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Abstract - In this age of information, it is very difficult to 
find the right information from the enormous amount of data 
present in the online platforms. Recommendation system sorts 
through massive amounts of data to identify interest of users 
and makes the information search easier. In this paper, we 
have presented a model for a web-based personalized hybrid 
book recommendations system which exploits varied aspects 
of giving recommendations apart from the regular 
collaborative and content-based filtering approaches. 
Temporal aspects for the recommendations are incorporated. 
Also, for users of different age, country and their interests, 
personalized recommendation can be made on these 
demographic parameters. We are taking some information 
from user while signup which help to get more appropriate 
recommendations based on individual user interest and thus 
an attempt to overcome cold start problem. Three types of 
scenarios are covered in this paper viz. if user is new then 
recommendations are made depending upon user interests, 
second is recommendations based on past purchase history 
and the last is recommendation by using different algorithms 
namely K Nearest Neighbor (KNN), Singular Value 
Decomposition (SVD), Restricted Boltzmann Machines (RBM) 
and cosine similarity. It reduces dependency of rating-based 
system. 

Key Words:  Hybrid Recommendation system, Collaborative 
filtering, Content filtering, and Demographic filtering 

1. INTRODUCTION  

Recommendation system (RS) is a subclass of information 
filtering system that seeks to predict the "rating" or 
"preference" a user would give to an item. Recommender 
systems typically produce recommendations in one of two 
ways – through collaborative filtering or through content-
based filtering (also known as personality-based approach). 
Collaborative filtering approaches build a model from a 
user's past behaviour (items previously purchased or 
selected and/or numerical ratings given to those items) as 
well as similar decisions made by other users. This model is 
then used to predict items (or ratings for items) that the user 
may have an interest in. Content-based filtering approaches 
utilize a series of discrete characteristics of an item in order 
to recommend additional items with similar properties. 
These approaches are often combined as Hybrid 
Recommender System [1]. Different techniques have been 
developed over time to give accurate recommendations. As 
E- commerce is getting bigger, people are moving from retail 

shops to online store. On E-commerce, availability of 
numerous options makes the finding of most suitable item a 
hefty task, so RS makes this task easy by finding behaviour 
pattern from past history or user input. There are two major 
issues in existing recommendation system one is cold start 
and another one is accuracy [2].  

In proposed model, we tried to overcome cold start 
problem by taking some inputs from user while creating 
account and accuracy by implementing different algorithms. 
If recommendations given are varying too much from the 
user’s likes and tastes, he/she may simply stop using the 
system. So, in order to build trust, recommendations need to 
be personalized. Demographic recommendations are a good 
way of giving personalized predictions [3].  Filtering the 
results using collaborative approach leads to a better 
recommendation output. Recommendations suited to the 
user’s age, region and Interests can be made more 
personalized. The cold start problem is a major issue in 
many recommendation systems. In such a scenario, the 
system is unable to give appropriate predictions until it has a 
better idea about the user’s preferences. Demographic 
recommendations could help alleviate this problem to some 
extent, if not entirely in case of a newly added user.  A user 
always would like to stay abreast of their liked category or 
liked author’s books. The traditional filtering techniques may 
not always be able to keep a user updated about the recent 
trends in books.  

There are three types of user, firstly, the new users. To 
deal with the cold start issue, we are beginning by asking 
users about categories (e.g. Suspense and thriller, romance 
etc.) and writers they are interested in. Based on these 
criterions, recommendations are being made. Along with 
this, a parallel approach is followed where we find users 
with similar interests and a bigger and more accurate set of 
recommendation is returned based on the rating profile. 

The second types of user are the ones who don’t prefer to 
rate. This case may lead to a failure of rating-based system. 
To tackle this issue, we are making recommendations based 
on their past orders. The third set of users consists of those 
who give feedback (Ratings). We are using 4 algorithms 
namely SVD, KNN, RBM, Hybrid for more options for user. 
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Figure 1: Types of users 

To summarize the underlying approach, we are using 
hybrid model to provide personalized recommendations to 
individual user. This system is hybrid of content based as 
well as collaborative approach of recommender system. We 
are showing more accurate and more options that will 
increase the user experience and will raise the possibility of 
buying books. 

