
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3569

Hybrid Book Recommendation System

Anagha vaidya, Dr. Subhash Shinde

1ME Computer Engineering, Department of Computer Engineering, Lokmanya Tilak College of Engineering,
Mumbai, India.

2Vice Principle, Lokmanya Tilak College of Engineering, Mumbai, India.
---***--

Abstract - In this age of information, it is very difficult to
find the right information from the enormous amount of data
present in the online platforms. Recommendation system sorts
through massive amounts of data to identify interest of users
and makes the information search easier. In this paper, we
have presented a model for a web-based personalized hybrid
book recommendations system which exploits varied aspects
of giving recommendations apart from the regular
collaborative and content-based filtering approaches.
Temporal aspects for the recommendations are incorporated.
Also, for users of different age, country and their interests,
personalized recommendation can be made on these
demographic parameters. We are taking some information
from user while signup which help to get more appropriate
recommendations based on individual user interest and thus
an attempt to overcome cold start problem. Three types of
scenarios are covered in this paper viz. if user is new then
recommendations are made depending upon user interests,
second is recommendations based on past purchase history
and the last is recommendation by using different algorithms
namely K Nearest Neighbor (KNN), Singular Value
Decomposition (SVD), Restricted Boltzmann Machines (RBM)
and cosine similarity. It reduces dependency of rating-based
system.

Key Words: Hybrid Recommendation system, Collaborative
filtering, Content filtering, and Demographic filtering

1. INTRODUCTION

Recommendation system (RS) is a subclass of information
filtering system that seeks to predict the "rating" or
"preference" a user would give to an item. Recommender
systems typically produce recommendations in one of two
ways – through collaborative filtering or through content-
based filtering (also known as personality-based approach).
Collaborative filtering approaches build a model from a
user's past behaviour (items previously purchased or
selected and/or numerical ratings given to those items) as
well as similar decisions made by other users. This model is
then used to predict items (or ratings for items) that the user
may have an interest in. Content-based filtering approaches
utilize a series of discrete characteristics of an item in order
to recommend additional items with similar properties.
These approaches are often combined as Hybrid
Recommender System [1]. Different techniques have been
developed over time to give accurate recommendations. As
E- commerce is getting bigger, people are moving from retail

shops to online store. On E-commerce, availability of
numerous options makes the finding of most suitable item a
hefty task, so RS makes this task easy by finding behaviour
pattern from past history or user input. There are two major
issues in existing recommendation system one is cold start
and another one is accuracy [2].

In proposed model, we tried to overcome cold start
problem by taking some inputs from user while creating
account and accuracy by implementing different algorithms.
If recommendations given are varying too much from the
user’s likes and tastes, he/she may simply stop using the
system. So, in order to build trust, recommendations need to
be personalized. Demographic recommendations are a good
way of giving personalized predictions [3]. Filtering the
results using collaborative approach leads to a better
recommendation output. Recommendations suited to the
user’s age, region and Interests can be made more
personalized. The cold start problem is a major issue in
many recommendation systems. In such a scenario, the
system is unable to give appropriate predictions until it has a
better idea about the user’s preferences. Demographic
recommendations could help alleviate this problem to some
extent, if not entirely in case of a newly added user. A user
always would like to stay abreast of their liked category or
liked author’s books. The traditional filtering techniques may
not always be able to keep a user updated about the recent
trends in books.

There are three types of user, firstly, the new users. To
deal with the cold start issue, we are beginning by asking
users about categories (e.g. Suspense and thriller, romance
etc.) and writers they are interested in. Based on these
criterions, recommendations are being made. Along with
this, a parallel approach is followed where we find users
with similar interests and a bigger and more accurate set of
recommendation is returned based on the rating profile.

The second types of user are the ones who don’t prefer to
rate. This case may lead to a failure of rating-based system.
To tackle this issue, we are making recommendations based
on their past orders. The third set of users consists of those
who give feedback (Ratings). We are using 4 algorithms
namely SVD, KNN, RBM, Hybrid for more options for user.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3570

Figure 1: Types of users

To summarize the underlying approach, we are using
hybrid model to provide personalized recommendations to
individual user. This system is hybrid of content based as
well as collaborative approach of recommender system. We
are showing more accurate and more options that will
increase the user experience and will raise the possibility of
buying books.

