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Abstract - In this paper, we proposed the Wavelet based Galerkin method for numerical solution of one dimensional partial 
differential equations using Hermite wavelets.  Here, Hermite wavelets are used as weight functions and these are assumed bases 
elements which allow us to obtain the numerical solutions of the partial differential equations. Some of the test problems are given 
to demonstrate the numerical results obtained by proposed method are compared with already existing numerical method             
i.e. finite difference method (FDM) and exact solution to check the efficiency and accuracy of the proposed method  
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1. INTRODUCTION  
 
Wavelet analysis is newly developed mathematical tool and have been applied extensively in many engineering fileld. This has 
been received a much interest because of the comprehensive mathematical power and the good application potential of 
wavelets in science and engineering problems. Special interest has been devoted to the construction of compactly supported 
smooth wavelet bases. As we have noted earlier that, spectral bases are infinitely differentiable but have global support. On the 
other side, basis functions used in finite-element methods have small compact support but poor continuity properties. Already 
we know that, spectral methods have good spectral localization but poor spatial localization, while finite element methods have 
good spatial localization, but poor spectral localization. Wavelet bases perform to combine the advantages of both spectral and 
finite element bases. We can expect numerical methods based on wavelet bases to be able to attain good spatial and spectral 
resolutions. Daubechies [1] illustrated that these bases are differentiable to a certain finite order. These scaling and 
corresponding wavelet function bases gain considerable interest in the numerical solutions of differential equations since from 
many years [2–4].  
 
 Wavelets have generated significant interest from both theoretical and applied researchers over the last few decades.  The 
concepts for understanding wavelets were provided by Meyer, Mallat, Daubechies, and many others, [5]. Since then, the 
number of applications where wavelets have been used has exploded. In areas such as approximation theory and numerical 
solutions of differential equations, wavelets are recognized as powerful weapons not just tools.   
 
In general it is not always possible to obtain exact solution of an arbitrary differential equation. This necessitates either 
discretization of differential equations leading to numerical solutions, or their qualitative study which is concerned with 
deduction of important properties of the solutions without actually solving them. The Galerkin method is one of the best known 
methods for finding numerical solutions of differential equations and is considered the most widely used in applied 
mathematics [6]. Its simplicity makes it perfect for many applications. The wavelet-Galerkin method is an improvement over 
the standard Galerkin methods.   The advantage of wavelet-Galerkin method over finite difference or finite element method has 
lead to tremendous applications in science and engineering.   An approach to study differential equations is the use of wavelet 
function bases in place of other conventional piecewise polynomial trial functions in finite element type methods.   
 
 In this paper, we developed Hermite wavelet-Galerkin method (HWGM) for the numerical solution of differential equations.   
This method is based on expanding the solution by Hermite wavelets with unknown coefficients. The properties of Hermite 
wavelets together with the Galerkin method are utilized to evaluate the unknown coefficients and then a numerical solution of 
the one dimensional partial differential equation is obtained. 
 
The organization of the paper is as follows.  Preliminaries of Hermite wavelets are given in section 2.  Hermite wavelet-Galerkin 
method of solution is given in section 3. In section 4 Numerical results are presented.   Finally, conclusions of the proposed 
work are discussed in section 5. 
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2. PRELIMINARIES OF  HERMITE WAVELETS  
 

Wavelets form a family of functions which are generated from dilation and translation of a single function which is called as 

mother wavelet ( )x . If the dialation parameter a  and translation parameter b  varies continuously, we have the following 

family of continuous wavelets [7 , 8]: 

1/2

, ( ) =| | ( ), , , 0.a b

x b
x a a b R a

a
  

    

If we restrict the parameters a  and b  to discrete values as 0 0 0 0 0= , = , >1, > 0.k ka a b nb a a b 
 We have the following 

family of discrete wavelets 
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where nk ,  form a wavelet basis for )(2 RL . In particular, when 2=0a  and 1=0b ,then )(, xnk  forms an orthonormal 

basis. Hermite wavelets are defined as  
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where 1.,0,1,= Mm   In eq. (2.2) the coefficients are used for orthonormality. Here )(xHm  are the second  Hermite 

polynomials of degree m with respect to weight function 
21=)( xxW   on the real line R  and satisfies the following 

reccurence formula 1=)(0 xH , xxH 2=)(1 , 
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For 1&1  nk in (2.1) and (2.2), then the Hermite wavelets are given by 
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Function approximation: 
 

We would like to bring a solution function  ( )u x  under Hermite space by approximating ( )u x  by elements of Hermite wavelet 

bases as follows, 
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where   ,n m x  is given in eq. (2.1). 