2. RELATED WORK 

Recommendation systems with strong algorithms are at the 
core of today’s most successful online companies such as 
Amazon, Google, Netflix and Spotify. By endlessly 
recommending new products that suit their customer’s 
tastes, these companies provide a personalized, attentive 
experience across their brand platforms, effectively securing 
customer loyalty. 

Amazon, a popular e-commerce platform initially started its 
business with e-book store. It uses topic diversification 
algorithms to improve its recommendation [4, 5]. The 
system uses collaborative filtering method to overcome 
scalability issue by generating a table of similar items offline 
through the use of item-to-item matrix. The system then 
recommends other products which are similar online 
according to the users’ purchase history. On the other hand, 
content-based techniques match content resources to user 
characteristics. Content-based filtering techniques normally 
base their predictions on user’s information, and they ignore 
contributions from other users as with the case of 
collaborative techniques [6, 7]. Amazon fails to handle cold 
start problem. 

NETFLIX provides a subscription service model that offers 
personalized recommendations to help us find shows and 
movies of our interest. To do this, they have created a 
proprietary, complex recommendations system.  Netflix offer 
thousands of movies and shows. With over 7,000 movies and 
shows in the Netflix catalogue, it is nearly impossible for 
users to find movies they’ll like on their own. Netflix uses 
the personalized method where movies are suggested to the 
users who are most likely to enjoy them based on a metric 
like major actors or genre. Machine learning is necessary for 
this method because it uses user data to make informed 

suggestions. This way Netflix methodology accounts for the 
diversity in its audiences and its very large catalogue. 

2.1 CHALLENGES IN EXISTING SYSTEM 

Most recommendation problems rely on the rating structure. 
In its most common formulations, the recommendation 
problem is reduced to the problem of estimating ratings for 
the items that have not been seen by a user. This estimation 
is usually based on the ratings given by this user to other 
items. The engine in such software gives advice about what 
we might enjoy listening to or watching or reading next, 
based on user’s history of liking content.  
 
Problems in recommender systems,  
 
The identified real-life problems which needs to be 
addressed in recommendation systems through the 
literature survey:  
A. Cold Start Problem: Cold-start problem presents a 
collective issue of new item and new user to recommender 
systems. A new item can’t be recommended initially when it 
is introduced to a content-based system with no ratings. For 
instance, MovieLens (movielens.org) cannot recommend 
new movies until these have got some initial ratings. The 
new-user problem is bit hard to handle because it is not 
possible to find similar users or to create a CB profile 
without previous preferences of a user. 

B. Scalability of The Approach: One vital and foremost 
issue of Recommender systems today is the scalability of 
algorithms with large real-world datasets. It is becoming 
challenging to deal with huge and dynamic data sets 
produced by item-users interactions such as preferences, 
ratings and reviews.  

C. Sparse, Missing, Erroneous and Malicious Data: 
Generally, majority of the users do not rate most of the items 
and consequently the ratings matrix becomes very sparse. 
Due to this, the data sparsity problem arises that declines the 
chances of finding a set of users with similar ratings. This is 
the most eminent drawback of the CF technique. This 
concern can be alleviated by using some additional domain 
information. 

D. Big-data: Generally, a user can opt for an item of his 
interest from a recommendation list if the list reflects some 
diversity in the recommended items to some extent. 
Seamless recommendations for a restricted type of product 
have no value until or unless it is desired or explicitly 
described by the user with a narrow clique of preferences. In 
the initial stage, when the RS is used as a knowledge 
discovery tool, the users may wish to explore new and 
different options available. 
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3. HYBRID BOOK RECOMMENDATION SYSTEM 

Our proposed system is Hybrid Recommendation system 
designed to overcome cold start issue and reduces 
dependency of rating-based system. It starts with general 
page where different books are shown to user based on their 
categories. User can search any books by its title or author 
name. While signing up, user is been asked to fill certain 
information like their category preferences, liked authors, 
location and age for finding similar users. Based on this 
information, books are being recommended which in turn 
help to overcome cold start problem. After signup, user can 
see their liked category and liked author’s books in different 
titled catalogues. 

