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Abstract - The advance technology of VLSI has been the 
enhancing special feature in the appearance of VLSI circuits 
that can handle floating point (FP) arithmetic. Depending on 
the various processor applications requirements also differ, i.e. 
some processors have a high repertoire of functions but results 
in low performance, while some processors aim at achieving 
the highest throughput that leads to use more operations such 
as multiply and add and that can produces more latency. For 
real-time processing requirements, performing a large amount 
of FP operations are considered as a major bottleneck due to 
the excessively long run time required. In many cases FP 
arithmetic requires additional operations such as alignment, 
normalization and rounding, giving rise to some significant 
increase in terms of area, power consumption and 
computational latency .Such a problem might be mitigated by 
employing the fused FP add-subtract and dot-product units 
specially designed to perform  those  tedious tasks. 

For achieving high performance with minimizing hardware 
complexities, existing rounding algorithms like mantissa, 
exponent and sign are used to generate two consecutive values 
in parallel, and compute the rounded product by using these 
values. This research work focuses on reducing computation 
time, area and the power compared to many existing floating 
point adder consumption by developing a new floating-point 
architecture. Fourier analysis converts a signal from its 
original domain (often time or space) to a representation in 
the frequency domain representation and vice versa. The FFT 
processor architecture exploits the superior area utilization 
efficiency existing with the single-path delay feedback (SDF) in 
memory and the single-path delay commutate (SDC) in adder. 
The circuits are designed by Encounter RTL (digital design) 
using Cadence and the simulation results will be observed 
using cadence tool. 
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1. INTRODUCTION  

In domain of digital signal processing the number 
representation in the form of fixed-point or floating-
point[1].The contribution deals with a binary representation 
of real-numbers. The advantage of floating-point 
representation over fixed-point representation that can 
support much a wider range of values in integer 
representation. The representation of real numbers in 
Floating Point Unit (FPU) typically used binary floating- 
point format numbers [2] which is used to increase the speed 

and efficiency compared to fixed-point representation. For 
achieving accuracy and efficiency in digital and radar 
imaging and to reduce the complexities during the 
processing, floating-point representation played a major 
role. 

Floating-point unit designed for applications such as space 
craft, launching rockets and big data. Since integer 
arithmetic lacks the range and precision for the accuracy, 
VLSI technology making it to be possible. There are many 
processors with fixed or floating-point representation and 
there are also several blocks used for arithmetical 
operations. In high resolution radar imaging applications for 
performing the task of pulse compression, Floating-Point 
(FP) Fast Fourier Transform (FFT) processors are often 
used. 

2. FLOATING POINT 

A system which describes the representing numbers that 
would be too large or too small as integers is called as floating 
point number. Compared to fixed point representation, 
floating point representation is able to retain its resolution 
and accuracy[3]. The sign, mantissa and exponent can make a 
floating-point number which shown in Fig 1.S is the Sign bit 
(0 is positive and 1 is negative).The sign bit is represented 
either as sign or magnitude. E is the exponent bit, very large 
numbers have large positive exponent and Very small close-
to-zero numbers have negative exponents. The range of 
values is increased in exponent field. M is the Fraction bit or 
Mantissa (fraction after binary point). The precision of FP 
numbers can be improve by having More bits in fraction field. 

 
Fig. 1. Representation of Floating Point 

In 1985, Institute of Electrical and Electronics Engineers 
(IEEE) established a technical standard for floating point 
arithmetic (IEEE standard 754) [4].  The IEEE 754 standard 
addressed many problems found in the diverse floating- point 
implementations that made them difficult to use reliably and 
portably. Many hardware floating-point units use the 
standard. 

In accordance with IEEE standard 754, Conversion of decimal 
to the floating point consists of three steps such as 

SIGN EXPONENT MANTISSA 
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Mantissa(23) Exponent(8
) 

Sign (1) 

conversion of the decimal to binary then second step, is the 
converted binary is represented in scientific notation. 
Scientific representation is done by shifting the point towards 
left in converted binary number and multiplied by exponent 
i.e., multiplied by 2n (where n is number of shifts) Then the 
third step is to convert scientific notation to floating point 
according to standard 754. The sum of exponent bias and n 
can make the exponent bits. The exponent bias is constant 
which were denoted as 127 for single precision and 1023 for 
double precision. 

The smallest change that occurred in floating point 
representation is known as precision. The meaning of 
precision implies ‘closeness’ or ‘accuracy’. There are two 
types of precision; they are single precision and double 
precision [5]. 