2. RELATED WORK

Recommendation systems with strong algorithms are at the
core of today’s most successful online companies such as
Amazon, Google, Netflix and Spotify. By endlessly
recommending new products that suit their customer’s
tastes, these companies provide a personalized, attentive
experience across their brand platforms, effectively securing
customer loyalty.

Amazon, a popular e-commerce platform initially started its
business with e-book store. It uses topic diversification
algorithms to improve its recommendation [4, 5]. The
system uses collaborative filtering method to overcome
scalability issue by generating a table of similar items offline
through the use of item-to-item matrix. The system then
recommends other products which are similar online
according to the users’ purchase history. On the other hand,
content-based techniques match content resources to user
characteristics. Content-based filtering techniques normally
base their predictions on user’s information, and they ignore
contributions from other users as with the case of
collaborative techniques [6, 7]. Amazon fails to handle cold
start problem.

NETFLIX provides a subscription service model that offers
personalized recommendations to help us find shows and
movies of our interest. To do this, they have created a
proprietary, complex recommendations system. Netflix offer
thousands of movies and shows. With over 7,000 movies and
shows in the Netflix catalogue, it is nearly impossible for
users to find movies they’ll like on their own. Netflix uses
the personalized method where movies are suggested to the
users who are most likely to enjoy them based on a metric
like major actors or genre. Machine learning is necessary for
this method because it uses user data to make informed

suggestions. This way Netflix methodology accounts for the
diversity in its audiences and its very large catalogue.

2.1 CHALLENGES IN EXISTING SYSTEM

Most recommendation problems rely on the rating structure.
In its most common formulations, the recommendation
problem is reduced to the problem of estimating ratings for
the items that have not been seen by a user. This estimation
is usually based on the ratings given by this user to other
items. The engine in such software gives advice about what
we might enjoy listening to or watching or reading next,
based on user’s history of liking content.

Problems in recommender systems,

The identified real-life problems which needs to be
addressed in recommendation systems through the
literature survey:
A. Cold Start Problem: Cold-start problem presents a
collective issue of new item and new user to recommender
systems. A new item can’t be recommended initially when it
is introduced to a content-based system with no ratings. For
instance, MovieLens (movielens.org) cannot recommend
new movies until these have got some initial ratings. The
new-user problem is bit hard to handle because it is not
possible to find similar users or to create a CB profile
without previous preferences of a user.

B. Scalability of The Approach: One vital and foremost
issue of Recommender systems today is the scalability of
algorithms with large real-world datasets. It is becoming
challenging to deal with huge and dynamic data sets
produced by item-users interactions such as preferences,
ratings and reviews.

C. Sparse, Missing, Erroneous and Malicious Data:
Generally, majority of the users do not rate most of the items
and consequently the ratings matrix becomes very sparse.
Due to this, the data sparsity problem arises that declines the
chances of finding a set of users with similar ratings. This is
the most eminent drawback of the CF technique. This
concern can be alleviated by using some additional domain
information.

D. Big-data: Generally, a user can opt for an item of his
interest from a recommendation list if the list reflects some
diversity in the recommended items to some extent.
Seamless recommendations for a restricted type of product
have no value until or unless it is desired or explicitly
described by the user with a narrow clique of preferences. In
the initial stage, when the RS is used as a knowledge
discovery tool, the users may wish to explore new and
different options available.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3571

3. HYBRID BOOK RECOMMENDATION SYSTEM

Our proposed system is Hybrid Recommendation system
designed to overcome cold start issue and reduces
dependency of rating-based system. It starts with general
page where different books are shown to user based on their
categories. User can search any books by its title or author
name. While signing up, user is been asked to fill certain
information like their category preferences, liked authors,
location and age for finding similar users. Based on this
information, books are being recommended which in turn
help to overcome cold start problem. After signup, user can
see their liked category and liked author’s books in different
titled catalogues.

If existing user has bought book(s) but not rated them yet,
they will be shown books based on their purchase history as
well as the information they’ve provided while signing up
(categories and authors). Along with it, user will see random
recommendations and predictions using different algorithms
like SVD, KNN, RBM and Hybrid recommendations based on
the books they’ve rated recently.