If existing user has bought book(s) but not rated them yet, 
they will be shown books based on their purchase history as 
well as the information they’ve provided while signing up 
(categories and authors). Along with it, user will see random 
recommendations and predictions using different algorithms 
like SVD, KNN, RBM and Hybrid recommendations based on 
the books they’ve rated recently.  

Furthermore, the system will track purchase history of users 
and that will reflect latest recommendations for book 
recommender system. So, with time user will be shown 
recommendation based in their most recent purchase 
history. User can see the details of book such as author, 
publication, rating, cover page, publication year. These books 
can be added to cart. The cart will show the books added to it 
and also other book recommendations in the “you may also 
like section”. This section is being populated using Cosine 
similarity algorithm. We are using same algorithm (Cosine 
similarity) for providing with the search results. 

Once a book is ordered, User can rate book based on their 
experiences in “My Orders” section of the application. Thus, 
the proposed system will ensure personalized 
recommendations eliminating drawbacks of rating-based 
approach. 

Steps involved in the algorithm [8], 

 

Figure 2: Steps involved for recommendations 

Step 1: Scan the Books Dataset 

In this step, application is scanning the entire storage server 
and simultaneously performing the data cleaning, which 

include removal of irrelevant data and keeping the relevant 
data for recommendations. This process reduces the data 
sparsity by eliminating missing, erroneous and malicious 
data from the working data set. 

Step 2: Data Pre-processing 

This step also works of the data correction part to ensure 
more accurate recommendations. According to our 
application, it includes the extraction of data that are needed 
for recommendations, which means extraction of only books 
having categories and users having demographic data.  

Step 3: Filtering by book name or author name 

This step revolves around proving users with the best and 
relevant search results. Factors like authors and book name 
can be searched and the result will return books using cosine 
similarity algorithm. 

Step 4: Perform Content based Filtering 

In this step we need to perform content-based filtering of 
books according to user preferences. For example, User1 
clicked on book B1, assume that we have some related books 
B2, B3 and B4 in the dataset. Assume B2 is of different type, 
but B3 and B4 is of same type of book B1. Now we check the 
Meta data (category, author etc.) of the books B3 and B4, if it 
matches with book B1, then the system will recommend 
books B3 and B4 for the user. If user clicks on book B1, then 
the user will get books B3 and B4 as the recommended. 
Cosine similarity is used for finding similarity between two 
items while searching and showing similar items in cart. 
KNN is also used for finding similar users whose rating 
matched with User1’s book rating history. 

Step 5: Perform Collaborative Filtering 

Here we consider the quality of the book content. In our 
example, recommending the books B3 and B4. This will 
perform based on the registered user’s interest and rating. 
SVD is used for finding user’s having similar book interest 
based on their ratings.  RBM is used for giving accurate 
result even for books which does not been yet rated. 

Step 6: Perform Interest Based Filtering 

Here we consider interest of users, if user likes one specific 
genre or one author or any subject for example user likes 
some subjective books like on data science, so we 
recommend books according to their interest or author likes. 
It helps to overcome cold start problem. 

Step 7: Final Recommendations 

In the final recommendation, based on type of user, 
recommendations will differ like if user is new some 
interest-based result will be shown to user, if user don’t like 
to rate then interest and similar books of past ordered books 
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will be shown to user else rating-based hybrid 
recommendations will be shown to user. [9] 

4. ALGORITHMS 
 

A. Cosine Similarity [10] 

Cosine similarity (CS) measures the similarity between two 
vectors by calculating the cosine of the angle between them. 
It is widely used algorithm for finding similarity between 
two books or two users. The user Bob considers a three-star 
book, maybe different from what Alice considers a three-star 
book. Maybe Bob is just hesitant to rate things five stars 
unless they are truly amazing, while Alice tries to be nice and 
rates things five stars unless she really didn't like them. This 
is a real effect we will see, not just across individuals, but 
across different cultures too. So, adjusted cosine attempts to 
normalize these differences. We measure similarities based 
on the difference between a user’s rating for an item, and 
their average rating for all items, instead of measuring 
similarities between people based on their raw rating values.  

