑       

         

 

Properties of the    are listed in the following lemma. We 
make use of the symmetric difference of two sets: 

      (      )    (      )  

Lemma 2.2. 

1.      
(∏   

 )     (∏     
 )(∏ (     

 ))             

2.           then 

a.                                         

b.   
   

    

3. ∑      ∑ (     
 )      ∑   

     

Proof. The proof of ( ) is straightforward. Since for any   
the element       is nilpotent we get that   

   
  

           The same conclusion holds if all    are weakly 
idempotent. 

The proof of ( ) starts with the identity: 

∏(   (    
 ))  ∑  

    

 

which is obtained by distributivity. Next, use     (  
  

    (     
 ) 

fact that for any   the element       is nilpotent and that 
       for any two nilpotent elements    . As a 
consequence, we get the right-hand side ofthe first claim 
in statement ( ) above. Also, this sum is a unit, hence the 
rest follows. 

Theorem 2.3 (Inclusion-Exclusion Formula). In the 
situation above: 

1. ∑     
 
    ∑     *     +    

2. ∑   
     *     +  

3. if all    are weakly idempotent then all    likewise 
and                

Proof. Since         , the case of the empty set could be 
omitted. For symmetry, it is listed as well. Regarding the 
statements ( ) ( ) the lemma above. 

The proof of ( ) proceeds by studying the cases ( )    ( ) . 

1.              , 
2.              , 
3. all   are weakly idempotent, 
4. arbitrary   . 

Case (1): We proceed by induction on         is settled 
above. In the induction step, write 

∑  ∑      ∑     

  *     +

   

   

          

Since   ∑       *     + , we obtain 

∑  ∑ (    *     +              ) 

The inner sum equals   (      )         (       )) 
due the case of n = 2. So, the claim is proven. 

Case (2): Under this hypothesis the claim boils down to 
the assertion ∑      (∏   )(∑   

 
   ) 

   
 
    since        

for every unit  . This statement follows by in duction from 
lemma 1.7. 

Case (3): Under this hypothesis we have 

       
              a unit.  

Setting           and using axiom (2), we can deal with 

∑    

 

   

  ∑  
   

 

   

 

by invoking the results of cases ( ) ( ) to derive the 
assertion. 

Case (4): We will be using the decomposition 

          ( )       ( )          

         ( )          ( )            . 

Simplifying the notation, we set  (  )       . Then, 
invoking lemma 1.7 

∑      ∑(  
    )   (∑  

   )  (∑   ) 

 

   

 

   

 

   

 

   

 

∑   
    (∑  

 

     *     +

) 

 ∑   
    (∑   

 

∑  

 

     *     +

)  

where       
      

 [∏(     )

   

] ,∏(    
 )

   

- 

The product of any two nilpotent element is zero. Hence, 
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   ∑( ∏   

   * +

)

   

(∏(    
 ))  

   

 

This leads to 

∑  

 

 ∑,∑( ∏   

   * +

)

     

(∏(    
 ))-  

    

 

The term in brackets , - can be dealt with by lemma 2.2, 
applied to the set 

*      +  * + and the elements          . We obtain 

∑   

 

 ∑*  ∑(     
 )

   

+    ∑  

  

 

since the value in , - is a unit, and         for any unit   
and nilpotent element  . Finally, ∑    ∑        and the 
proof is complete. 

3. Boolean Linear Combinations. 

The inclusion-exclusion formula suggests to study linear 
combination of the following type: 

  ∑                               ∑   
   

  

 

Such a linear combination ∑       is called a Boolean linear 
combination, and the representation   ∑       by a 
Boolean linear combination is called a Boolean 
representation of  . It is a very nice fact that the sum 
      and the scalar product    can be expressed by 
using Boolean representations. 

Proposition 3.1.   ∑             ∑       be Boolean 

representations of                 , Then 

1.     ∑     (     )    

2.    (    )  ,(         )  
∑ (    )     - 

Remark 3.2. In ( ) the right-hand side is a Boolean 
representation. In ( ) the second term , - is a Boolean 
linear combination of the sequence             

If                              then 

   (    )  ,(         )  ∑(    )  

   

 

and this term , - is a Boolean linear combination of the 
sequence (  )  

The last proposition together with the inclusion-exclusion 
formula allows to describe the submodules of   which are 
generated by given sets  , denoted by      . 

Definition 3.3.  

     ( ) = *                                      
   + is called the Boolean span of X. 

Theorem 3.4. Let   denote the subgroup of   generated 
by  . Then 

            ( )       

Proof. It is clear that       must contain the set on the 
right-hand side      . It remains to show that   is 
already a submodule.      ( ) is a subgroup by the last 
proposition,    as well by lemma 1.7. To prove that 

  is closed under scalar multiplication , First note the 
relation  (      )    (      )       = (        )   
 (   )         (   ) . Then apply the last proposition 
3.1. 

The statements in this proposition are particularly nice if 
we consider the Boolean span of a subgroup        . In 
this case we get 

1. ∑         

∑       ∑ (∑       (   )      )       

2.   ∑         (    )  ,(         )  

∑ (    )      

4. Partition matrices. 

This section is needed in the subsequent study of Boolean 
modules with a Boolean basis and it deserves attention in 
its own right. It deals with interesting groups of the so-
called partition matrices which, by the way, present new 
samples of Boolean modules, not necessarily commutative. 

In the last section we were dealing with sequences (  )  
subject to the conditions 

                    ∑   
   

 

 

In this situation the element   ∑     is a unit, and the 
fact 

∑   
     can be interpreted as a partition. Each term   

  

gives rise to the "component"   
    . 

