
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 415

LOW COMPLEXITY PIPELINED FFT DESIGN FOR HIGH THROUGHPUT AND

LOW DENSITY APPLICATIONS

RAVURI JAYA NAGA SURYA SRIKALA1, PALURI ANUSHA2

1M.Tech Student, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram, AP
2Assistant Professor, Dept. of ECE, Prasiddha College of Engineering & Technology, Anathavaram, AP

--***--
ABSTRACT:- THE fast Fourier transform (FFT) is one of the most important algorithms in the field of digital signal processing.
It is used to calculate the discrete Fourier transform (DFT) efficiently. In order to meet the high performance and real time
requirements of modern applications, hardware designers have always tried to implement efficient architectures for the
computation of the FFT. A new feedforward FFT hardware architectures based on rotator allocation is presented in this
project. It consists in finding an efficient distribution of FFT rotations that reduces the number of rotators and their
complexity. Radix-2 feedforward architectures based on rotator allocation are presented along with MDC methodology. In
rotators, general multipliers and general adders are used for implementation. The Booth algorithm consists of repeatedly
adding one of two predetermined values to a product P and then performing an arithmetic shift to the right on P. The
multiplier architecture consists of two architectures, i.e., Modified Booth. By the study of different multiplier architectures, we
find that Modified Booth increases the speed because it reduces the partial products by half. Also, the delay in the multiplier
can be reduced by using Wallace tree. The energy consumption of the Wallace Tree Multiplier is also lower than the Booth and
the array. The characteristics of the two multipliers can be combined to produce a high-speed and low-power multiplier. The
modified stand-alone multiplier consists of a modified recorder (MBR). MBR has two parts, i.e., Booth Encoder (BE) and Booth
Selector (BS).

KEYWORDS: fast Fourier transform (FFT), discrete Fourier transform (DFT), a modified recorder (MBR), Booth Encoder (BE),
Butter fly unit (BU).

INTRODUCTION: T HE FAST Fourier transform (FFT) is one of the most important algorithms in the field of digital signal
processing. It is used to calculate the discrete Fourier transform (DFT) ef- ficiently. In order to meet the high performance and
real-time requirements of modern applications, hardware designers have always tried to implement efficient architectures for
the computation of the FFT. In this context, pipelined hardware architectures [1] are widely used, because they provide high
throughputs and low latencies suitable for real time, as well as a reasonably low area and power consumption. There are two
main types of pipelined architectures: feedback (FB) and feedforward (FF). On the one hand, feedback architectures [1]] are
characterized by their feedback loops, i.e., some outputs of the butterflies are fed back to the memories at the same stage.
Feedback architectures can be divided into single-path delay feedback (SDF) [1], which process a continuous flow of one
sample per clock cycle, and multi-path delay feedback (MDF) or parallel feedback [7], which process several samples in
parallel. On the other hand, feedforward architectures [4]also known as multi-path delay commutator (MDC) [4], do not have
feedback loops and each stage passes the processed data to the next stage. These architectures can also process several
samples in parallel. In current real-time applications, the FFT has to be calculated at very high throughput rates, even in the
range of Gigasamples per second. These high-performance requirements appear in applications such as orthogonal frequency
division multiplexing (OFDM and ultra wideband (UWB) . In this context two main challenges can be distinguished. The first
one is to calculate the FFT of multiple independent data sequences . In this case, all the FFT processors can share the rotation
memory in order to reduce the hardware [2]. Designs that manage a variable number of sequences can also be obtained [2].
The second challenge is to calculate the FFT when several samples of the same sequence are received in parallel. This must be
done when the required throughput is higher than the clock frequency of the device. In this case it is necessary to resort to FFT
architectures that can manage several samples in parallel. As a result, parallel feedback architectures, which had not been
considered for several decades, have become very popular in the last few years [8]. Conversely, not very much attention has
been paid to feedforward (MDC) architectures.

Fast Fourier Transform

FFT circuitry consists of several consecutive multipliers and adders over complex numbers. Until recently, most FFT
architectures used fixed-point arithmetic only, before FFTs based on floating-point operations became prominent. Using the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 416

IEEE-754-2008 standard for floating-point arithmetic allows FFT co-processors to collaborate with general purpose
processors. Despite the fact that binary computer arithmetic improves processing speed and reduces hardware complexity,
decimal computer arithmetic has recently been revived. The advantage of decimal computer arithmetic over its binary
counterpart is that decimal arithmetic is capable of mirroring human computations (i.e., radix-10) and representing fractions
precisely where binary 2 cannot (e.g., 0.2). Some applications, such as finance and banking, cannot tolerate a loss of precision;
this is where decimal computer arithmetic is useful.

