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Abstract – This paper reports the dynamic stability analysis 
of Functionally Graded Materials subjected to in plane periodic 
load. A higher order shear deformation theory is used in 
conjunction with the finite element approach. A  nine-noded 
isoparametric finite element with seven DOFs per node is used 
in present study. The temperature filed is assumed to be a 
uniform distribution over the plate. The boundaries of stability 
regions are obtained using Bolotin’s approach and are 
conveniently represented in the non-dimensional excitation 
frequency to dynamic load amplitude. The influence of length 
to thickness ratio, volume fraction index, loading, boundary 
conditions along with temperature rise on the dynamic 
stability of the FGM plate is investigated.  The evaluated 
results are compared with the available published results. 
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Functionally Graded Materials (FGMs), Finite Element 
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1. INTRODUCTION 
 
A second order non-homogenous equation generally 
describes a resonant system. When the elastic system under 
goes normal resonance or forced resonance, the external 
excitation frequency is equal to natural frequency of the 
system. The phenomenon of dynamic stability is analyzed by 
second order homogenous equations. Parametric resonance 
refers to an oscillatory motion in a mechanical system due to 
time varying external excitation. The external applied 
loading terms appear as parameters or coefficients in the 
equation of motion of an elastic system. System undergoes 
parametric resonance when the external excitation is equal 
to an integral multiple of natural frequency of the system. In 
parametric resonance, systems amplitude increases 
exponentially and may grow without limit. This exponential 
unlimited increase of amplitude is potentially dangerous to 
the system. Parametric resonance is also known as 
parametric instability or dynamic instability. The system can 
experience parametric instability (resonance), when the 
excitation frequency or any integer multiple of it, is twice the 
natural frequency, that is to say 

 

Where m=1, 2, 3…n and  natural frequency of the system. 

The case   is known as to be the most significant in 
application and is called main parametric resonance. Main 
objective of analysis of parametrically excited system is to 

establish the regions in the parameter space in which the 
system becomes unstable. These areas are known as regions 
of dynamic instability. The boundary separating a stable 
region from an unstable one is called a stability boundary. 
These boundaries drawn in the parameter space i.e. dynamic 
load amplitude, excitation frequency and static load 
component is called a stability diagram. Fig. 1 shows a 
typical dynamic stability diagram. 

 Fig -1: Stability Diagram of an excited system 
 
The location of the unstable region closer to the dynamic 
load axis indicates that the system is more liable to dynamic 
instability, as the instability occurs at lower excitation 
frequencies. In contrast, if the unstable region is located 
farther from the dynamic load axis, it indicates that the 
system is less prone to dynamic instability. If the area of the 
instability region is large, it indicates instability over a wider 
frequency range. If the instability region shifts towards the 
dynamic load axis or there is an increase in its area, the 
instability of the system is said to be enhanced and when 
contrary to it happens, the stability is said to be improved. 
The parametric resonance may cause the loss of functionality 
of plate structures. One of the controlling methods of 
parametric resonance is by changing mass/stiffness. To 
reduce or prevent the structural vibration, the designer has 
to choose better materials with suitable mass/stiffness. 
Functionally Graded Materials (FGM) have successfully 
replaced the debonding and delamination problems of 
composite materials due to their gradual variation of 
properties. These types of materials also occur in nature. 
Bamboo and bones have functional grading. Due to the 
outstanding properties of FGMs they are used in many 
engineering applications such as aerospace, aircraft, defense, 
space shuttle, gas turbine blades, and rocket engine parts, 
biomedical and electronic industries. In future the 
availability and production cost of FGMs may be cheap, so 
that they can be used in helicopter rotor blades, turbo 
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machinery parts and automobile parts etc. Functionally 
graded materials are new form of composites usually a 
mixture of metals and ceramics and are microscopically 
heterogeneous. The main role of the metal constituent in the 
FGM is to provide the structural support, while the other 
constituent is to provide heat shielding or thermal barrier 
when subjected to high temperature environments. The 
smooth transition of material provides thermal protection as 
well as structural rigidity. According to the material 
composition function specified, the volume fraction of one 
material constituent will be changed from 100% on one side 
to zero on another side, and that of another constituent will 
be changed the other way around as shown in figure 2.  