Furthermore, the system will track purchase history of users
and that will reflect latest recommendations for book
recommender system. So, with time user will be shown
recommendation based in their most recent purchase
history. User can see the details of book such as author,
publication, rating, cover page, publication year. These books
can be added to cart. The cart will show the books added to it
and also other book recommendations in the “you may also
like section”. This section is being populated using Cosine
similarity algorithm. We are using same algorithm (Cosine
similarity) for providing with the search results.

Once a book is ordered, User can rate book based on their
experiences in “My Orders” section of the application. Thus,
the proposed system will ensure personalized
recommendations eliminating drawbacks of rating-based
approach.

Steps involved in the algorithm [8],

Figure 2: Steps involved for recommendations

Step 1: Scan the Books Dataset

In this step, application is scanning the entire storage server
and simultaneously performing the data cleaning, which

include removal of irrelevant data and keeping the relevant
data for recommendations. This process reduces the data
sparsity by eliminating missing, erroneous and malicious
data from the working data set.

Step 2: Data Pre-processing

This step also works of the data correction part to ensure
more accurate recommendations. According to our
application, it includes the extraction of data that are needed
for recommendations, which means extraction of only books
having categories and users having demographic data.

Step 3: Filtering by book name or author name

This step revolves around proving users with the best and
relevant search results. Factors like authors and book name
can be searched and the result will return books using cosine
similarity algorithm.

Step 4: Perform Content based Filtering

In this step we need to perform content-based filtering of
books according to user preferences. For example, User1
clicked on book B1, assume that we have some related books
B2, B3 and B4 in the dataset. Assume B2 is of different type,
but B3 and B4 is of same type of book B1. Now we check the
Meta data (category, author etc.) of the books B3 and B4, if it
matches with book B1, then the system will recommend
books B3 and B4 for the user. If user clicks on book B1, then
the user will get books B3 and B4 as the recommended.
Cosine similarity is used for finding similarity between two
items while searching and showing similar items in cart.
KNN is also used for finding similar users whose rating
matched with User1’s book rating history.

Step 5: Perform Collaborative Filtering

Here we consider the quality of the book content. In our
example, recommending the books B3 and B4. This will
perform based on the registered user’s interest and rating.
SVD is used for finding user’s having similar book interest
based on their ratings. RBM is used for giving accurate
result even for books which does not been yet rated.

Step 6: Perform Interest Based Filtering

Here we consider interest of users, if user likes one specific
genre or one author or any subject for example user likes
some subjective books like on data science, so we
recommend books according to their interest or author likes.
It helps to overcome cold start problem.

Step 7: Final Recommendations

In the final recommendation, based on type of user,
recommendations will differ like if user is new some
interest-based result will be shown to user, if user don’t like
to rate then interest and similar books of past ordered books

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3572

will be shown to user else rating-based hybrid
recommendations will be shown to user. [9]

4. ALGORITHMS

A. Cosine Similarity [10]

Cosine similarity (CS) measures the similarity between two
vectors by calculating the cosine of the angle between them.
It is widely used algorithm for finding similarity between
two books or two users. The user Bob considers a three-star
book, maybe different from what Alice considers a three-star
book. Maybe Bob is just hesitant to rate things five stars
unless they are truly amazing, while Alice tries to be nice and
rates things five stars unless she really didn't like them. This
is a real effect we will see, not just across individuals, but
across different cultures too. So, adjusted cosine attempts to
normalize these differences. We measure similarities based
on the difference between a user’s rating for an item, and
their average rating for all items, instead of measuring
similarities between people based on their raw rating values.

So, if you look at this equation, if you replace X with X sub i
minus X bar, and replaced Y with Y sub i and Y bar. X bar
means the average of all user X's ratings, and Y bar means
the average of all user Y's ratings. So, all that's different here
from conventional cosine similarity is that we are looking at
the variance from the mean of each users’ ratings, and not
just the raw rating itself. We can only get a meaningful
average or a baseline of an individual’s ratings if they have
rated a lot of stuff for you to take the average in the first
place. Imagine a book that most people love, like Alchemist,
people who hate Alchemist are going to get a very strong
similarity score from Pearson's similarity because they share
opinions that are not mainstream.