Decimal computer arithmetic can be implemented in hardware or software. The software implementation of decimal
arithmetic operations with binary logic devices was widely used until IBM revealed an all-hardware implementation of
decimal processors such as the POWER6 decimal processor. Additionally, the IEEE 754-2008 standard for floating-point
arithmetic now supports the decimal hardware implementation. Hardware decimal arithmetic is used where high-speed
computations are performed on large amounts of data.

Fast Fourier Transform (FFT)

In present several methods for computing the DFT efficiently. In view of the importance of the DFT in various digital signal
processing applications, such as linear filtering, correlation analysis, and spectrum analysis, its efficient computation is a topic
that has received considerable attention by many mathematicians, engineers, and applied scientists. From this point, we
change the notation that X (k), instead of y (k) in previous sections, represents the Fourier coefficients of x (n). Basically, the
computational problem for the DFT is to compute the sequence {X (k)} of N complex-valued numbers given another sequence
of data {x (n)} of length N, according to the formula

In general, the data sequence x(n) is also assumed to be complex valued. Similarly, The IDFT becomes

Since DFT and IDFT involve basically the same type of computations, our discussion of efficient computational algorithms for
the DFT applies as well to the efficient computation of the IDFT.

Radix-2 FFT Algorithms

Consider the computation of the N = 2v point DFT by the divide-and conquer approach. We split the N-point data
sequence into two N/2-point data sequences f1(n) and f2(n), corresponding to the even-numbered and odd-numbered samples
of x(n), respectively, that is,

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting FFT algorithm is called
a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as follows:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 417

But WN
2 = WN/2. With this substitution, the equation can be expressed as

Where F1 (k) and F2 (k) are the N/2-point DFTs of the sequences f1 (m) and f2 (m), respectively.

Since F1 (k) and F2 (k) are periodic, with period N/2, we have F1 (k+N/2) = F1 (k) and

F2 (k+N/2) = F2 (k). In addition, the factor WN
k+N/2 = -WN

k. Hence the equation may be expressed as

FFT HARDWARE ARCHITECTURE:

In order to design an FFT hardware architecture, we have to be aware of the FFT properties introduced in [16]. The first
property, which is general for any FFT architecture and any N, is that at any FFT stage, butterflies operate on data whose index
I differ in bn−s, where n is the number of FFT stages and s is the specific stage that we are considering. This fact can be
observed in the flow graph of Fig. 1. In this flow graph, the index has n = 4 bits, i.e., I ≡ b3 b2 b1 b0. At the first stage, the
butterflies operate on samples whose indexes differ in bn−s = b4−1 = b3. This happens for samples with indexes 0 and 8, 1 and
9, etc. For the second stage, the different bit is bn−s = b4−2 = b2. Note for instance, that the data with indexes 0 and 4 are
operated together in the butterfly at stage 2. For the third and fourth stages, the correponding bits are b1 and b0, respectively.
Therefore, if we want to design an FFT hardware architecture, we have to assure that at each stage s, the indexes of the inputs
to any butterfly at any time instant differ in bn−s. Note that the term butterfly refers now to a hardware component of the
architecture, not to the mathematical operation of the algorithm in the flow graph. If we consider the example of Fig. 3 in [16],
we observe that this property is fulfilled at all the stages. In this figure bn−s is at the lowest parallel dimension, which
corresponds to the pair of samples that flow into the butterflies at the same clock cycle. The property of bn−s is the only
requirement set by the butterflies in FFT hardware architecture. As long as this property is met, we can have any data order at
the different FFT stages. This allows for exploring a variety of data orders at the FFT stages. This is what is done in the current
paper, as explained later in Section V. The second FFT property refers to the rotations at the FFT stages. At each stage, any
sample with index I must be rotated according to equation (2) by a value φ that depends on the index I and on the stage, s. We
can represent it as φs(I). The work [30] explains how to calculate φs(I), which only depends on the FFT algorithm that is used.
By combining these ideas, we lead to the following conclusions: On the one hand, any order at any stage of any FFT hardware
architecture is possible as long as the property of bn−s is met at the input of the butterflies. On the other hand, to any index I at
any FFT stage corresponds a specific rotation φs(I). As a result, we can play with the data order at different FFT stages to look
for patterns that allow for a more optimized distribution of rotations. This is the idea behind the proposed rotator allocation
approach.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 418

Fig. 4. Rotator allocation of a 16-point 4-parallel FFT. (a) Layout not aware of the rotator allocation. (b) FFT architecture for
the layout in Fig. 4(a). (c) Layout aware of the rotator allocation. (d) FFT architecture for the layout in Fig. 4(c).