 
Fig -2: Microstructure of FGM 

 

2. LITERATURE REVIEW 
 
Pradyumna and Bandyopadhyay [1] evaluated the dynamic 
instability behavior of Functionally graded (FG) shells 
subjected to in-plane periodic load and temperature field 
using a higher-order shear deformation theory in 
conjunction with the finite element approach. Effect of 
material composition and geometrical parameters are 
studied on the dynamic instability characteristics of the five 
different forms of shells. Sahoo and Singh [2] analyzed 
dynamic stability analysis of laminated composite and 
sandwich Plate due to in-plane periodic load using recently 
developed Inverse trigonometric zigzag theory. They used 

 continuous eight noded isoparametric element with 
seven field variables. Boundaries of instability region are 
determined using Bolotin’s Approach. The influence of 
various parameters such as degree of orthotropy, span-
thickness ratio’s, boundary conditions, static load factors and 
thickness ratio on dynamic instability region is also studied. 
Balamurugan et al. [3] investigation the dynamic instability 
of anisotropic laminated composite plates considering 
geometric nonlinearity. The mathematical model is 
formulated using C0 shear flexible, field consistent, QUAD-9 
plate elements. The nonlinear governing equations are 

solved using the direct iteration technique. The effect of a 
large amplitude on the dynamic instability is studied for a 
simply-supported laminated composite plate. Detailed 
numerical results are presented for various parameters, 
namely, ply-angle, number of layers and thickness of plates. 
As the nonlinearity (i.e. w/h) increases, the dynamic 
instability region narrows down and shifts to higher 
frequencies. Increasing the aspect ratio, shifts the 
frequencies of instability region to higher values and reduces 
the dynamic stability strength. Increasing the number of 
layers and increasing the thickness of the plates results in 
better dynamic stability strength. Ng et al. [4] investigated 
the dynamic stability analysis of Functionally Graded Shells 
under Harmonic axial loading. Volume fraction profile was 
assumed as a normal mode expansion of the equation of 
motion yields a system of Mathieu-Hills equation the 
stability of which is analyzed by the Bolotin’s Method. Effect 
of volume fraction and distribution of parametric response 
in particular the position and sizes of the instability regions 
were also studied. Darabi et al. [5] used deflection theory for 
solution of the dynamic stability of functionally graded shells 
under periodic axial loading. Material properties are 
assumed to be temperature dependent and graded in the 
thickness direction according to a simple power law 
distribution in terms of volume fraction of constituents. Zhu 
et al. [6] presented a three-dimensional theoretical analysis 
of the dynamic instability region of Functionally Graded (FG) 
piezoelectric circular cylindrical shells. The shell here is 
subjected to a combined axial compression and electrical 
field in the radial direction. Important result obtained here 
shows that piezoelectric effect slightly affects the unstable 
region. Ganapathi [7] studied the dynamic stability behavior 
of a clamped functionally Graded Materials spherical shell 
structure element subjected to external pressure load. Here 
the non-linearity is considered in the formulation using Von-
Karman assumptions. Effect of power-law index of 
functionally graded materials on the axisymmetric dynamic 
stability characteristics of shallow spherical shells.  Ramu 
and Mohanty [8] studied the parametric resonance 
characteristics of functionally graded materials (FGM) plates 
on elastic foundation under bi-axial in plane periodic load. It 
was observed that the increased foundation stiffness 
enhances the stability of the plates. Lanhe et al. [9] 
investigates the dynamic stability of thick functionally 
graded material plates subjected to aero-thermomechanical 
loads, using a novel numerical solution technique, the 
moving least squares differential quadrature method. The 
influence of various factors such as gradient index, 
temperature, mechanical and aerodynamic loads, thickness 
and aspect ratios, as well as the boundary conditions on the 
dynamic instability region are carefully studied. Yang et al. 
[10] conducted a dynamic stability analysis of symmetrically 
laminated FGM rectangular plates with general out-of-plane 
supporting conditions, subjected to a uniaxial periodic in-
plane load and undergoing uniform temperature change. 
Theoretical formulations are based on Reddy’s third-order 
shear deformation plate theory, and account for the 
temperature dependence of material properties. The critical 
bucking load, vibration frequencies and dynamic stability 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
                Volume: 07 Issue: 01 | Jan 2020                   www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1253 