We approximate ( )u x  by truncating the series represented in Eq. (2.4) as, 

                                                     
1 12

, ,

1 0

( )

k M

n m n m

n m

u x c x

 
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                                                                                  (2.5) 

where   c  and     are   
1

2 1
k

M


  matrix. 

 
Convergence of Hermite wavelets 
 

Theorem: If a continuous function    2u x L R defined on   0 , 1  be bounded, i.e.  u x K , then the Hermite 

wavelets expansion of  u x  converges uniformly to it [9]. 

Proof: Let  u x  be a bounded real valued function on  0 , 1 . The Hermite coefficients of continuous functions  u x   

is defined as, 
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  absolutely convergent.  Hence the Hermite series expansion of    u x  

converges uniformly. 
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3. METHOD OF SOLUTION  
 

 

Consider the differential equation of the form, 
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                                                                                      (3.1) 

With boundary conditions                   0 , 1u a u b 
                                                                                                               

(3.2) 

Where  ,    are may be constant or either a functions of x or  functions of u  and  xf  be a continuous function. 

Write the equation (3.1) as                 xfu
x

u

x

u
xR 









 

2

2

)(                                                                                (3.3) 

where  xR   is the residual of the eq. (3.1). When   0xR  for the exact solution, ( )u x  only which will satisfy the boundary 

conditions.  

Consider the trail series solution of the differential equation (3.1), ( )u x  defined over [0, 1) can be expanded as a modified 

Hermite wavelet, satisfying the given boundary conditions which is involving unknown parameter as follows,  
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where  , 'n mc s  are unknown coefficients to be determined. 

Accuracy in the solution is increased by choosing higher degree Hermite wavelet polynomials.  

 Differentiating eq. (3.4) twice with respect to  x  and substitute the values of  

2

2
, ,

u u
u

x x

 

 
 in   eq. (3.3). To find , 'n mc s  we 

choose weight functions as assumed bases elements and integrate on boundary values together with the residual to zero [10]. 

i.e.                 
1

1,

0

0m x R x dx  , 0, 1, 2,......m   

then we obtain a system of linear equations, on solving this system, we get unknown parameters. Then substitute these 
unknowns in the trail solution, numerical solution of eq. (3.1) is obtained. 
 
 

4. NUMERICAL EXPERIMENT 
 

Test Problem 4.1 First, consider the differential equation [11],          

                                                   

2

2
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
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With boundary conditions:     0 0, 1 0u u                                                                                                                               (4.2) 

The implementation of the eq. (4.1) as per the method explained in section 3 is as follows: 

The residual of eq. (4.1) can be written as:  
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Assuming the trail solution of (5.1) for   1k   and 3m   is given by 

         1,0 1,0 1,1 1,1 1,2 1,2( )u x c x c x c x  ψ ψ ψ                                                         (4.4)  

Then the eq. (4.4) becomes           
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Differentiating eq. (4.5) twice w.r.t. x  we get, 
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Using eq. (4.5) and (4.7), then eq. (4.3) becomes, 
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This is the residual of eq. (4.1).    The “weight functions” are the same as the bases functions. Then by the weighted Galerkin 
method, we consider the following: 

                       
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0

0m x R x dx  , 0, 1 ,2m                                                                          (4.9) 

For 0, 1, 2m   in eq. (4.9),   
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0x R x dx  ,    
1

1,2

0

0x R x dx   

         1,1 1,2 1,3( 0.3802) (0) (0.4487) 0.0940 0c c c                                                (4.10) 

1,1 1,2 1,3(0) (0.9943) (0) 0.0376 0c c c                                               (4.11) 

1,0 1,1 1,2(0.4487) (0) (2.3686) 0.1128 0c c c                                              (4.12) 

We have three equations (4.10) – (4.12) with three unknown coefficients i.e. 0,1c , 1,1c and 2,1c .  By solving this system of 

algebraic equations, we obtain the values of 1,0 0.2446c  , 1,1 0.0378c   and 1,2 0.0013c   .  Substituting these values in 

eq. (4.5), we get the numerical solution; these results and absolute error =    a eu x u x  (where  au x  and  eu x  are 

numerical and exact solutions respectively) are presented in table - 1 and fig - 1 in comparison with exact solution of eq. (4.1) is  

sin ( )
( )

sin (1)

x
u x x  . 

