
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1585

Hosting NLP based Chatbot on AWS Cloud using Docker

Deeba Unnisa1, Sesha Bhargavi Velagaleti2

1Mtech Student, Dept. of Information Technology, GNITS, Hyderabad
2Assistant Professor, Dept. of Information Technology, GNITS, Hyderabad

---***--
Abstract - Cloud computing is growing every day in the
technology world and almost all the companies are trying to
migrate their existing applications to cloud and focusing on
developing cloud native applications. As cloud provides
scalability, availability, improved performance and it mainly
reduces the manageability from the companies end, so they
do not have to manage and maintain the resources to
support their applications as it is taken care by the cloud
vendors. One such famous cloud vendor is Amazon that
provides amazon web services (AWS) which include multiple
services for compute, storage, networks, database, machine
learning, artificial intelligence, content delivery,
management tools, analytics, internet of things, security and
identity, etc.,

This paper focuses on developing an NLP based chatbot that
queries from users and provide them relevant answers and
or perform the required actions, later hosting the chatbot on
AWS cloud using Elastic container service by dockerizing
the application.

Key Words: AWS ECS, cloud computing, chatbot, docker,
natural language processing.

1. INTRODUCTION

Any company would like to delight their customers to
maintain a better relationship with them as customers
play a major role in keeping the business running. So,
organizations try to incorporate better technologies which
can enhance the user experience and adds value to their
product. In this paper we will be considering a scenario of
legacy application which stores files in multiple binders
and folders, so if a user has to search for a file they have to
either remember where each file is present, or they have
to navigate through multiple folders to get that file, which
is a time consuming and tedious task.

1.1 Proposed system

The proposed solution for this problem is to use an NLP
based chatbot that takes queries from users and gives them
the relevant answer and or perform actions. The entire
data from different files will be indexed in Elasticsearch as
it is suitable to perform fast and efficient full text search on
large volumes of data.

Then we create a web API that connects with the chatbot UI
designed using Angular version 6, this API acts as a search
API and mediator between the data layer that is

Elasticsearch and the chatbot user interface. The API is
responsible for taking natural language query from the
chatbot and processing it then searching for data in
Elasticsearch index. Once data is found the API returns data
to the UI which then displays the data to user in a specific
format to enhance user experience. Once the chatbot is
working fine and is giving us the desired results, we will be
containerizing it using Docker to provide cross platform
compatibility. After the containerization process is
completed the entire Application will be hosted on an AWS
ECS cluster to enhance the availability and decrease
response time to end users.

Fig -1: Proposed system

2. METHODOLOGY

There are mainly two stages that this paper covers, the first
one is designing an NLP based chatbot and the second is to
containerize it and host it on AWS cloud. For designing the
chatbot we use techniques like Natural Language
Processing (NLP), Application Programmable Interface
(API), User Interface (UI) and for deploying the chatbot we
use Docker and Amazon Web Services (AWS) which are
discussed in detail in the following session.

2.1 Natural Language Processing (NLP)

NLP is a branch of artificial intelligence which studies how
humans can interact with the computer in their natural
language and how the computer understands and
interprets human language. For this scenario we will be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1586

using Stanford core NLP, it provides multiple modules to
perform NLP related tasks such as lexical analysis,
syntactic analysis, semantic analysis, disclosure integration
and pragmatic analysis which also includes multiple sub
tasks. For the chatbot we will be focusing mainly on parts
of speech tagging and stop word removal as the users will
be passing natural language queries and we need to
process the queries based on each word and its parts of
speech like noun, verb, preposition, etc.,

2.2 Elastic search

Elastic search is famous for full text search, it can be used
to index an entire document and then traverse through the
document to look for particular words. It stores data in the
form of documents and each document looks like a JSON
(JavaScript Object Notation) we can say that it is a
document-oriented database which is designed to store,
retrieve and manage semi structured data. Elasticsearch
behind the scene uses Lucene’s Standard Analyzer to index
documents with precision. Elasticsearch will act as a
database and data access layer between the Chatbot and
the search API, all the application data will be present on
Elasticsearch in Metadata index, where every word in each
document will be indexed and stored in an inverted matrix.
Here we will be using Bulk API to index the documents in
Elasticsearch and Search API to search for the documents,
for viewing the documents in Kibana we will be using Get
API. We have around 4 lakhs of JSON files which contain
application related data. Kibana is an analytics and
visualization platform which allows to view data stored on
the Elasticsearch clusters. We can search, view and interact
with the data using the features provided by Kibana. It also
provides different ways to view data in the form of graphs,
pie diagram, charts, bar diagram, etc., which helps in data
analysis.

2.3 Search API

To make our chatbot work we need to have a mechanism
which acts as a bridge between the user interface and the
data, for this we use ASP .NET to build a web API to
perform search operation on the data stored in
Elasticsearch. Here our aim is to take the query from user
through UI, send it to the search API where we can utilize
the tools provided by Stanford Core NLP to perform stop
word removal, once the stop words are eliminated and we
have the required keywords, the keywords will be
searched against the Elasticsearch data based on the
priority values set for each field in JSON in the config file.
Once the keywords match Elasticsearch sends the
documents back to search API which formats the
documents for simplicity and sends them to the UI where
they are displayed to the user.