Note that the only difference between this and adjusted
cosine is whether we're talking about users or items. The
surprise library we are using in this project refers to
adjusted cosine as user-based person's similarity, because
it's basically the same thing. Another way to measure
similarity is the mean squared difference similarity metric.
All of the items that two users have in common in their
ratings, and compute the mean of the square differences
between how each user rated each item. It's easy to compute
since it doesn't involve angles and multidimensional space.
You're just directly comparing how two people rated the
same set of things. It's very much the same idea of how we
measure mean absolute error, when measuring the accuracy
of a recommender’s system as a whole.

So, if we break down that top equation, it says that the mean
squared difference, or MSD for short, between two users X
and Y is given by the following. On the top of this fraction, we
are summing up for every item i that users X and Y have both
rated. The difference between the ratings from each user
squared. We then divide by the number of items each user
had in common that we summed across to get the average or
mean. Now, the problem is that we have computed a metric
of how different users X and Y are, and we want to measure
how similar they are not how different they are. So, to do
that, we just take the inverse of MSD dividing it by one, and
we have to stick that plus one on the bottom in order to
avoid dividing by zero in the case where these two users
have identical rating behavior. You can, by the way, flip
everything we just said to apply to items instead of users, so
X and Y could refer to two different things instead of two
different people, and then we'd be looking at the differences
in ratings from the people these items have in common,
instead of the items people have in common.

In our case, we have used cosine similarity in following
scenarios:

1. Finding similar books of searched item. It is based
on author and category.

2. Finding similar books of which have added in cart.
3. In KNN algorithm
4. Finding similar users by using demographic

information.
After finding similar users their past orders are
being recommended to new user which reduces
dependency on rating-based system.

5. Finding similar books based on Authors.

B. SVD (Singular Value Decomposition) [11]

Singular value decomposition (SVD) can be seen as a method
for data reduction.

These are the basic ideas behind SVD: taking a high
dimensional, highly variable set of data points and reducing
it to a lower dimensional space that exposes the
substructure of the original data more clearly and orders it
from most variation to the least. Singular Value
Decomposition is a matrix factorization technique which
takes a rectangular matrix defined as A where A is an m x n
matrix in which the m rows represents the users, and the n
columns represents the items. The SVD theorem states,

Amxn = Umxm Smxn VTnxn …. [1]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3573

Where, UTU = Imxm

 VTV = Inxn

Where the columns of U are the left singular vectors; S (the
same dimensions as A) has singular values and is diagonal;
and VT has rows that are the right singular vectors.
Calculating the SVD consists of finding the Eigenvalues and
Eigenvectors of A and A. The Eigenvectors of A make

up the columns of V, the Eigenvectors of A make up the

columns of U. Also, the singular values in S are square roots
of Eigenvalues from A or A. The singular values are the

diagonal entries of the S matrix and are arranged in
descending order. The singular values are always real
numbers. If the matrix A is a real matrix, then U and V are
also real.

Matrix S is a diagonal matrix having only r nonzero entries,
which makes the effective dimensions of U, S and V matrices
m × r, r ×r, and r × n, respectively. The diagonal entries
(,, . . . ,) of S have the property that si > 0 and ≥ ≥ .

. . ≥ .

In our proposed system, SVD is used for finding similar user
based on their past ratings.

Recommendation Request (User = x, Item = y, Rating =?)

1. Find users who rated Item = y from the original matrix A.

2. Find most similar user to User = x among the users who
rated Item = y using the reduced matrix .

3. Get the rating of the most similar user to Item = y from the
original matrix A and give it for the User = x, Item = y.

For the second part of the algorithm, if the User = x is an
already existing user, it exists in the reduced matrix as a

row. If the User = x is a new user, before starting similarity
checks, the user has to be projected from n dimensions to k
dimensions. Let the ratings of the new user vector
is . The projection P to the reduced matrix is

made by the formula [1]:

In the experimental part of this study, the Euclidian distance
algorithm explained above is used for the similarity check of
the users. The bottleneck in this technique is the search for
similar users among a large user population. SVD is the
powerful algorithm in recommendation system. It gives
more accurate result. SVD is used for finding collaborative
recommendations. RBM Works good with large dataset so to
overcome the data sparsity issue in RBM we have used both
RBM and SVD as collaborative algorithm for improving
accuracy and giving more options to users.

C. KNN (k-Nearest Neighbours) [12]

To implement an item based collaborative filtering, KNN is a
perfect go-to model and also a very good baseline for
recommender system development is a non-parametric,
lazy learning method.