Table – 1: Comparison of numerical solution and exact solution of the test problem 4.1 
 

x Numerical solution Exact solution Absolute error 
FDM HWGM FDM HWGM 

0.1 0.018660 0.018624 0.018642 1.80e-05 1.80e-05 
0.2 0.036132 0.036102 0.036098 3.40e-05 4.00e-06 
0.3 0.051243 0.051214 0.051195 4.80e-05 1.90e-05 
0.4 0.062842 0.062793 0.062783 5.90e-05 1.00e-05 
0.5 0.069812 0.069734 0.069747 6.50e-05 1.30e-05 
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0.6 0.071084 0.070983 0.071018 6.60e-05 3.50e-05 
0.7  0.065646 0.065545 0.065585 6.10e-05 4.00e-05 
0.8 0.052550 0.052481 0.052502 4.80e-05 2.10e-05 
0.9 0.030930 0.030908 0.030902 2.80e-05 6.00e-06 

 

 
Fig – 1: Comparison of numerical and exact solutions of the test problem 4.1. 

 
 

Test Problem 4.2 Next, consider another differential equation [12]    

                                   

 
2

2 2

2
2 sin , 0 1

u
u x x

x
  


    


                                                    (4.12) 

With boundary conditions:                            0 0, 1 0u u                                                                                                     (4.13) 

Which has the exact solution    sinu x x . 

By applying the method explained in the section 3, we obtain the constants 1,0 3.1500c  , 1,1 0c   and 1,2 0.1959c   .  

Substituting these values in eq. (4.5) we get the numerical solution. Obtained numerical solutions are compared with exact and 
other existing method solutions are presented in table - 2 and fig - 2.  
 
 

Table – 2: Comparison of numerical solution and exact solution of the test problem 4.2. 
 
 

x 
Numerical solution Exact 

solution 
Absolute error 

FDM Ref [11] HWGM FDM Ref [11] HWGM 
0.1 0.310289 0.308865 0.308754 0.309016 1.27e-03 1.51e-04 2.60e-04 
0.2 0.590204 0.587527 0.588509 0.588772 1.43e-03 1.25e-03 2.60e-04 
0.3 0.812347 0.808736 0.809554 0.809016 3.33e-03 2.80e-04 5.40e-04 
0.4 0.954971 0.950859 0.950670 0.951056 3.92e-03 1.97e-04 3.90e-04 
0.5 1.004126 0.999996 0.999123 1.000000 4.13e-03 4.00e-06 8.80e-04 
0.6 0.954971 0.951351 0.950670 0.951056 3.92e-03 2.95e-04 3.90e-04 
0.7 0.812347 0.809671 0.809554 0.809016 3.33e-03 6.55e-04 5.40e-04 
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0.8 0.590204 0.588815 0.588509 0.587785 2.42e-03 1.03e-03 7.20e-04 
0.9 0.310289 0.310379 0.308754 0.309016 1.27e-03 1.36e-03 2.60e-04 

 
Fig – 2: Comparison of numerical and exact solutions of the test problem 4.2. 

 
 

Test Problem 4.3 Consider another differential equation [13]    

                                   

 
2

1

2
1 , 0 1xu u

e x
x x

 
     

 
                                                             (4.14) 

With boundary conditions:               0 0, 1 0u u                                                                                                                  (4.15) 

Which has the exact solution    11 xu x x e   . 

By applying the method explained in the section 3, we obtain the constants 1,0 0.7103c  , 1,1 0.0806c   and 1,2 0.0064c  .  

Substituting these values in eq. (4.5) we get the numerical solution. Obtained numerical solutions are compared with exact and 
other existing method solutions are presented in table - 3 and fig - 3.  
 

Table - 3: Comparison of numerical solution and exact solution of the test problem 4.3. 
 
 

x 
Numerical solution Exact 

solution 
Absolute error 

FDM Ref [12] HWGM FDM Ref [12] HWGM 
0.1 0.061948 0.059383 0.059339 0.059343 2.61e-03 4.00e-05 4.00e-06 
0.2 0.115151 0.110234 0.110138 0.110134 5.02e-03 1.00e-04 4.00e-06 
0.3 0.158162 0.151200 0.151031 0.151024 7.14e-03 1.76e-04 7.00e-06 
0.4 0.189323 0.180617 0.180479 0.180475 8.85e-03 1.42e-04 4.00e-06 
0.5 0.206737 0.196983 0.196733 0.196735 1.00e-02 2.48e-04 2.00e-06 
0.6 0.208235 0.198083 0.197803 0.197808 1.04e-02 2.75e-04 5.00e-06 
0.7 0.191342 0.181655 0.181421 0.181427 9.92e-03 2.28e-04 6.00e-06 
0.8 0.153228 0.145200 0.145008 0.145015 8.21e-03 1.85e-04 7.00e-06 
0.9 0.090672 0.085710 0.085637 0.085646 5.03e-03 6.40e-05 9.00e-06 
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Fig – 3: Comparison of numerical and exact solutions of the test problem 4.3. 

