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ABSTRACT:- THE fast Fourier transform (FFT) is one of the most important algorithms in the field of digital signal processing. 
It is used to calculate the discrete Fourier transform (DFT) efficiently. In order to meet the high performance and real time 
requirements of modern applications, hardware designers have always tried to implement efficient architectures for the 
computation of the FFT. A new feedforward FFT hardware architectures based on rotator allocation is presented in this 
project. It consists in finding an efficient distribution of FFT rotations that reduces the number of rotators and their 
complexity. Radix-2 feedforward architectures based on rotator allocation are presented along with MDC methodology.  In 
rotators, general multipliers and general adders are used for implementation. The Booth algorithm consists of repeatedly 
adding one of two predetermined values to a product P and then performing an arithmetic shift to the right on P. The 
multiplier architecture consists of two architectures, i.e., Modified Booth. By the study of different multiplier architectures, we 
find that Modified Booth increases the speed because it reduces the partial products by half. Also, the delay in the multiplier 
can be reduced by using Wallace tree. The energy consumption of the Wallace Tree Multiplier is also lower than the Booth and 
the array. The characteristics of the two multipliers can be combined to produce a high-speed and low-power multiplier. The 
modified stand-alone multiplier consists of a modified recorder (MBR). MBR has two parts, i.e., Booth Encoder (BE) and Booth 
Selector (BS). 
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INTRODUCTION: T HE FAST Fourier transform (FFT) is one of the most important algorithms in the field of digital signal 
processing. It is used to calculate the discrete Fourier transform (DFT) ef- ficiently. In order to meet the high performance and 
real-time requirements of modern applications, hardware designers have always tried to implement efficient architectures for 
the computation of the FFT. In this context, pipelined hardware architectures [1] are widely used, because they provide high 
throughputs and low latencies suitable for real time, as well as a reasonably low area and power consumption. There are two 
main types of pipelined architectures: feedback (FB) and feedforward (FF). On the one hand, feedback architectures [1]] are 
characterized by their feedback loops, i.e., some outputs of the butterflies are fed back to the memories at the same stage. 
Feedback architectures can be divided into single-path delay feedback (SDF) [1], which process a continuous flow of one 
sample per clock cycle, and multi-path delay feedback (MDF) or parallel feedback [7], which process several samples in 
parallel. On the other hand, feedforward architectures [4]also known as multi-path delay commutator (MDC) [4], do not have 
feedback loops and each stage passes the processed data to the next stage. These architectures can also process several 
samples in parallel. In current real-time applications, the FFT has to be calculated at very high throughput rates, even in the 
range of Gigasamples per second. These high-performance requirements appear in applications such as orthogonal frequency 
division multiplexing (OFDM  and ultra wideband (UWB) . In this context two main challenges can be distinguished. The first 
one is to calculate the FFT of multiple independent data sequences . In this case, all the FFT processors can share the rotation 
memory in order to reduce the hardware [2]. Designs that manage a variable number of sequences can also be obtained [2]. 
The second challenge is to calculate the FFT when several samples of the same sequence are received in parallel. This must be 
done when the required throughput is higher than the clock frequency of the device. In this case it is necessary to resort to FFT 
architectures that can manage several samples in parallel. As a result, parallel feedback architectures, which had not been 
considered for several decades, have become very popular in the last few years [8]. Conversely, not very much attention has 
been paid to feedforward (MDC) architectures. 

Fast Fourier Transform 

FFT circuitry consists of several consecutive multipliers and adders over complex numbers. Until recently, most FFT 
architectures used fixed-point arithmetic only, before FFTs based on floating-point operations became prominent. Using the 



          International Research Journal of Engineering and Technology (IRJET)              e-ISSN: 2395-0056 

                Volume: 06 Issue: 08 | Aug 2019                   www.irjet.net                                                                            p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 416 
 

IEEE-754-2008 standard for floating-point arithmetic allows FFT co-processors to collaborate with general purpose 
processors. Despite the fact that binary computer arithmetic improves processing speed and reduces hardware complexity, 
decimal computer arithmetic has recently been revived. The advantage of decimal computer arithmetic over its binary 
counterpart is that decimal arithmetic is capable of mirroring human computations (i.e., radix-10) and representing fractions 
precisely where binary 2 cannot (e.g., 0.2). Some applications, such as finance and banking, cannot tolerate a loss of precision; 
this is where decimal computer arithmetic is useful.  