We express these facts by saying that (  )  is a partition of 
a unit. Accordingly, we call the column vector 

(

 
 

  

 
 
 

  )
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A     matrix over   is called a partition matrix if all 
columns are partition vectors over R. The set of all     
partition matrices is denoted by       where we set 

         . 

The following lemma is proven by direct verification. 

Lemma 4.1. 

1.  If   is a       partition matrix over   and 
       a partition vector, then    is a partition 
vector in   . 

2. Let   be a      partition matrix then    is a 
      partition matrix over R. 

Remark 4.2. As a consequence of the last lemma we get 
that    is closed under multiplication, i.e. it is a monoid.  

If the       is a primary (=local) ring then partition 
vectors and matrices feature a simple structure as will be 
remarked soon. By reducing the general case to this 
special one we are able to derive surprising results about 
invertible partition matrices. This reduction is performed 
by making use of the minimal primary ideals   . The 
canonical residue homomorphism 

  
 

  
               

induces, by reducing the entries of vectors and matrices 
mod   , a mapping of vectors and matrices,     , 
which preserves all usual operations with vectors and 
matrices: 

(   )           (   )             (  )
  (   ( ))  (   )    (  )   

Theorem 1.4      tells where   runs through all 
maximal ideals of  . This entails: if       are matrices 
over   then 

     (            )           (           
    )           

Using (  )        , (∑   
 

 )  ∑ ,  - 
 

 , we get that 

Lemma 4.3.   is a partition matrix (resp. invertible 
partition matrix) if and only if    is a partition matrix 
(resp. invertible partition matrix) for all  . 

We now consider the case of a primary BLR        
and keep this convention unless we explicitly return to the 
general case. Such ring is local with maximal ideal  , any 
element outside   is a unit. 

Let a sequence (  )  be given where                  and 

∑   
      Then some    must lie outside  , so it is a unit. 

This implies that                . Hence, a partition 

vector is of the type 

               

Let's consider quadratic matrices in   ( ). Then, partition 
matrices       ( ) are just the matrices of the type 

        where         (          ) a diagonal 
matrix of units    and   a matrix whose columns are unit 
vectors. 

Such a decomposition         is unique. In particular, 
an invertible       matrix is a partition matrix if it is a 
product of an invertible diagonal matrix 
       (           and a permutation matrix 
composed of unit vectors (  ( ))  where   is a permutation 

in the symmetric group   . 

We now return to the case of a general    . Using lemma 
4.3, we get 

Theorem 4.4. 1. Let   be an invertible partition matrix 
over  . Then, the inverse     and the transpose   are 
again partition matrices, 

2. The set of invertible partition     matrices form a 
subgroup, denoted by   

  of the general linear group 
   ( )  

Corollary 4.5.   
  is a (not necessarily commutative) R-

module under the scalar product (   )   (    )   
     

It could be interesting to study this R-module. I found the 
first statement of the last theorem very surprising. In 
particular, it says that the row vectors of an invertible 
partition matrix are also partition vectors. But, partition 
matrices were defined by only requiring the column 
vectors to be partition vectors. 

5. Boolean Generators and Free Boolean Modules 

Let   be a Boolean module and     . If          ( ) 
then   is called a set of Boolean generators of   . If each 
     has a unique Boolean representation 

  ∑                                      

 

        ∑  
   

 

 

then X is called a                    . 

In Boolean representations only weakly idempotent 
coefficients occur. This implies that we can pass to any 
nilpotent modification of V without changing the Boolean 
representations and losing the property that   is a set of 
Boolean generators. Therefore, till the end of this 
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summary we will assume that the Boolean module, V is 
regular, i.e.        . 

We need a calculus of Boolean spans      ( )  First, 

     ( )        (  ) 

where                                         

Therefore we can confine ourselves to finite sets 
   *           +  Let        *          +   

      ( )  Then we have Boolean representations 

   ∑     

 

                                     (    ) 

Since each    may have distinct Boolean representations 

the partition matrix   is possibly not uniquely determined 
in terms of the (  )

   (  )  . Nevertheless, by abuse of 

notations, we set      (    ) and call it a transformation 
matrix from        . 

Proposition 5.1. Given any Boolean representation 

∑       then ∑      ∑           (

  

 
  

  

)   (   ) (

  

 
  

  

)    

Proof. The proof follows from proposition 3.1. 

Corollary 5.2. 1.      (  )         ( )  

2. if  (    )                         (  )         ( )  

Proposition 5.3. Let   be a Boolean basis of   and   any 
set of Boolean generators of                    . Then 
 (    ) (    )      , the       unit matrix. In 
particular      . 

Regarding the proof one uses that each   s a Boolean 
linear combination of the    and that   is a basis. We 

deduce from this proposition that the cardinality of any 
basis is an invariant of the free Boolean module. We set 

Definition 5.4. Let   be a free Boolean module, then the 
dimension    (  ) is defined as       for any basis 
       

The reason why    was subtracted is to be seen in the 
behaviour of   . Different from usual vector space theory 
these values may be non-zero, and we are forced to 
include 0 into basis or something alike. 

Proposition 5.5. Every free Boolean module contains a 
basis   with       and we have:                  

In theorem 3.4, it was proven that      ( ) is a Boolean 
submodule for any subgroup      . So, it is not 
guaranteed that for arbitrary set   the Boolean 

span      ( ) is a module at all. In this regard one can 
prove 

Proposition 5.6.      ( ) is a Boolean submodule of   if 
the following three conditions are satisfied; 

1.          ( )  
2.                               ( )  
3.                                     ( )  

The conditions are clearly necessary. They are sufficient in 
view of propositions 3.1. 
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