The purpose of the FFT design using rotator allocation is to distribute the rotations of the FFT in such a way that the number
and complexity of the required rotators is reduced. Fig. 4(a) shows an example of a layout for the first three stages of a 16-
point 4-parallel FFT. The indexes in the figure show how data flows at the different stages. Each element in the matrices of
indexes is the index value according to Fig. 1. Data flows from left to right. Thus, values in the same column are data that flow
in parallel and values in the same row flow through the same path in consecutive clock cycles. The matrices of rotations show
the value φs(I) that corresponds to each of the indexes according to the flow graph in Fig. 1. For instance, the rotation
corresponding to the index 10 at stage 1 is φs(I) = φ1(10) = 2 according to Fig. 1. This case is highlighted in Fig. 4(a). As for the
indexes, each column in the matrices of rotations are rotations that are calculated in parallel at the same clock cycle, whereas
rotations in the same row are calculated in consecutive clock cycles by the same rotator. According to this, each row of the
matrices of rotations are the rotations that must be calculated by a single rotator in consecutive clock cycles. For instance,
stage 1 needs a rotator by φ = {0, 1, 2, 3} and a rotator by φ = {4, 5, 6, 7}, which are 3-rots according to Table I. Stage 2 includes
2 2-rots and stage 3 includes 2 trivial rotators (T). The layout in Fig. 4(a) translates into the FFT architecture in Fig. 4(b),
which shows the rotators at each stage, as well as the content of the rotation memories. By applying rotator allocation we aim
to reduce the number of rotators and their complexity. Rotator allocation simply consists of reorganizing the matrices of
indexes and, therefore, the matrices of rotations, in such a way that the matrices of rotations have less rotators (if possible)
and the complexity of the rotators is lower. On the one hand, fewer rotators are achieved when there are more rows in the
matrices of rotations whose elements are φ = 0. On the other hand, the complexity of the rotators is reduced when the
rotations in the same row are in less SAS. The procedure of rotator allocation consists in distributing the bits bn−1 ... b0 of the
index I into serial and parallel dimensions. Serial dimensions correspond to data arriving at the same input terminal in series
and parallel dimensions refers to data arriving at parallel terminals. Depending on the FFT size N = 2n and the number of
parallel data in the FFT P = 2p, the number of serial bits is n−p = log2(N)−log2(P) and the number of parallel ones is p =
log2(P). For the example in Fig. 4, N = 16 and P = 4, so there are n − p = log2(16) − log2(4) = 2 serial dimensions and p =
log2(P) = 2 parallel ones. The alternatives to allocate the bits correspond to all the possible permutations, i.e., Serial|Parallel

b3b2|b1b0 b2b3|b1b0 b3b2|b0b1 b2b3|b0b1 b3b1|b2b0 b1b3|b2b0 b3b1|b0b2 b1b3|b0b2 b3b0|b2b1 b0b3|b2b1
b3b0|b1b2 b0b3|b1b2 b0b1|b2b3 b1b0|b2b3 b0b1|b3b2 b1b0|b3b2 b0b2|b1b3 b2b0|b1b3 b0b2|b3b1 b2b0|b3b1
b1b2|b0b3 b2b1|b0b3 b1b2|b3b0 b2b1|b3b0 (3) However, neither the order of the serial bits nor the order of the parallel bits
affect the complexity of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 419

Fig. 5. Proposed 32-point 4-parallel radix-2 MDC DIF FFT architecture. rotators: A different order of the serial bits changes the
order of the rotations, but the same rotations are calculated by the rotators. A different order of the parallel bits changes the
edges in which the rotators are placed, but the rotators are the same. Therefore, the alternatives in each row of equation (3)

have the same complexity, so only one alternative per row needs to be evaluated. According to this, the number of alternatives
that need to be evaluated at each FFT stage.

RADIX-8 MODIFIED BOOTH ALGORITHM:

The Booth algorithm consists of repeatedly adding one of two predetermined values to a product P and then performing an
arithmetic shift to the right on P.

