
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2073

Amazon Redshift Workload Management and Fast Retrieval of Data

Palash Chaudhari1

1Employee, Cognizant Technology Solution, Pune, Maharashtra, India
--***---
Abstract - Amazon Redshift is a database service that is fully
managed, fast, reliable and a part of Amazon’s cloud
computing platform, Amazon Web Services (AWS). Redshift
has many striking features like Parallel Processing, Fault
Tolerance, Integration with third party tools and Limitless
Concurrency which is not possible to get in any traditional
databases. It has Massively Parallel Processing (MPP)
architecture, which distributing SQL operations and
parallelizing techniques to make use of all available resource,
this process is known as Work Load Management (WLM).
WLM is responsible for faster performance of this database. As
similar to WLM it is important to focus on retrieval of data
through Redshift database. While querying a table that has
huge amount of data, the time taken to retrieve the data will
be more, however fast retrieving techniques will help to reduce
the retrieval time or loading time.

Key Words: Redshift, Workload Management, Vacuum, ETL,
Query, Deep Copy.

1. INTRODUCTION

Amazon Redshift uses efficient techniques for Workload
Management (WLM) as well as to obtain a very high level of
query performance on large amounts of datasets, ranging
from hundred gigabytes to a petabyte, this feature puts this
database in different league from rest of massive parallel
processing databases. This enables setting up query groups
and their priorities and customizes the parameters for query
execution for that group. WLM configurations are managed
through Amazon Redshift management console or command
line interface (CLI) or the Amazon Redshift API.

2. Need of Workload Management

If there is one organization’s database and two employees
want to extract some information. First employee want
‘Name, Employee ID, Address, Number and Salary’ of all
employees in organization and Second employee just want
‘Name’ of all employees. When they execute the query, it
comes under queue. As first query is long running, so second
person need to wait until successful execution of first query
and hence it leads to waste of time. Workload Management
provide massive role in Redshift database, which helps users
to flexibly manage the workload so that fast running queries
or short queries will not get stuck in the queues behind the
long running queries. It helps to put users and queries into
priority buckets or groups and assign customized system
resources for their fulfillment through appropriate queues.

Fig -1: Query Queue

3. WLM Configuration Parameters

a) Queue
Queues are organized buckets where waiting queries
are lined up. Redshift have capability of creation of 8
queues. Workload management allows use of
wildcards to match pattern or detect presence of
certain characters in query labels to tag those to
appropriate queue.

b) User Group / Query Group

User Groups or Query Groups are labels that can be
assigned to queries to determine the queue through
which they can be processed. These labels are
assigned by user to the query at run time. WLM
assigns the query to appropriate query queue. By
default there are two groups Super Users and
Regular Users. Super Users have high priority and
Regular Users have low priority.

c) Concurrency

It means how many queries can be processed at
same instance of time. By default, the concurrency
level is 5 for each group. Redshift have maximum
concurrency level can be 50. The Concurrency is
inversely proportional to Memory. It means higher
the concurrency, lesser the memory available to
each query slot. There could be specific memory
intensive queries which could need more number of
slots to process. This can be achieved by tuning the
wlm_query_slot_count parameter. WLM creates as
many query slots as the concurrency level of the
queue.

d) Timeout

When query takes long time to process which it will
be automatically cancel or hopped.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2074

e) Hopping
Moving the query to other queue where it can be
processed earlier than current one is called hopping.

f) Short-Query Acceleration (SQA)

Short queries are the ones which need very minimal
memory and less time to process. The SQA feature is
enabled by default. This provides automatically, the
short queries in user defined queues to get
prioritized ahead of long queries by WLM. Thus a
separate queue and group is not required to be
created when this feature is turned on.

4. Dynamic Memory Allocation

In every queue, numbers of query slots are created by WLM
which is equal to queue's concurrency level. The memory
allocated to query slot is equal to the queue divided by the
slot count. Amazon Redshift dynamically shifts to a new
WLM configuration if memory allocation or concurrency gets
change. Hence, the running queries can able to execute
successfully by using currently allocated memory. While
same time database make sure that the total amount of usage
memory will not exceeds hundred percent of available
memory.

The workload manager uses following method for transition.

a) For the new query slot WLM frequently calculate the
memory allocation.

b) If the query is not running in the query slot, WLM
immediately remove that slot and make the memory
available.

c) In the query slot if query is running, WLM waits for
successfully execution of query. Then these inactive
slots are removed and make the memory available.

d) New slots are added if large amount of memory is
available.

e) The slot count equals the new concurrency level, after
finishing of all active queries at the time of change and
the transition process to the new WLM configuration
is complete.