The standard representation of Single precision floating point 
consists of 32 bits, which may be represented as numbered 
from 0 to 31, left to right as shown in Figure 2. 

 
Fig. 2. Representation of Single Precision 

 
The standard representation double precision floating point 
requires a 64 bits, which may be represented as numbered 
from 0 to 63, left to right as shown in figure3. 

Sign (1) Exponent (11) Mantissa (52) 
 

Fig. 3 Representation of Double Precision 

ADDITION OF FLOATING POINT NUMBER 

 

Fig. 4. Architecture of floating point addition 

The architecture of floating point addition shown in Figure 
4,Which consists blocks such comparator ,sign control, bit 
inverter, adder, LZA logic which replaces the carry look 
ahead adder and used to speed up the process ,counter ,left 
shifter ,right shifter, exponent incrementer, Exponent 
subtract, incrementer , rounding control, exception data 
format and multiplexer which replaces the encoder for 
better results. These all blocks help to achieve increase in 
efficiency and reduce to the power consumption, area 
consumption and minimum power delay. 

Normalization of floating point is desirable, i.e., there will be 
only one significant digit (binary can only be 1) which is to 
the left of the radix point of mantissa m. The addition of 
floating-point numbers involved in normalization of floating-
point addition, and achieved a normalized sum S. M1 and M2 
are designated as the mantissas of two floating- point 
numbers respectively, and E1and E2 are the designated as 
exponents [6] . 

In alternative floating-point formats to IEEE 754, mantissas 
M1 and M2 can be represented in 2's complement format to 
perform addition or subtraction, in a single simple structure. 
There are three general steps for Summing addends A and B 
.They are: 1) de- normalization of the addends, 2) addition of 
mantissa, and 3) normalization of the Sum. If exponents E1 
and E2 are not equal during de-normalization of the 
addends, then the addends must be de-normalized until E1 
and E2 match. In typical method addends should be de-
normalized to increase the smallest exponent, by X which is 
equal to the largest exponent E, and by shifting the binary 
point of mantissa M bits of the addend with the smallest 
exponent X places to the left which leads to achieve the de- 
B), the above method described that it would increase 
powers, by 6 So that powers, equals E, (in this case, E, or 10). 
If mantissa sum Ms., is not in normalized form, then it is 
normalized to yield normalized sum S. In other words, if 
required, the binary point of mantissa sum., is shifted left or 
right until there is only one significant digit to the left of the 
binary point to achieve normalized mantissa sum. The 
normalized sum S can be achieved by adjusting Elargest to 
yield the exponent Es. 

A floating-point operation yields a result which is not be 
represented in the floating-point numbering system used 
and then an exception occurs[7].There are three types of 
exceptions, they are Overflow, Underflow, and Zero. After the 
addition of floating point numbers there would be a chance 
of occurring overflow or underflow i.e., the absolute value of 
the result would be either too small(underflow) or too 
large(overflow) .In accordance with  IEEE 754 32-bit single-
precision format, which is not capable of representing a 
positive number greater than ranges from 20x2127 to 2-

23x2127(positive overflow) or less than 2-126 (positive 
underflow), or a negative number the absolute value of 
which is greater than from 20x2127 to 2-23x2127 (negative 
overflow), or less than 2- 126(negative underflow). According 
to IEEE 754, which implied that leading digit of 1 so that it is 
incapable of naturally representing 0 (zero exception). 
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DESIGN OF FLOATING POINT ADDITION 

In Accordance to the architecture of floating point addition 
may have many blocks which can be individually designed 
using Modelsim simulator tool and get correlated to form the 
overall architecture. This architecture can be build by step 
by step Pipelining process, following steps are: 

The first step is that the exponents of two floating point 
numbers got compared and the absolute value of difference 
between the two exponents can be calculated. Then larger 
exponent was considered as the tentative exponent of the 
result[8]. 

Then the second step is to make the adjustments in exponent 
part i.e., to shift the significant of the number with the 
smaller exponent to right through a number of bit positions 
that is equal to the exponent difference. The guard (G) and 
Round (R) bits are two of the shifted out bits of the aligned 
significant [9]. 

Thus the effective width of aligned significant must be p + 2 
bits for p significant bits. Then the third bit is to be appended 
which named as sticky bit (S), at the right end of the aligned 
significant. The sticky bit is the logical OR operation of all 
shifted bits. 

The third step is to add the mantissa part. Let the result of 
this is SUM. 