behavior are found to be highly sensitive to the thickness 
ratio between the FGM layers and the middle homogeneous 
layer, the out-of-boundary conditions, the static load level, 
and the side-to-thickness ratio. The plate may even be totally 
unstable beyond a small range of dynamic loads when high-
level static compression is applied. The presence of a 
temperature rise degrades the structure stiffness, and hence 
reduces the buckling strength, lowers the vibration 
frequencies and decreases the excitation frequencies. Jun-
quing Zhu et.al [11] presented a three-dimensional 
theoretical analysis of dynamic instability region of 
functionally graded piezoelectric circular cylindrical shells. 
Obtained results show that the unstable region of the 
structure is controlled by its geometric parameters, rigidity 
of material and the imposed loading. The converse 
piezoelectric effect only slightly affects the unstable region. 
However, the direct piezoelectric effects play a significant 
role in changing unstable regions corresponding to high 
order circumferential modes.   T.Y. Ng et al [12] presented a 
formulation for the dynamic stability analysis of functionally 
graded shells under harmonic axial loading. The study 
examines the effects of the volume fraction of the material 
constituents and their distribution on the parametric 
response, in particular the positions and sizes of instability 
regions. Andrzej Tylikowski [13] a study of parametric 
vibrations of functionally graded plates subjected to in-plane 
time-dependent forces is presented. Material properties are 
graded in the thickness direction of the plate according to 
volume fraction power law distribution. An oscillating 
temperature causes generation of in-plane time- dependent 
forces destabilizing the plane state of the plate equilibrium. 
The asymptotic stability criteria involving damping 
coefficient and loading parameters are derived using 
Liapunov’s direct method. Effects of power law ex-ponent on 
the stability domains are studied. Burney and Jaeger [14] 
have used stability analysis of parametrically excited 
systems to determine the region of the dynamic instability of 
a uniform column for different end conditions. They 
assumed the column to be consisting of different segments, 
each segment being considered as a massless spring with 
lumped masses. Piovan and Machado [15] used Bolotin’s 
method to determine the dynamic instability regions of a 
functionally graded thin-walled beam subjected to heat 
conduction. Abbas and Thomas [16] studied the dynamic 
stability of beams by using finite element method for 
different end conditions. Shastry and Rao [17] used finite 
element method to plot the stability boundaries of a 
cantilever column acted upon by an intermediate periodic 
load at different positions. S. C. Mohanty et al. [18] presents 
the evaluation of static and dynamic behavior of functionally 
graded ordinary (FGO) beam and functionally graded 
sandwich (FGSW) beam for pined-pined end condition. The 
variation of material properties along the thickness is 
assumed to follow exponential and power law. A finite 
element method is used assuming first order shear 
deformation theory for the analysis. Sheng G.G and Wang X 
[19] developed a theoretical model to study the dynamic 
stability of the stiffened functionally graded cylindrical shell 
in thermal environment. FSDT and Bolotin’s method are 

used to model stiffened FG cylindrical shells. The effects of 
thermal environment, stiffness number, material 
characteristics on the dynamic stability are examined.  
Briseghella et al. [20] studied the dynamic stability of elastic 
structures like beams and frames using finite element 
method. 
3. MATERIAL PROPERTIES 
 
Consider a Functionally Graded Material Plate of Width b, 
length a, and thickness h subjected to Uniform dynamic load 
as shown in figure 3. 

The plate is assumed to be subjected to uniaxial in-plane 
dynamic loading represented as 

P(t)= Ps + Pt 

Ps, Pt where are the static and dynamic load components, 
respectively. 

 
Fig -3: Geometry of Functionally Graded Plate 

 
Assuming power law distribution in the thickness direction, 
the volume fraction of ceramic constituent may be written 
as:  

  Vc (z) =  
 
where ‘z’ varies from metal surface -h/2 to ceramic surface 
+h/2. 

The materials property as a function of temperature is given 
as 
P(T)= ) 

where  are the coefficients of 
temperature T in Kelvin and each constituent have unique 
value. 

T=  

Where T(z) is temperature rise through the thickness 
direction and  is room temperature. 
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Based on the volume fraction of the constituent materials, 
the effective material properties such as Young’s modulus 

( , Poison’s ratio , mass density ( ), and the 
coefficient of thermal expansion ( ) of the temperature-
dependent material properties are obtained using the 
following expressions: 

E (z, T) =  

α (z, T) =  

v (z, T) =  

ρ(z,T)=  

K(z,T)=                               
 

 
Table -1: Properties of Si3N4 and SUS304 

 

 
Functionally graded material considered in this study includes ceramic material as silicon- nitride and metal materials as 
stainless steel. Various properties considered for Si3N4- SUS304 are as given in Table 1 and Table 2.  
 