 
Test Problem 4.4 Now, consider singular boundary value problem [12]    

                                   

2
2

2 2

2 2
4 , 0 1

u u
u x x

x x x x

 
    

 
                                              (4.16) 

With boundary conditions:     0 0, 1 0u u                                                                                                                            (4.17) 

Which has the exact solution   2u x x x  . 

By applying the method explained in the section 3, we obtain the constants 1,0 0.8945c   , 1,1 0.0047c   and 

1,2 0.0046c   .  Substituting these values in eq. (4.5) we get the numerical solution. Obtained numerical solutions are 

compared with exact and other existing method solutions are presented in table - 4 and fig - 4.  
 
 

Table - 4: Comparison of numerical solution and exact solution of the test problem 4.4. 
 
 

x  Numerical solution Exact solution Absolute error 
FDM HWGM FDM HWGM 

0.1 -0.011212 -0.091865 -0.090000 7.88e-02 1.90e-03 
0.2 -0.027274 -0.162047 -0.160000 1.33e-02 2.00e-03 
0.3 -0.044247 -0.211369 -0.210000 1.66e-02 1.40e-03 
0.4 -0.060551 -0.240457 -0.240000 1.79e-02 4.60e-04 
0.5 -0.074699 -0.249739 -0.250000 1.75e-02 2.60e-04 
0.6 -0.084704 -0.239439 -0.240000 1.55e-02 5.60e-04 
0.7 -0.087649 -0.209587 -0.210000 1.22e-02 4.10e-04 
0.8 -0.079213 -0.160010 -0.160000 8.08e-02 1.00e-05 
0.9 -0.053056 -0.090338 -0.090000 3.69e-02 3.40e-04 
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Fig – 4: Comparison of numerical solution and exact solution of the teat problem 4.4. 

 
Test Problem 4.5 Finally, consider another singular boundary value problem [14]    

                         

2
5 4 2

2

8
44 30 , 0 1

u u
xu x x x x x

x x x

 
       

 
                                       (4.16) 

With boundary conditions:     0 0, 1 0u u                                                                                                                            (4.17) 

Which has the exact solution   3 4u x x x   . 

By applying the method explained in the section 3, we obtain the constants and substituting these values in eq. (4.5) we get the 
numerical solution. Obtained numerical solutions are compared with exact and other existing method solutions are presented 
in table - 5 and fig - 5.  
 

Table – 5: Comparison of numerical solution and exact solution of the test problem 4.5. 
 
 

x Numerical solution Exact solution Absolute error 
FDM HWGM FDM HWGM 

0.1 0.024647 -0.000900 -0.000900 2.55e-02 0 
0.2 0.024538 -0.006401 -0.006400 3.09e-02 1.00e-06 
0.3 0.016024 -0.018904 -0.018900 3.40e-02 4.00e-06 
0.4 -0.000072 -0.038407 -0.038400 3.83e-02 7.00e-06 
0.5 -0.022021 -0.062512 -0.062500 4.05e-02 1.20e-05 
0.6 -0.045926 -0.086417 -0.086400 4.05e-02 1.70e-05 
0.7 -0.065532 -0.102920 -0.102900 3.74e-02 2.00e-05 
0.8 -0.072190 -0.102420 -0.102400 3.02e-02 2.00e-05 
0.9 -0.054840 -0.072914 -0.072900 1.81e-02 1.40e-05 
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Fig - 5: Comparison of numerical solution and exact solution of the teat problem 4.5. 

 

5. CONCLUSION 
 

 

In this paper, we proposed the wavelet based Galerkin method for the numerical solution of one dimensional partial differential 
equations using Hermite wavelets.  The efficiency of the method is observed through the test problems and the numerical 
solutions are presented in Tables and figures, which show that HWGM gives comparable results with the exact solution and 

better than existing numerical methods.  Also increasing the values of M ,  we get more accuracy in the numerical solution.  
Hence the proposed method is effective for solving differential equations. 
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