The fourth step is, during addition of mantissa part, check 
SUM for carry out (Cout ) from the MSB position. If a carry out 
is detected then SUM was shifted right by one bit position 
and increment the final exponent by 1[10]. 

Then the final step is that the exception conditions were 
evaluated, if any. If the logical condition R”(M0 + S’’) is true 
then the result get rounded, where M0 represents pth and R’’ 
represents (p + 1)st bits from the left end of the normalized 
significant. S’’ represents the new sticky bit which occurred 
by doing the logical OR operation of all bits towards the right 
of the R’’ bit. If the rounding condition is true, a 1 is added at 
the pth bit (from the left side) of the normalized significant. 
Rounding can  be generated a carry-out, as the step 4 has to 
be performed again when p MSBs of the normalized 
significant are 1’s. 

 

 

 

 

 

 

 

RESULT AND DISSCUSION COMPARATOR 

 

Fig. 5 Simulation result of 4-Bit comparator for a>b 
condition 

As shown Figure 5, a0,a1,a2,a3 and b0,b1,b2,b3 are the 
inputs. Then a=15 in terms binary a0 a1 a2 a3=1111 and b=7 
in terms of binary b0 b1 b2 b3=0111. The result is g1=1. 

 

Fig. 6 Simulation result of 4-Bit comparator for a<b 
condition 

As shown in Figure 6, a0 a1 a2 a3 and b0 b1 b2 b3 are  the 
two 4 bit inputs.a0 a1 a2 a3=1110, b0 b1 b2 b3 =1111.The 
output is g3=1. 
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Fig. 7 Simulation result of 4-Bit comparator for a=b 
condition 

As shown +in figure 7, a0 a1 a2 a3 and b0 b1 b2 b3 are the 
two 4 bit inputs.a0 a1 a2 a3=1111, b0 b1 b2 b3 =1111.The 
output is g2=1. 

 SHIFTER 

 

Fig. 8 Simulation result of Right shifter 

As shown in figure 8, the inputs are Ia Ib Ic Id Ie If and s0 and 
s1 are the select lines. Ia Ib Ic Id Ie If=111111 and then s0=1 
and s1=0 then the output is 011111. 

 

 

Fig. 9 Simulation result of Left shifter 

As shown in Fig 9 the inputs are Ia Ib Ic Id Ie If and s0 and s1 
are the select lines. Ia Ib Ic Id Ie If=111111 and then s0=0 
and s1=1 then the output is 111110. 

EXPONENT INCREMENTER 

 

Fig.10 Simulated result of exponent incrementer 

As shown in Fig 10, a7 a6 a5 a4 a3 a2 a1 a0 be the input a7 
a6 a5 a4 a3 a2 a1 a0=00000100.The result is y=00001000. 
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EXPONENT DECREMENTER 

 

Fig. 11 Simulation result of Exponent decrementer 

As shown in Fig 11, a7 a6 a5 a4 a3 a2 a1 a0 and b7 b6 b5 b4 
b3 b2 b1 b0 be the input a7 a6 a5 a4 a3 a2 a1 a0=00001000, 
b7 b6 b5 b4 b3 b2 b1 b0=00000100.The result is 
y=0000000000010000. 

FLOATING POINT ADDITION   

 

Fig.12 Simulation result of floating point addition 

As shown Fig 12, the simulation result of floating point 
addition with single precision using Modelsim Quartus-2. 

The following parameters were measured using cadence 
tool.  

The following outputs are obtained from the cadence: 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 RTL View of Floating Point Addition with Single 
Precision 

 
Fig.14 Area Report of Floating Point Addition with Single 

Precision 
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Fig.15. Delay Report of Floating Point Addition with Single 
Precision 

Table 1: Results obtained for Floating Point Addition 
with Single Precision 

Parameter Proposed work 
Area(m2) 976 
Leakage Power(nw) 1824.5 
Dynamic Power(nw) 13227.4 
Total Power(nw) 15051.905 
Fan-out Load(fF) 885 
Delay 230 

 
3. CONCLUSION 

In design of floating point addition with single precision 
several factors are taken into considerations like area, power 
and latency. The obtained results are effectively reducing the 
power consumption, area and latency with maximum delay 
of 327.6ns.The FP arithmetic typically requires additional 
operations such as alignment, normalization and rounding, 
giving rise to some significant increase in terms of area, 
power and computational latency. Reducing the complexities 
of FP calculations are carried out  using single precision. But 
for demanding future applications the double precision and 
quadruple precision which will give accurate 
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