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ABSTRACT:- Let G be a graph. The assignment of colours to the vertices of G, one colour to every vertex, in order that the 
adjacent vertices are assigned different colours is called vertex colouring or colouring of the graph G. A graph G is n-
colourable if there exists a colouring of G which apply n colours. The minimum number of colours required to paint a 
graph G is called the chromatic number of G and is denoted by χ(G). It is concerned with the upper bound on the chromatic 
number for graphs of maximum vertex degree. 
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INTRODUCTION 

It deals with a subdiscipline of graph theory known as graph colouring. While the word graph is common in mathematics 
courses as far back as introductory algebra, usually as a term for a plot of a function in graph theory the term takes on a 
different meaning. In the context of graph theory, a graph is a collection of vertices and edges, each edge connecting two 
vertices.  

Theorem 1 

If the maximum vertex degree of a graph G is ∆, then χ(G) ≤ ∆ + 1. 

Proof. We elect any arbitrary vertex in G and colour it with one among of the ∆ + 1 available colour. We then pick any 
uncoloured vertex in G and colour it with a colour that has not been assigned to any of the vertices adjacent to it. We then 
repeat this last step until every vertex in G is coloured. Because any given vertex v is connected to at the most ∆ vertices, 
there are often at the most ∆ distinct colours already used on the vertices adjacent to v, so there will always be at least one 
colour available to colour v. 

Theorem 2 

For any graph, G, there is an order that can be assigned to the vertices of G for which the greedy colouring algorithm will 
use the graph’s chromatic number of colours to properly colour G. 

Proof. By the definition of the chromatic number, we know that at least one such colouring exists. Assign an arbitrary 
order to the colours used in the graph. Now, we consider the set of all graph colours that use the chromatic number of 
colours. Of these, we consider the subset of these colourings which use the first colour the maximum number of times. Of 
those colourings, we consider the subset of colourings which use the second colour the maximum number of times, and so 
on, until you are left with one colouring. In this colouring, we all know that any vertex coloured with the second colour 
must be adjacent to a minimum of one vertex coloured with the first colour. Similarly, any vertex coloured with the third 
colour will be adjacent to both a vertex of the first colour and a vertex of the second colour, and so on. In this graph, order 
the vertices as follows: place any vertex coloured with the first colour first in the order. Locate any unordered vertex 
coloured with the lowest-ordered colour obtainable next within the vertex order. Continue this process until all the 
vertices within the graph are ordered. Now, applying the greedy colouring algorithm to this ordered graph using the same 
colour order as used previously, we’ll recreate the original graph colouring, which uses the graph’s chromatic number of 
colours. 

Theorem 3 

Every connected graph has a minimum of one spanning tree. 

Proof. If the graph contains no circuits, it is already a tree and is therefore its own spanning tree. If the graph contains at 
least one circuit, remove one edge from each circuit in the graph. The graph will still be connected, as a circuit implies that 
for any two vertices on the circuit, two distinct paths exist between those vertices. By removing one edge from the circuit, 
we remove one of these paths, which still leaves one path between those two vertices. Further, the removal of an edge 
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from a circuit ensures that the remaining edges won’t form a circuit. Now, because the new graph is connected and 
contains no circuits, it’s a tree of the original graph. As we did not remove any of the original graph’s vertices in this 
process, the new graph is a spanning tree of the original graph. 

Theorem 4 

For any connected graph, G, there’s an order during which one can place the vertices of G such every vertex features a 
higher ordered neighbour, with the exception of the last vertex within the order. 

Proof. Consider a spanning tree of G, which we’ll call Gt. Gt contains all of the vertices of G, and any vertices that are 
adjacent in Gt are also adjacent in G. Now assume that all of the edges in Gt are given a weight, which we will call length. 
Furthermore, let each edge up Gt have a length of 1. Now choose any vertex v0 in Gt. as long as vertex, we order the vertices 
of Gt, also because the corresponding vertices in G, as follows:  

1. Find the vertex for which the path from that vertex to v0 has the greatest length. If more than one such vertex 
exists, choose any of these vertices. Place this vertex first in the order.  

2. Find the unordered vertex for which the path from it to v0 has the greatest length. If more than one such vertex 
exists, choose any of these vertices. Place this vertex next in the order. 

 3. Repeat step 2 until all vertices in Gt except v0 are ordered. 

 4. Place v0 last in the order. It can easily be shown that there is only one distinct path between any two given 
vertices in a tree, as two paths between those vertices would imply that a circuit exists. Given this, by the above ordering 
algorithm, all the vertices in the ordered graph of Gt, and thus within the ordered graph of G, will have higher-ordered 
neighbours, except for v0, which appears last in the order. 

CONCLUSION 

In this paper it is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree. A 
graph is a collection of vertices and edges, each edge connecting two vertices. For any connected graph, G, there’s an order 
during which one can place the vertices of G such every vertex features a higher ordered neighbour, with the exception of 
the last vertex within the order. 
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