 

So, if you look at this equation, if you replace X with X sub i 
minus X bar, and replaced Y with Y sub i and Y bar. X bar 
means the average of all user X's ratings, and Y bar means 
the average of all user Y's ratings. So, all that's different here 
from conventional cosine similarity is that we are looking at 
the variance from the mean of each users’ ratings, and not 
just the raw rating itself. We can only get a meaningful 
average or a baseline of an individual’s ratings if they have 
rated a lot of stuff for you to take the average in the first 
place. Imagine a book that most people love, like Alchemist, 
people who hate Alchemist are going to get a very strong 
similarity score from Pearson's similarity because they share 
opinions that are not mainstream. 

Note that the only difference between this and adjusted 
cosine is whether we're talking about users or items. The 
surprise library we are using in this project refers to 
adjusted cosine as user-based person's similarity, because 
it's basically the same thing. Another way to measure 
similarity is the mean squared difference similarity metric. 
All of the items that two users have in common in their 
ratings, and compute the mean of the square differences 
between how each user rated each item. It's easy to compute 
since it doesn't involve angles and multidimensional space. 
You're just directly comparing how two people rated the 
same set of things. It's very much the same idea of how we 
measure mean absolute error, when measuring the accuracy 
of a recommender’s system as a whole.  

 

 

So, if we break down that top equation, it says that the mean 
squared difference, or MSD for short, between two users X 
and Y is given by the following. On the top of this fraction, we 
are summing up for every item i that users X and Y have both 
rated. The difference between the ratings from each user 
squared. We then divide by the number of items each user 
had in common that we summed across to get the average or 
mean. Now, the problem is that we have computed a metric 
of how different users X and Y are, and we want to measure 
how similar they are not how different they are. So, to do 
that, we just take the inverse of MSD dividing it by one, and 
we have to stick that plus one on the bottom in order to 
avoid dividing by zero in the case where these two users 
have identical rating behavior. You can, by the way, flip 
everything we just said to apply to items instead of users, so 
X and Y could refer to two different things instead of two 
different people, and then we'd be looking at the differences 
in ratings from the people these items have in common, 
instead of the items people have in common.  

In our case, we have used cosine similarity in following 
scenarios: 

1. Finding similar books of searched item. It is based 
on author and category. 

2. Finding similar books of which have added in cart. 
3. In KNN algorithm 
4. Finding similar users by using demographic 

information. 
After finding similar users their past orders are 
being recommended to new user which reduces 
dependency on rating-based system. 

5. Finding similar books based on Authors. 
 

B. SVD (Singular Value Decomposition) [11] 

Singular value decomposition (SVD) can be seen as a method 
for data reduction.  

These are the basic ideas behind SVD: taking a high 
dimensional, highly variable set of data points and reducing 
it to a lower dimensional space that exposes the 
substructure of the original data more clearly and orders it 
from most variation to the least.  Singular Value 
Decomposition is a matrix factorization technique which 
takes a rectangular matrix defined as A where A is an m x n 
matrix in which the m rows represents the users, and the n 
columns represents the items. The SVD theorem states,  

Amxn = Umxm Smxn VTnxn        ….              [1] 
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Where, UTU = Imxm 

 VTV = Inxn 

Where the columns of U are the left singular vectors; S (the 
same dimensions as A) has singular values and is diagonal; 
and VT has rows that are the right singular vectors. 
Calculating the SVD consists of finding the Eigenvalues and 
Eigenvectors of A and A. The Eigenvectors of A make 

up the columns of V, the Eigenvectors of A   make up the 

columns of U. Also, the singular values in S are square roots 
of Eigenvalues from A  or A. The singular values are the 

diagonal entries of the S matrix and are arranged in 
descending order. The singular values are always real 
numbers. If the matrix A is a real matrix, then U and V are 
also real.  