Decimal computer arithmetic can be implemented in hardware or software. The software implementation of decimal 
arithmetic operations with binary logic devices was widely used until IBM revealed an all-hardware implementation of 
decimal processors such as the POWER6 decimal processor. Additionally, the IEEE 754-2008 standard for floating-point 
arithmetic now supports the decimal hardware implementation. Hardware decimal arithmetic is used where high-speed 
computations are performed on large amounts of data. 

Fast Fourier Transform (FFT) 

In present several methods for computing the DFT efficiently. In view of the importance of the DFT in various digital signal 
processing applications, such as linear filtering, correlation analysis, and spectrum analysis, its efficient computation is a topic 
that has received considerable attention by many mathematicians, engineers, and applied scientists. From this point, we 
change the notation that X (k), instead of y (k) in previous sections, represents the Fourier coefficients of x (n). Basically, the 
computational problem for the DFT is to compute the sequence {X (k)} of N complex-valued numbers given another sequence 
of data {x (n)} of length N, according to the formula 

 

In general, the data sequence x(n) is also assumed to be complex valued. Similarly, The IDFT becomes 

 

Since DFT and IDFT involve basically the same type of computations, our discussion of efficient computational algorithms for 
the DFT applies as well to the efficient computation of the IDFT. 

Radix-2 FFT Algorithms 

Consider the computation of the N = 2v point DFT by the divide-and conquer approach. We split the N-point data 
sequence into two N/2-point data sequences f1(n) and f2(n), corresponding to the even-numbered and odd-numbered samples 
of x(n), respectively, that is, 

 

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting FFT algorithm is called 
a decimation-in-time algorithm. 

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as follows: 
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But WN
2 = WN/2. With this substitution, the equation can be expressed as 

 

Where F1 (k) and F2 (k) are the N/2-point DFTs of the sequences f1 (m) and f2 (m), respectively. 

Since F1 (k) and F2 (k) are periodic, with period N/2, we have F1 (k+N/2) = F1 (k) and  

F2 (k+N/2) = F2 (k). In addition, the factor WN
k+N/2 = -WN

k. Hence the equation may be expressed as 

 

FFT HARDWARE ARCHITECTURE: 

In order to design an FFT hardware architecture, we have to be aware of the FFT properties introduced in [16]. The first 
property, which is general for any FFT architecture and any N, is that at any FFT stage, butterflies operate on data whose index 
I differ in bn−s, where n is the number of FFT stages and s is the specific stage that we are considering. This fact can be 
observed in the flow graph of Fig. 1. In this flow graph, the index has n = 4 bits, i.e., I ≡ b3 b2 b1 b0. At the first stage, the 
butterflies operate on samples whose indexes differ in bn−s = b4−1 = b3. This happens for samples with indexes 0 and 8, 1 and 
9, etc. For the second stage, the different bit is bn−s = b4−2 = b2. Note for instance, that the data with indexes 0 and 4 are 
operated together in the butterfly at stage 2. For the third and fourth stages, the correponding bits are b1 and b0, respectively. 
Therefore, if we want to design an FFT hardware architecture, we have to assure that at each stage s, the indexes of the inputs 
to any butterfly at any time instant differ in bn−s. Note that the term butterfly refers now to a hardware component of the 
architecture, not to the mathematical operation of the algorithm in the flow graph. If we consider the example of Fig. 3 in [16], 
we observe that this property is fulfilled at all the stages. In this figure bn−s is at the lowest parallel dimension, which 
corresponds to the pair of samples that flow into the butterflies at the same clock cycle. The property of bn−s is the only 
requirement set by the butterflies in FFT hardware architecture. As long as this property is met, we can have any data order at 
the different FFT stages. This allows for exploring a variety of data orders at the FFT stages. This is what is done in the current 
paper, as explained later in Section V. The second FFT property refers to the rotations at the FFT stages. At each stage, any 
sample with index I must be rotated according to equation (2) by a value φ that depends on the index I and on the stage, s. We 
can represent it as φs(I). The work [30] explains how to calculate φs(I), which only depends on the FFT algorithm that is used. 
By combining these ideas, we lead to the following conclusions: On the one hand, any order at any stage of any FFT hardware 
architecture is possible as long as the property of bn−s is met at the input of the butterflies. On the other hand, to any index I at 
any FFT stage corresponds a specific rotation φs(I). As a result, we can play with the data order at different FFT stages to look 
for patterns that allow for a more optimized distribution of rotations. This is the idea behind the proposed rotator allocation 
approach. 
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Fig. 4. Rotator allocation of a 16-point 4-parallel FFT. (a) Layout not aware of the rotator allocation. (b) FFT architecture for 
the layout in Fig. 4(a). (c) Layout aware of the rotator allocation. (d) FFT architecture for the layout in Fig. 4(c). 