KNN does not make any assumptions on the underlying data
distribution but it relies on item feature similarity. When
KNN makes inference about a book, KNN will calculate the
“distance” between the target book and every other book in
its database, then it ranks its distances and returns the top K
nearest neighbor books as the most similar book
recommendations.

Figure 3: KNN Approach

Build up similarity scores between this item and
everything the user rated

neighbors = []

for rating in self.trainset.ur[u]:

categorySimilarity = self.similarities[i,rating[0]]

neighbors.append((categorySimilarity, rating[1]))

Extract the top-K most-similar ratings

k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda
t: t[0])

Compute average sim score of K neighbors weighted by
user ratings

simTotal = weightedSum = 0

for (simScore, rating) in k_neighbors:

if (simScore > 0):

simTotal += simScore

weightedSum += simScore * rating

if (simTotal == 0):

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3574

raise PredictionImpossible('No neighbors')

predictedRating = weightedSum / simTotal

return predictedRating

KNN is used in proposed system for finding similar books
based on their category and ratings. KNN is used for finding
content-based recommendations.

D. RBM (Restricted Boltzmann Machines) [13]

Most of the existing approaches to collaborative filtering
cannot handle very large data sets. The oldest algorithm of
neural networks in recommender systems is the Restricted
Boltzmann Machine or RBM for short. RBM's are one of the
simplest neural networks consist of only two layers, a visible
layer and a hidden layer.

We train it by feeding our training data into the visible layer
in a forward pass, and training weights and biases between
them during back propagation. An activation function such
as ReLU is used to produce the output from each hidden
neuron.

They are restricted because neurons in the same layer can't
communicate with each other directly. There are only
connections between the two different layers. RBM's get
trained by doing a forward pass, which we just described,
and then a backward pass, where the inputs get
reconstructed. We do this iteratively over many epochs, just
like when we train a deep neural network, until it converges
on a set of weights and biases that minimizes the error.

Figure 4: RBM work flow

Let's take a closer look at that backward pass. During the
backward pass, we are trying to reconstruct the original
input by feeding back the output of the forward pass back
through the hidden layer, and seeing what values we end up
with out of the visible layer. Since those weights are initially
random, there can be a big difference between the inputs we
started with and the ones we reconstruct. In the process, we
end up with another set of bias terms, this time on the visible
layer. So, we share weights between both the forward and
backward passes, but we have two sets of biases. The hidden
bias that's used in the forward pass, and the visible bias used
in this backward pass. We can then measure the error we

end up with and use that information to adjust the weights a
little bit during the next iteration to try and minimize that
error.

Adapting an RBM for book recommendations given five-star
ratings data requires a few twists to the generic RBM
architecture.

The general idea is to use each individual user in our training
data as a set of inputs into our RBM to help train it. So, we
process each user as part of a batch during training, looking
at their ratings for every book they rated. So, our visible
nodes represent ratings for a given user on every book, and
we're trying to learn weights and biases to let us reconstruct
ratings for user/book pairs we don't know yet.

First of all, our visible units aren't just simple nodes taking in
a single input. Ratings are really categorical data, so we
actually want to treat each individual rating as five nodes,
one for each possible rating value. So, let's say the first rating
we have in our training data is a five-star rating which will
be represented as four nodes with a value of zero and one
with a value of one, as represented here. Then we have a
couple of ratings that are missing for user/item pairs that
are unknown and need to be predicted. Then we have a
three-star rating, represented like this with a one in the third
slot. When we're done training the RBM, we'll have a set of
weights and biases that should allow us to reconstruct
ratings for any user. So, it is used to predict ratings for a new
user, we just run it once again using the known ratings of the
user we're interested in. We run those through in the
forward pass, and then back again in the backward pass, to
end up with reconstructed rating values for that user. We
can then run softmax on each group of five rating values to
translate the output back into a five-star rating for every
item. But again, the big problem is that the data we have is
sparse.

If we are training an RBM on every possible combination of
users and books, most of that data will be missing, because
most books have not been rated at all by a specific user. We
want to predict user ratings for every book though, so we
need to leave space for all of them. That means if we have N
books, we end up with N time five visible nodes, and for any
given user, most of them are undefined and empty. We deal
with this by excluding any missing ratings from processing
while we're training the RBM.