Fig. 6. Booth algorithm

The multiplier architecture consists of two architectures, i.e., Modified Booth. By the study of different multiplier architectures,
we find that Modified Booth increases the speed because it reduces the partial products by half. Also, the delay in the
multiplier can be reduced by using Wallace tree. The energy consumption of the Wallace Tree multiplier is also lower than the
Booth and the array. The characteristics of the two multipliers can be combined to produce a high-speed and low-power
multiplier.

The modified stand-alone multiplier consists of a modified recorder (MBR). MBR has two parts, i.e., Booth Encoder (BE) and
Booth Selector (BS). The operation of BE is to decode the multiplier signal, and the output is used by BS to produce the partial
product. Then, the partial products are added to the Wallace tree adders, similar to the carry-save-adder approach. The last
transfer and sum output line are added by a carry look- ahead adder, the carry being stretched to the left by positioning.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 420

Table . 4. Quartet coded signed-digit table

Here we have a multiplication multiplier, 3Y, which is not immediately available. To Generate it, we must run the previous
addition operation: 2Y + Y = 3Y. But we are designing a multiplier for specific purposes and then the multiplier belongs to a set
of previously known numbers stored in a memory chip. We have tried to take advantage of this fact, to relieve the radix-8
bottleneck, that is, 3Y generation. In this way, we try to obtain a better overall multiplication time or at least comparable to the
time, we can obtain using a radix-4 architecture (with the added benefit of using fewer transistors). To generate 3Y with 21-bit
words you just have to add 2Y + Y, ie add the number with the same number moved to a left position. A product formed by
multiplying it with a multiplier digit when the multiplier has many digits. Partial products are calculated as intermediate steps
in the calculation of larger products. The partial product generator is designed to produce the product multiplying by
multiplying A by 0, 1, -1, 2, -2, -3, -4, 3, 4. Multiply by zero implies that the product is "0 ". Multiply by" 1 "means that the
product remains the same as the multiplier. Multiply by "-1" means that the product is the complementary form of the number
of two. Multiplying with "-2" is to move left one as this rest as per table.

RESULT:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 421

CONCLUSION:

Finally, this project presented the rotation allocation approach. It consists in finding an efficient distribution of FFT rotations
that reduces the number of rotators and their complexity. This leads to new radix-2 and radix-2k MDC FFT architectures.
These architectures require the same memory and butterflies as previous MDC FFTs, but fewer and/or simpler rotators.
Modified booth encoding insertion plays vital role to reduce parameters like area and time.

REFERENCES:

[1] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, “Pipelined radix-2 k feedforward FFT architectures,” IEEE Trans.
VLSI Syst., vol. 21, no. 1, pp. 23–32, Jan. 2013.

[2] S. He and M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” in Proc. IEEE Custom
Integrated Circuits Conf., May 1998, pp. 131–134.

[3] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor for OFDM-based WPAN applications,” IEEE Trans. Circuits
Syst. II, vol. 57, no. 6, pp. 451–455, Jun. 2010.

[4] C.-H. Yang, T.-H. Yu, and D. Markovic, “Power and area minimization of reconfigurable FFT processors: A 3GPP-LTE
example,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[5] W. Han, A. T. Erdogan, T. Arslan, and M. Hasan, “High-performance low-power FFT cores,” ETRI J., vol. 30, no. 3, pp. 451–
460, Jun. 2008.

[6] H. Liu and H. Lee, “A high performance four-parallel 128/64-point radix-2 4 FFT/IFFT processor for MIMO-OFDM
systems,” in Proc. IEEE Asia-Pacific Conf. Circuits Syst., Nov. 2008, pp. 834–837.

[7] J.-Y. Oh and M.-S. Lim, “New radix-2 to the 4th power pipeline FFT processor,” IEICE Trans. Electron., vol. E88-C, no. 8, pp.
1740–1746, Aug. 2005.

[8] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical fast 1-D DCT algorithms with 11 multiplications,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., vol. 2, May 1989, pp. 988–991.

[9] Z. Wu, J. Sha, Z. Wang, L. Li, and M. Gao, “An improved scaled DCT architecture,” IEEE Trans. Consum. Electron., vol. 55, no.
2, pp. 685– 689, May 2009.

[10] A. Gray, Jr. and J. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans. Audio Electroacoust., vol. 21, no. 6, pp.
491–500, Jun. 1973.