Table -2: Properties of Si3N4 and SUS304 
 

Property Notation Value 

Thermal conductivity of 

Si3N4 

kc 9.19 W/mK 

Thermal conductivity of 

SUS304 

km 12.04 W/mK 

Elastic moduli for Si3N4 

(T=300K) 

Ec0 322.2715e+9 Pa 

Elastic moduli for 

SUS304 (T=300K) 

Em0 207.7877e+9 Pa 

Density of Si3N4 ρc 2370 kg/m3 

 
 
 

 

  
 
 
 
 
 
 
 

Types of  
Material 

Properties P0 P-1 P1 P2 P3 
 

 
SUS304 

E(Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

α (1/K) 12.330e-6 0 8.086e-4 0 0 

V 0.3262 0    -2.002e-4     3.797e-4 0 

 
Si3N4 

E(Pa) 348.43e+9 0 -3.070e-4 2.016e-7 -8.946e-7 

α (1/K) 5.8723e-6 0 9.095e-4 0 0 

v 0.2400 0 0 0 0 
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4. DYNAMIC STABILITY ANALYSIS  
 
The equation for the conservative system, with application of 
Bolotin’s principle yields to the equation of motion of 
structure under in-plane load, which may be expressed in 
matrix form as:  

                            (1) 

where ,  and  denote the Global mass matrix, 
Global linear stiffness matrix, and Geometric stiffness matrix, 
respectively. 
Above equation is general governing equation, which can be 
reduced to have governing equations for the Eigen value 
problem of buckling, Vibration and dynamic Stability of the 
Plate structure. 

For dynamic stability problem we consider uniform loading 
hence we use equation above mentioned as a governing 
equation in Dynamic Stability Analysis. 

Here load ‘P’ is expressed as  

Where =Static portion of P(t) 

           =Amplitude of dynamic portion of P(t). 

The quantities  and  are expressed in terms of static 
elastic buckling load  of panel as:  

                                                            (2) 

Where =  and =  are termed as Static and dynamic 

load factors, respectively. 

Substituting above equation in main governing equation we 

get, 

           (3) 
 
Above equation is a set of Mathew type equation, governing 
the instability behavior of the plate structure. For given 
values of parameters in above equation, the solution of the 
equation may be either bounded or unbounded. The 
spectrum of these values of parameters has unbounded 
solutions for some regions of the plane due to parametrically 
excited resonance. This phenomenon is known as dynamic 
instability and these regions are known as DIRs (Dynamic 
Instability Regions) 

A more generalized form is achieved by presenting ’ in 

trigonometric form and the governing Equation simplifies to: 

     (4) 

Above equation is basically a generalized eigenvalue 
problem of the systems for the known values of ,  and 

. The two conditions under a plus and minus sign 

indicates to two boundaries of the DIR. 
The solutions of Eq. (3) yield 

[1] Static buckling factor under thermal load when  =  
 = 0, 

[2] Free vibrations under thermal load when  = 0,  = 
0, 

[3] Free vibrations under thermal and axial constant 
mechanical load when  = 0, 

[4] Regions of unstable solutions with constant  and 
varying . 

In this study, various types of boundary conditions namely 
simply supported (SSSS), clamped (CCCC), two opposite 
edges clamped and other two simply supported, CFFF, 
hinged (HHHH), SFSF, CFCF, (CSCS) can be used for 
investigation. 

Table -3: Boundary conditions of FGMs Plates 

 

 
Fig -4: Schematic diagram of various boundary conditions 
 

Boundary Condition 
Type 

Condition 

All edges simply 
supported (SSSS) 

v=w= = =0 at x=0, a; 

u=w= = =0 at y=0, b 

All edges clamped 
(CCCC) 

u=v=w= = = = =0 at x=0, 
a and y=0, b 

Two opposite edges 
clamped and other 
two simply supported 
(SCSC) 

u=v=w= = = = =0 at x=0 
and y=0; 
v=w= = =0 at x=a; 

u=w= = =0 at y=0, b. 
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Following steps are used for Dynamic Stability Analysis: 
 

1. Define the plate dimensions (length, width, 
thickness) 

2. Define number of elements, degree of freedom per 
element and degree of freedom per node. 

3. Define amplitude ratio. (Wmax) 
4. Define nodal connectivity of selected element type. 
5. State the boundary conditions (ex. Simply 

Supported, Clamped etc.) 
6. State the Material properties and define as 

Temperature Independent or Dependent 
accordingly. 