5. WLM Queue Assignment Rules

WLM assigns the query submitted by a user as per a set of
rules. Based on the user it determines which queue the
query should be added to or if a query group is labeled. If
there is no specific group or label then the query is added to
default group. Below flow chart helps to understand the
WLM queue assignment rule.

Fig -2: Flowchart of WLM Queue Assignment Rule

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2075

6. Where WLM Helps

Redshift itself being a Data Warehouse service, it’s implied
this data would be read significantly more number of times
than updated. Concurrent query access could be a
performance impact, where there could be multiple
consumers of same information. The consumers could be
data analyst, reporting applications, power users or
downstream API consumers. They could be requesting a lot
of information in one go or may be small subsets but more
frequently.

A typical use case could be a sales data warehouse, which is
refreshed with new data continuously. Daily and weekly
sales data aggregated and sliced and dices across various
dimensions like divisions, products, geographies could be
consumed by various sections of users like ETL
(load/unload), APIs, power users, data analysts, canned
reports etc. Here we could leverage the WLM capabilities so
that we have separate query queues for ETL, ELT and rest of
users. Power users could be making shorter queries on pre-
aggregated datasets and expect very quick turnaround times.
Data analysts could be applying complex logic and process
large queries which are more memory intensive but not time
critical and thus can wait. Canned reports could be stitching
data from across data marts to deliver information and could
be both memory intensive and time critical. Downstream API
consumers could be third party and could have varying
priorities. If the data hits were uneven, for example very high
towards financial period ends and normal otherwise,
concurrency scaling would be something that can come
handy. By labeling the queries, forming queues and assigning
appropriate parameters, we can make Redshift data
consumption scalable and yet seamless.

Fig -3: Query Execution using WLM feature

Table 1: Memory Allocation to Resource

In above illustration, we can see that due to multiple queues
and their allocated resources, respective query groups
become independent of the other. By applying monitoring
rules, when one query exceeds the threshold of its allocated
resources like memory or time, appropriate action can be
taken. There would be no underutilization of available slots if
weighted resources are available. Thus, WLM can help in
optimum query performance for Redshift.

7. Fast Retrieval of Data

There are 4 aspects of fast retrieving of data.

a) Specify column name in SELECT query

While fetching data from the table, specify the column names
instead of putting *. Since the Redshift uses columnar
storage, data will be retrieved fast. Instead of using ‘SELECT
* FROM TABLE_NAME’, use ‘SELECT COL_1, COL_2, COL_3
FROM TABLE_NAME’. In columnar storage, each block stores
a data of single column for multiple rows. When fetching the
data, it drastically reduces disk I/O requirements which
intern increases the performance. Also, each block stores a
data of same data type. Hence we can apply compression
techniques that further reduce the disk space and I/O.
Typical database block size ranges from 2KB to 32KB.
Amazon Redshift uses the block size 1 MB which is more
efficient and further reduces the number of I/O requests that
needed to be performed on database loading or part of query
execution.

b) Vacuuming a Table

When we delete a data from the table, the space associated
with the data will not be deleted. Due to this, the query
performance may get lower. In extreme situations, we might
even end up with queries which may time-out due to the
extra overhead the rows are deleted but not reclaimed space.
Amazon Redshift does not reclaim free space automatically.
So, we need to use some techniques to reclaim the space.
There comes a command called as vacuum. The Vacuuming
process, is quite important for the health and maintenance of
AWS Redshift cluster. By running a Vacuum command on
one of our tables, we reclaim any free space that is the result
of delete and update operations. At the same time, the data
of the table get sorted. This way, we end up with a compact
and sorted table, which are useful for the performance of our
cluster.

Queue Conc. User
Group Memory Memory per

Slot
ELT Job 1 ELT 40% 40%
Reports 1 Reports 40% 40%

Adhoc 2 Power
User 20% 10%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2076

Syntax:-
VACUUM [FULL | SORT ONLY | DELETE ONLY | REINDEX] [
[table_name] [TO threshold PERCENT]];

Vacuuming process should happen during periods of
inactivity or at least minimal activity on your cluster. So
query planning is again essential here. The longer the time
between consecutive vacuum commands for a table, the
longer it takes for the vacuuming process to end. As
vacuuming is about going through your data and reclaiming
rows marked as deleted, it is an I/O intensive process. So, it
affects any other queries or processes that you might be
running concurrently, but the good thing is, Vacuuming can
happen concurrently with other processes, so it may not
block any ETL processes or queries you might be running.