2.4 User Interface

The aim is to design a simple chatbot which takes input
from user and gives them the desired results, to achieve
this we use Angular 6 and Bootstrap to develop the UI. The
users can enter their queries either in text format or use
the text to speech feature provided by mic, once the query
is entered the chatbot sends this query to the API where it
is processed, and the results are fetched, these results are
displayed to the user in text format where the exact value
of result is highlighted using an underline, the user can just
click on the underlined text which is a hyperlink which
takes users to the exact location inside the binder from
where this value was fetched, this mechanism is called as
“Deep Linking”. Deep linking is performed by utilizing the
fields received from the search API in the form of result
and forming a hyperlink by constructing a meaningful URL
from the fields. Chatbot also takes feedback from the users
to improve its performance in the future and provide more
interactive experience to the users.

2.5 Docker Containerization

Containerization allows us to create containers for
applications, where each container acts as an individual
computer system with all the dependencies for application
like java, python, etc., pre-installed in it. In this case the
user/developer does not have to worry about cross
platform compatibility. Docker and Kubernetes are one of
the tools that facilitates containerization of various
applications. Containerized applications can also be hosted
on different cloud environments making it ten times more
convenient and cost effective.

Once we are satisfied with the functionality of our chatbot
it is time to dockerize it which will allow us to test the
application on a Linux container and host the application
on a registry. We have four different services which helps
us to run the chatbot successfully Elasticsearch, Kibana,
Search API, User Interface. Therefore, we require 4 docker
images one for each service. A docker file is script that
gives out steps that a Docker should take to build a new
image. For the index data in Elasticsearch we use docker
volumes, Volumes are independent of the containers they
are created separately and are utilized by the container
while it is running, when the container is destroyed the
volume and data inside volume is intact hence, they
provide persistent data storage.

To run all the images in one go we use Docker compose, it
is a tool which is used to run multi-container applications.
To configure the services Docker compose uses a YAML file,
using which with one command we can spin up all the
containers at the same time. This is suitable for all types of
environments such as developing, testing, staging and
production. Steps to use Docker compose are as follows:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1587

1. Create Docker file for all the services that your
application requires, or utilize the images
provided by Docker hub for licensed software.

2. Define all the services in “docker-compose” file, so
that they can be run together and also specify any
volumes or networks if required within this file.

3. To run the entire application at a time run
“docker-compose-up” which will get all your
services up and running in Docker containers.

2.6 Hosting the chatbot on AWS

It is easy to host containerized applications on AWS cloud
rather than directly hosting the application, this can be
done using AWS ECS (Elastic Container Service) and AWS
ECR (Elastic Container Registry). Prerequisites for doing
this is to set up a VPN, security groups, routing etc., on
AWS.

Elastic Container Service (ECS) - It allows us to host Docker
containers using orchestration service and it is highly
scalable. ECS takes care of managing and scaling the cluster
of virtual machines so we do not have to do it manually.
Using API calls we can query the applications running on
Docker inside ECS i.e. launch or stop the containers. This is
how an AWS ECS works, AWS provides ECR (Elastic
Container Registry) service which will be responsible for
building and storing images, it is similar to Docker hub.
These images are then utilized by ECS while defining the
application requirements. Then it is our choice to either
use EC2 containers to launch our application on Windows
or Linux, or to go for AWS Fargate which is more of a
server less option. Once the containers are running on ECS
it takes care of managing the services and scaling resources
when needed.

3. RESULTS AND DISCUSSION

This paper provides a way to remove latency and give
better user experience by minimizing the efforts required
by a user to find result, the chatbot will give user answers
and perform required actions on the fly, so that users do
not have to remember the location where each file is
placed, and they do not have to manually navigate to that
location to access the file. User can simply ask a question
to the chatbot and it will find the file and give it to user.

After creating the chatbot it is deployed on the AWS cloud
using docker, docker allows us to run applications inside a
container, which means developers do not have to worry
about the application not working on a system with
different configuration. As docker will make sure that all
the dependencies of our application are packaged in the
form of a docker image which runs inside a Windows or
Linux container.

The advantage of hosting docker image on AWS is it is cost
effective, it allows us to scale up and scale down the
resources based on the work load, it is suitable for easy
access, moreover we do not have to manage the containers
and images once they are deployed, AWS will take care of
this automatically.

Fig -2: NLP based Chatbot

4. CONCLUSION

To make the chatbot more intelligent and efficient we can
have block chain mechanism where any changes to the
index will be approved by block chaining and also the
feedback provided by user will help us to build more
intelligent chatbot which exactly depicts the purpose of
“Deep Learning”. Block Chaining can also be used to feed
this user specified feedback based on accuracy of answers
provided by chatbot, in such case for a feedback to be valid
it needs to be approved by at least 3 blocks in our case
users. Which means if only one user is unsatisfied by a
certain response then it won’t hold much value to the
chatbot when compared to the case were ten users specify
the same feedback.

Another enhancement that can be done as a part of future
scope for is to use Machine Learning services provided by
AWS like “Amazon Lex” which is used to build chatbot,
Amazon’s “Alexa” also uses Lex service, in a way we can
say that Lex in the brain of Alexa.

REFERENCES

[1] A Method to Extract Essential Keywords from a Tweet
using NLP tools (by Tharindu Weerasooriy, Nandula
Perera and S.R. Liyanage,2016 Sixteenth International
Conference on Advances in ICT for Emerging Regions
(IC Ter))

[2] An overview of Artificial Intelligence based chatbots
and an example chatbot application (by Naz Albayrak,
Aydeniz Ozdemir and Engin Zeydan, 2018 26th Signal
Processing and Communications Applications
Conference (SIU))

[3] https://nlp.stanford.edu/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 08 | Aug 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1588

[4] https://d1.awsstatic.com/whitepapers/Deep_Learnin
g_on_AWS.pdf?did=wp_card&trk=wp_card

[5] https://d1.awsstatic.com/whitepapers/docker-on-
aws.pdf?trk=wp_card