The purpose of the FFT design using rotator allocation is to distribute the rotations of the FFT in such a way that the number 
and complexity of the required rotators is reduced. Fig. 4(a) shows an example of a layout for the first three stages of a 16-
point 4-parallel FFT. The indexes in the figure show how data flows at the different stages. Each element in the matrices of 
indexes is the index value according to Fig. 1. Data flows from left to right. Thus, values in the same column are data that flow 
in parallel and values in the same row flow through the same path in consecutive clock cycles. The matrices of rotations show 
the value φs(I) that corresponds to each of the indexes according to the flow graph in Fig. 1. For instance, the rotation 
corresponding to the index 10 at stage 1 is φs(I) = φ1(10) = 2 according to Fig. 1. This case is highlighted in Fig. 4(a). As for the 
indexes, each column in the matrices of rotations are rotations that are calculated in parallel at the same clock cycle, whereas 
rotations in the same row are calculated in consecutive clock cycles by the same rotator. According to this, each row of the 
matrices of rotations are the rotations that must be calculated by a single rotator in consecutive clock cycles. For instance, 
stage 1 needs a rotator by φ = {0, 1, 2, 3} and a rotator by φ = {4, 5, 6, 7}, which are 3-rots according to Table I. Stage 2 includes 
2 2-rots and stage 3 includes 2 trivial rotators (T). The layout in Fig. 4(a) translates into the FFT architecture in Fig. 4(b), 
which shows the rotators at each stage, as well as the content of the rotation memories. By applying rotator allocation we aim 
to reduce the number of rotators and their complexity. Rotator allocation simply consists of reorganizing the matrices of 
indexes and, therefore, the matrices of rotations, in such a way that the matrices of rotations have less rotators (if possible) 
and the complexity of the rotators is lower. On the one hand, fewer rotators are achieved when there are more rows in the 
matrices of rotations whose elements are φ = 0. On the other hand, the complexity of the rotators is reduced when the 
rotations in the same row are in less SAS. The procedure of rotator allocation consists in distributing the bits bn−1 ... b0 of the 
index I into serial and parallel dimensions. Serial dimensions correspond to data arriving at the same input terminal in series 
and parallel dimensions refers to data arriving at parallel terminals. Depending on the FFT size N = 2n and the number of 
parallel data in the FFT P = 2p, the number of serial bits is n−p = log2(N)−log2(P) and the number of parallel ones is p = 
log2(P). For the example in Fig. 4, N = 16 and P = 4, so there are n − p = log2(16) − log2(4) = 2 serial dimensions and p = 
log2(P) = 2 parallel ones. The alternatives to allocate the bits correspond to all the possible permutations, i.e., Serial|Parallel  