Types of Vacuum

 VACUUM FULL: Vacuum Full is the default

configuration of a vacuum command, so if we do not
provide any parameters to the command, this is
performed on your data. With a Full Vacuum type, we
both reclaim space, and we also sort the remaining
data. These steps happen one after the other, so
Amazon Redshift first recovers the space and then
sorts the remaining data.

 VACUUM DELETE ONLY: If we select this option, then
we only reclaim space and the remaining data in not
sorted.

 VACUUM SORT ONLY: With this option, we do not
reclaim any space, but we try to sort the existing data.

 VACUUM REINDEX: This command is probably the
most resource intensive of all the table vacuuming
options on Amazon Redshift. It is a full vacuum type
together with re-indexing of interleaved data. It makes
sense only for tables that use interleaved sort keys.

c) Deep Copy

Deep copy recreates and repopulates table by using a bulk
insert, which automatically sorts the data. If a table has large
unsorted data, then deep copy is much faster than vacuum.
Below are the methods to create a copy of original table for
deep copy activity.

Use the original table DDL:

Use CREATE TABLE DDL available for the table and create a
copy.

Steps:-

 Create a copy of the table using the original CREATE
TABLE DDL.

 Use an INSERT INTO … SELECT statement to
populate the copy with data from the original
table.

 Drop the original table.

 Use an ALTER TABLE statement to rename the copy
to the original table name.

Use CREATE TABLE LIKE:

If the original DDL is not available, we can use CREATE
TABLE LIKE to recreate the original table. The new table
inherits the encoding, distkey, sortkey and notnull attributes
of the parent table. The new table doesn't inherit the
primary key and foreign key attributes of the parent table,
but we can add them using ALTER TABLE.

Steps:-

 Create a new table using CREATE TABLE LIKE.
 Use an INSERT INTO … SELECT statement to copy

the rows from the current table to the new table.
 Drop the current table.
 Use an ALTER TABLE statement to rename the new

table to the original table name.

Create a temporary table and truncate the original table:

If we need to retain the primary key and foreign key
attributes of the parent table, or if the parent table has
dependencies, you can use CREATE TABLE ... AS to create a
temporary table, then truncate the original table and
populate it from the temporary table. Using a temporary
table improves performance significantly compared to using
a permanent table, but there is a risk of losing data. A
temporary table is automatically dropped at the end of the
session in which it is created. TRUNCATE commits
immediately, even if it is inside a transaction block. If the
TRUNCATE succeeds but the session terminates before the
subsequent INSERT completes, the data is lost. If data loss is
unacceptable, use a permanent table.

Steps:-

 Use CREATE TABLE AS to create a temporary table
with the rows from the original table.

 Truncate the current table.
 Use an INSERT INTO… SELECT statement to copy

the rows from the temporary table to the original
table.

 Drop the temporary table.

d) Analyze

Analyze is used to update stats of a table. When a query is
issued on Redshift, it breaks it into small steps, which
includes the scanning of data blocks. To minimize the
amount of data scanned, Redshift relies on stats provided by
tables. Stats are outdated when new data is inserted in
tables. These stats information needs to be updated for
better performance of queries on Redshift.

 Syntax:-
ANALYZE [VERBOSE] [[table_name [(column_name[,...])]]
[PREDICATE COLUMNS | ALL COLUMNS];

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2077

REFERENCES

[1] https://aws.amazon.com/redshift/
[2] https://docs.aws.amazon.com/redshift/latest/mgmt/m

anaging-parameter-groups-console.html
[3] https://docs.aws.amazon.com/redshift/latest/dg/cm-c-

wlm-dynamic-example.html
[4] https://docs.aws.amazon.com/redshift/latest/dg/cm-c-

wlm-queue-assignment-rules.html
[5] https://docs.aws.amazon.com/redshift/latest/dg/tutori

al-wlm-understanding-default-processing.html
[6] https://docs.aws.amazon.com/redshift/latest/mgmt/w

orkload-mgmt-config.html

https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-dynamic-example.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-dynamic-example.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-wlm-understanding-default-processing.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-wlm-understanding-default-processing.html
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