This is kind of a tricky thing to do, because most frameworks
built for Deep Learning such as TensorFlow assume you
want to process everything in parallel, all the time. Sparse
data isn't something they were really built for originally, but
there are ways to trick it into doing what we want. But,
notice that we've only drawn lines between visible units that
actually have known ratings data in them, and the hidden
layer. So, as we're training our RBM with a given user's
known ratings, we only attempt to learn the weights and
biases used for the books that user actually rated. As, we

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3575

iterate through training on all of the other users, we fill in
the other weights and biases as we go. We are using
tensorflow for deep neural networks with sparse data for the
sake of completeness.

The other twist is how to best train an RBM that contains
huge amounts of sparse data. Gradient descent needs a very
efficient expectation function to optimize on, and for
recommender systems this function is called contrastive
divergence. The basic idea is that its samples probability
distributions during training using something called a Gibbs
sampler. We only train it on the ratings that actually exist,
but re-use the resulting weights and biases across other
users to fill in the missing ratings.

RBM is used for finding collaborative recommendations.

5. EXPERIMENT

We have conducted a set of experiments to examine the
effectiveness of our proposed recommender system in terms
of accuracy of books being recommended to the user. We
have created a Personalized recommendation system-based
on user interest, past history and ratings. Recommendation
engine is running on book crossing database.
Recommendation Engine consists of cosine similarity, KNN,
RBM, SVD and Hybrid. Personalized recommendations are
shown on web application. There are two types of
technologies used in experiment.

Client-side technology: Angular 7, HTML, CSS

Server-side technology: python 3.6

System configuration: 16 GB RAM, Intel core i3 CPU 2 GHZ

Fig. 5 Architecture of recommendation system

Cosine similarity is used for showing similar books which
are searched by user and/or added into cart by user. Apart
from searching it is also being used for finding similar users
based on demographics. KNN, RBM, SVD and hybrid are used
to show rating-based recommendations.

This experiment was firstly performed on a small section of
book crossing dataset consisting of 675 users and 10,000
books of all category. We have used different algorithms and
combination as hybrid to ensure best outcome.

Following are some parameters along with their outcome on
which the system is tested.

 Random RBM KNN SVD Hybrid

RMSE 1.8102 1.4391 1.4346 1.4373 1.4365

MAE 1.4932 1.2269 1.2152 1.2235 1.2233

HR 0.0001 1.0000 1.0001 1.0000 1.0000

CHR 0.0001 2.0000 2.0001 2.0000 2.0000

ARHR 0.0001 2.0000 2.0001 2.0000 2.0000

Coverage 1.0000 1.0000 0.4065 0.0093 0.0000

Diversity 0.4896 1.0000 0.4368 0.9754 1.0000

Novelty 1.3700 6.0000 1.1966 9.3053 7.0010

Table 1: Performance Metrics

Chart 1: Performance of different algorithms

RMSE (Root Mean Squared Error): Root Mean Square Error
(RMSE) puts more emphasis on larger absolute error and the
lower the RMSE is, the better the recommendation accuracy.

Where P is the predicted rating for user is the predicted

rating for user u on item , , is the actual rating and N is

the total number of ratings on the item set. RMSE is
comparatively lowest in RBM hence accuracy is more.

MAE (Mean Absolute Error): MAE is the most popular and
commonly used; it is a measure of deviation of
recommendation from user’s specific value. It is computed as
follows

Where P is the predicted rating for user is the predicted

rating for user u on item , , is the actual rating and N is

the total number of ratings on the item set. The lower the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3576

MAE, the more accurately the recommendation engine
predicts user ratings. MAE is comparatively lowest in
Hybrid; hence accuracy is more.

HR (Hit Rate): Hit rate means how often we are able to
recommend a left-out rating. The whole hit rate of the
system is the count of hits, divided by the test user count. It
measures how often we are able to recommend a removed
rating, higher is better.

A very low hit rate simply means we do not have enough
data to work with. As we have less data hit rate is equal for
all algorithms.

CHR (Cumulative Hit Rate): Cumulative hit rate, confined to
ratings above a certain threshold. Because we care about
higher ratings, we can ignore the predicted ratings lower
than 4, to compute hit rate for the ratings > = 4. Higher is
better. As we have less data CHR is equal for all algorithms.