b3b2|b1b0 b2b3|b1b0 b3b2|b0b1 b2b3|b0b1 b3b1|b2b0 b1b3|b2b0 b3b1|b0b2 b1b3|b0b2 b3b0|b2b1 b0b3|b2b1 
b3b0|b1b2 b0b3|b1b2 b0b1|b2b3 b1b0|b2b3 b0b1|b3b2 b1b0|b3b2 b0b2|b1b3 b2b0|b1b3 b0b2|b3b1 b2b0|b3b1 
b1b2|b0b3 b2b1|b0b3 b1b2|b3b0 b2b1|b3b0 (3) However, neither the order of the serial bits nor the order of the parallel bits 
affect the complexity of the 
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Fig. 5. Proposed 32-point 4-parallel radix-2 MDC DIF FFT architecture. rotators: A different order of the serial bits changes the 
order of the rotations, but the same rotations are calculated by the rotators. A different order of the parallel bits changes the 
edges in which the rotators are placed, but the rotators are the same. Therefore, the alternatives in each row of equation (3) 

have the same complexity, so only one alternative per row needs to be evaluated. According to this, the number of alternatives 
that need to be evaluated at each FFT stage. 

RADIX-8 MODIFIED BOOTH ALGORITHM: 

The Booth algorithm consists of repeatedly adding one of two predetermined values to a product P and then performing an 
arithmetic shift to the right on P.  

 

Fig. 6. Booth algorithm 

The multiplier architecture consists of two architectures, i.e., Modified Booth. By the study of different multiplier architectures, 
we find that Modified Booth increases the speed because it reduces the partial products by half. Also, the delay in the 
multiplier can be reduced by using Wallace tree. The energy consumption of the Wallace Tree multiplier is also lower than the 
Booth and the array. The characteristics of the two multipliers can be combined to produce a high-speed and low-power 
multiplier.  

The modified stand-alone multiplier consists of a modified recorder (MBR). MBR has two parts, i.e., Booth Encoder (BE) and 
Booth Selector (BS). The operation of BE is to decode the multiplier signal, and the output is used by BS to produce the partial 
product. Then, the partial products are added to the Wallace tree adders, similar to the carry-save-adder approach. The last 
transfer and sum output line are added by a carry look- ahead adder, the carry being stretched to the left by positioning.  
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Table . 4. Quartet coded signed-digit table 

 

Here we have a multiplication multiplier, 3Y, which is not immediately available. To Generate it, we must run the previous 
addition operation: 2Y + Y = 3Y. But we are designing a multiplier for specific purposes and then the multiplier belongs to a set 
of previously known numbers stored in a memory chip. We have tried to take advantage of this fact, to relieve the radix-8 
bottleneck, that is, 3Y generation. In this way, we try to obtain a better overall multiplication time or at least comparable to the 
time, we can obtain using a radix-4 architecture (with the added benefit of using fewer transistors). To generate 3Y with 21-bit 
words you just have to add 2Y + Y, ie add the number with the same number moved to a left position. A product formed by 
multiplying it with a multiplier digit when the multiplier has many digits. Partial products are calculated as intermediate steps 
in the calculation of larger products. The partial product generator is designed to produce the product multiplying by 
multiplying A by 0, 1, -1, 2, -2, -3, -4, 3, 4. Multiply by zero implies that the product is "0 ". Multiply by" 1 "means that the 
product remains the same as the multiplier. Multiply by "-1" means that the product is the complementary form of the number 
of two. Multiplying with "-2" is to move left one as this rest as per table. 

RESULT: 
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CONCLUSION: 

Finally, this project presented the rotation allocation approach. It consists in finding an efficient distribution of FFT rotations 
that reduces the number of rotators and their complexity. This leads to new radix-2 and radix-2k MDC FFT architectures. 
These architectures require the same memory and butterflies as previous MDC FFTs, but fewer and/or simpler rotators. 
Modified booth encoding insertion plays vital role to reduce parameters like area and time. 
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