
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
 VOLUME: 07 ISSUE: 01 | JAN 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1523

Implementation of Garbage Collection Java Application on Sun Java Real
Time Operating System Mobile Embedded Application

Amandeep Kaur1, Balpreet Kaur2, Gurpreet Kaur3

1,2,3Assistant Professor, Dept. of CSE, BBSBEC, FGS, Punjab, India
--***--
Abstract- Java possesses many advantages for embedded
system development, including fast product deployment,
portability, security, and a small memory footprint. As Java
makes inroads into the market for embedded systems, much
effort is being invested in designing real-time garbage
collectors. Memory allocation can be done in constant time
and sweeping can be performed in parallel by multiple
modules. In this paper, garbage collection java application
has been implemented on real time system mobile embedded
application.

Key Words— Security, garbage Collection, Embedded
Systems.

1. INTRODUCTION

The need of automated garbage collection, or automated
memory management, in terms of time and memory is
oblivious. If used properly it will cut development time in
projects, the bigger and more complex project, the more
time and time is money. The ultimate garbage collector, or
automated memory management scheme, should allocate
the exact amount of memory needed when it is needed. It
should also reclaim memory the moment it becomes
useless to the running program.

2. COMPARISON OF GARBAGE COLLECTION
TECHNIQUES WORST CASE EXECUTION TIMES

Garbage collection performances vary when we use
reference counting technique. Generational garbage
collection worst case allocation characteristics are
different from reference counting.

Table 1: Comparison

 Worst Case
Allocation

Worst Case
Recycling

Generality

Malloc/Free Walk free list Constant high
Garbage
Collection

Constant Size of
memory
(typically)

high

Reference
Counting

Walk free list Size of
memory

Med(cycles)

Pool
Analysis

Constant Constant low

3. IMPLEMENTATION

The java application has been executed on sun java real
time mobile embedded application. The application is
made run on the simulator of default color phone. The
operating system on which the application is working is
Symbian real time operating system.

Fig -1: Opening a project on real time java mobile
embedded system

Fig -2: Executing java application on real time mobile
embedded application

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
 VOLUME: 07 ISSUE: 01 | JAN 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1524

4. RESULTS

The screenshot of the garbage collection java application
implementing on mobile embedded symbian real time
operating system shows the free memory before and after
garbage collection. During the process, 48550 bytes have
been collected and memory freed from garbage data.

5. CONCLUSION

The use of the real time garbage collection together with
the extensions defined in the real time specifications for
java makes it possible to provide a more straightforward
and simpler development of real time code using java.
Even systems that do not require dynamic memory
management within real time code becomes simpler, such
that higher productivity and higher software quality can be
expected. Such a system provides the advantage that made
java so successful to the developer of real time systems.

REFERENCES

[1] Adrienne Bloss. Update analysis and the efficient
implementation of functional aggregates, pages 26-
38.ACM Press, 1990.

[2] Paul R. Wilson. Uniprocessor garbage collection
techniques. Submitted to ACM Computing surveys
1994.

[3] Yoo C.Chung and Soo-Mook Moon.Memory allocation
with lazy fits.

[4] Jaques Cohonu and Alexendru Nikolau.Comaprison of
compaction algorithm for garbage collection.ACM
transactions on programming languages and systems,
5(4):532-553, October 1983.

[5] Ben Cranston and rick Thomas. A simplified
recombination scheme for the fibonacci buddy
systems, pages 331-332.ACM Press, june 1975.

[6] David Detlefs. Automatic inference of reference-count
invariants.

[7] David M.Harland.REKURSIV:Object-oriented computer
arcitecture. Ellis Horwood Ltd.,1998.

[8] Roger Henriksson. Scheduling garbage collection in
embedded systems. Phd thesis,Lund Institute of
Technology,1998.

[9] Daniel S.Hirschberg. A class of dynamic memory
allocation algorithams,pages 615-618. ACM Press,
October 1973.

[10] Mark S.johnstone and Paul R. Wilson. The memory
fragmentation problem: Solved? October 18, 1997