ARHR: Average Reciprocal Hit Rank - Hit rate that takes the
ranking into account. Commonly used metric for ranking
evaluation of Top-N recommender systems, that only takes
into account where the first relevant result occurs. We get
more credit for recommending an item in which user rated
on the top of the rank than on the bottom of the rank. Higher
is better. As we have less data ARHR is equal for all
algorithms.

Coverage: Ratio of users for whom recommendations above
a certain threshold exist. We try to find good
recommendations in our top n list by setting a threshold
which allows only good recommendations for each user in
the top-n list and summing them and dividing by the number
of users. Higher is better. As we have a smaller number of
users, coverage is comparatively good in RBM.

Diversity: 1-S, where S is the average similarity score
between every possible pair of recommendations for a given
user. This is calculated by first finding similarity for a set of
users and then subtracting it from 1 to find the diversity. We
calculate similarity for all the combinations of users and sum
them and then divide by the number of combinations. To
calculate similarity, we need the inner ids of the users to find
the similarity between the users, as the surprise library in
python uses them for indexing similarity scores. Higher
means more diverse. Hybrid system gives more diverse
results.

Novelty: Novelty determines how unknown recommended
items are to a user. It is average popularity rank of
recommended items. Higher means more novel. Hybrid
system gives more novel results.

6. CONCLUSION

Recommendation system is widely used from the last
decades. Book recommendation system is recommending
books to the buyers that suits according to their interest and

stores recommendations in the buyer’s web profile. This
system will ensure highly personalized and accurate
recommendations eliminating the drawbacks of rating-based
recommendation systems while reducing the cold start
problem alongside. Apart from just the traditional
Collaborative and Content based filtering techniques, many
modern techniques are being exploited in this application.
The hybrid algorithm we are using is a combination of
content based and collaborative approaches. Demographic
filtering which helps give more personalized
recommendations is also used. The system is using multiple
algorithms as explained in the paper to enhance the quality
and accuracy of personalized results and recommendations.

REFERENCES

[1] Robin Burke, ”Hybrid Web Recommender Systems”,

January 2007.

[2] Salil Kanetkar, Akshay Nayak, Sridhar Swamy, Gresha
Bhatia, “Web-based Personalized Hybrid Book
Recommendation System” IEEE International
Conference on Advances in Engineering & Technology
Research (ICAETR-2014), August 01-02, 2014, Dr.
Virendra Swarup Group of Institutions, Unnao, India.

[3] Jihane KARIM, ”Hybrid System for Personalized
Recommendations” 978-1-4799-2393-9/14 ©2014
IEEE

[4] F.O.Isinkaye, Y.O.Folajimi, B.A.Ojokoh
“Recommendation systems: Principles, methods and
evaluation” Eg yptian Informatics Journal Volume 16,
Issue 3, November 2015, Pages 261-273

[5] Ziegler CN, McNee SM, Konstan JA, Lausen G. Improving
recommendation lists through topic diversification.
In:Proceedings of the 14th international conference on
World WideWeb; 2005. p. 22–32.

[6] Min SH, Han I. Detection of the customer time-variant
patternfor improving recommender system. Exp Syst
Applicat2010;37(4):2911–22.

[7] Celma O, Serra X. FOAFing the Music: bridging the
semantic gapin music recommendation. Web Semant:
Sci Serv Agents WorldWide Web 2008; 16(4):250–6.

[8] Manisha Chandaka, Sheetal Giraseb, Debajyoti

Mukhopadhyay “Introducing Hybrid Technique for
Optimization of Book Recommender System”

[9] Ms. Praveena Mathew, Ms. Bincy Kuriakose, Mr.Vinayak

Hegde “Book Recommendation System through Content
Based and Collaborative Filtering Method”

[10] Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi
Aritsugi, “Semantic Cosine Similarity”

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 07 | July 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3577

[11] Osman Nurg Osmanli,”A singular value decomposition
approach for recommendation system”, Thesis

[12] Hua-Ming Wang, Ge Yu,” Personalized recommendation
system K- neighbor algorithm optimization”
International Conference on Information Technologies
in Education and Learning (ICITEL 2015)

[13] Ruslan Salakhutdinov,Andriy Mnih, Geoffrey Hinton,

“Restricted Boltzmann Machines for Collaborative
Filtering” University of Toronto, 6 King’s College Rd.,
Toronto, Ontario M5S 3G4, Canada