7. Define Element Stiffness matrix, Element mass 
matrix and element geometric matrix. 

8. Assemble the element matrices to form global 
matrices. 

9. Apply boundary conditions to obtain reduced global 
matrices. 

10. Obtain natural frequency and buckling load. 
11. Given the value of α i.e. Static load factor and known 

values of natural frequency and buckling load from 
step 10. Solve the governing equation for various 
values of dynamic load factor (𝛽) to obtain lower 
and upper boundary limits of instability regions. 

12. Obtain the non-dimensional parameter and plot the 
same with value of dynamic load factor (𝛽), taking 
Non-dimensional parameter as X-axis and Dynamic 
load factor as Y-axis. 

13. Study the trend of graphs obtained from different 
conditions like change in length to thickness ratio, 
power law index, temperature etc. to obtain 
conclusions of occurrence of dynamic stability for 
particular situations.  

For the convenience of presentation of the present results 
and for the convenience of comparison with other numerical 
results, a non-dimensional frequency parameter is used. 

 
 
 
 
 
 

5. RESULTS AND DISCUSSION 
 
The dynamic stability of FGM plates under parametric 
excitation has been investigated for a plate with Si3N4 and 
SUS304. The power law index value, the length, the width 
and the thickness of the FGM plates are varied to assess their 
effects on the parametric instability behavior. For dynamic 
stability study the first, second and third mode instability 
regions are represented. Consider a Functionally graded 
plate made up from Si3N4 and SUS304 as ceramic and metal 
components respectively. Temperature field is assumed to 
be uniformly distributed over the plane of plate and varied 
in the thickness direction only. Material properties are 
assumed to be varying according to power law. 

Figs.5 and 6 plot the dynamic stability results for simply 
supported FGM plate having uniform temperature rise and 
no loading condition and loading condition (α is taken as 0.2) 
respectively. It is seen that as we increase the value of 
gradient index n, the origin of instability shifts to lower 
forcing frequency and simultaneously the width of instability 
region decreases with respect to dynamic load. It is also 
found that for mechanically pre-stressed plate (α is taken as 
0.2) origin of instability is lower than that of a previous 
condition (i.e. α=0) At higher dynamic load there is 
overlapping of boundaries of Instability regions Thus there 
are more chances of system to become unstable at various 
operating conditions. 

Fig-5:  Effect of gradient index n on the instability region 
for a simply supported FGM square plate (a/h=20, α=0.0, 

Tc=300,Tm-300,Load=0). 
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Fig-6:  Effect of gradient index n on the instability region 
for a simply supported FGM square palte (a/h=20, α=0.0, 

Tc=300,Tm-300,Load=0). 
Fig-8: Effect of boundary conditions on the instability 

region for a square FGM plate (a/b = 1, n = 0.2, Tc = 500, 
Tm = 300, Load = 200, n = 5.0). 

 

Fig-7: Effect of boundary conditions on the instability 
region for a square FGM plate (a/b = 1, n = 0.2, Tc = 500, 

Tm = 300, Load = 200, n = 5.0). 

Figs.7 and 8 plot the dynamic stability results for simply 
supported FGM plate having value of gradient index n as 0.5 
and 5 respectively.  It is observed from the figures that 
Resonance occurs in case of clamped case at lower excitation 
frequencies as compared to that of simply supported 
boundary condition. Band of instability decreases in case of 
clamped boundary condition as compared to simply 
supported condition. Origin of instability in case of clamped 
case is lower than that of the simply supported case. 
6. CONCLUSIONS 
 
In this paper, the dynamic stability of functionally graded 
plates subjected to periodic in plane load is carefully studied.   

Important concluions found out in the dynamic stability 
analysis were as follows: 

1. Increase in gradient index ( ) decreases the width 
of instability region and also the origin of unstable 
region. 

2. Overlapping of instability regions occurs at higher 
values of dynamic load factor (β) for different 
values of gradeint index. 

3. Increase in, boundary conditions and thickness 
increase the excitation frequency to higher values 
hence decrease chances of resonance but 
overlapping of instability regions is at low dynamic 
load factor. 
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