Matrix S is a diagonal matrix having only r nonzero entries, 
which makes the effective dimensions of U, S and V matrices 
m × r, r ×r, and r × n, respectively. The diagonal entries 
( ,, . . . , ) of S have the property that si > 0 and  ≥  ≥ . 

. . ≥ . 

In our proposed system, SVD is used for finding similar user 
based on their past ratings.  

Recommendation Request (User = x, Item = y, Rating =?)  

1. Find users who rated Item = y from the original matrix A.  

2. Find most similar user to User = x among the users who 
rated Item = y using the reduced matrix .  

3. Get the rating of the most similar user to Item = y from the 
original matrix A and give it for the User = x, Item = y.  

For the second part of the algorithm, if the User = x is an 
already existing user, it exists in the reduced matrix  as a 

row. If the User = x is a new user, before starting similarity 
checks, the user has to be projected from n dimensions to k 
dimensions. Let the ratings of the new user vector 
is . The projection P to the reduced matrix  is 

made by the formula [1]: 

 

In the experimental part of this study, the Euclidian distance 
algorithm explained above is used for the similarity check of 
the users. The bottleneck in this technique is the search for 
similar users among a large user population. SVD is the 
powerful algorithm in recommendation system. It gives 
more accurate result. SVD is used for finding collaborative 
recommendations. RBM Works good with large dataset so to 
overcome the data sparsity issue in RBM we have used both 
RBM and SVD as collaborative algorithm for improving 
accuracy and giving more options to users. 

 

C. KNN (k-Nearest Neighbours) [12] 

To implement an item based collaborative filtering, KNN is a 
perfect go-to model and also a very good baseline for 
recommender system development is a non-parametric, 
lazy learning method. 

KNN does not make any assumptions on the underlying data 
distribution but it relies on item feature similarity. When 
KNN makes inference about a book, KNN will calculate the 
“distance” between the target book and every other book in 
its database, then it ranks its distances and returns the top K 
nearest neighbor books as the most similar book 
recommendations. 

 

Figure 3: KNN Approach 

# Build up similarity scores between this item and 
everything the user rated 

neighbors = [] 

for rating in self.trainset.ur[u]: 

categorySimilarity = self.similarities[i,rating[0]] 

neighbors.append( (categorySimilarity, rating[1]) ) 

# Extract the top-K most-similar ratings 

k_neighbors = heapq.nlargest(self.k, neighbors, key=lambda 
t: t[0]) 

# Compute average sim score of K neighbors weighted by 
user ratings 

simTotal = weightedSum = 0 

for (simScore, rating) in k_neighbors: 

if (simScore > 0): 

simTotal += simScore 

weightedSum += simScore * rating 

if (simTotal == 0): 

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html


          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 07 | July 2019                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 3574 
 

raise PredictionImpossible('No neighbors') 

predictedRating = weightedSum / simTotal 

return predictedRating 

KNN is used in proposed system for finding similar books 
based on their category and ratings. KNN is used for finding 
content-based recommendations. 

D. RBM (Restricted Boltzmann Machines) [13] 

Most of the existing approaches to collaborative filtering 
cannot handle very large data sets. The oldest algorithm of 
neural networks in recommender systems is the Restricted 
Boltzmann Machine or RBM for short. RBM's are one of the 
simplest neural networks consist of only two layers, a visible 
layer and a hidden layer. 

We train it by feeding our training data into the visible layer 
in a forward pass, and training weights and biases between 
them during back propagation. An activation function such 
as ReLU is used to produce the output from each hidden 
neuron.  

They are restricted because neurons in the same layer can't 
communicate with each other directly. There are only 
connections between the two different layers. RBM's get 
trained by doing a forward pass, which we just described, 
and then a backward pass, where the inputs get 
reconstructed. We do this iteratively over many epochs, just 
like when we train a deep neural network, until it converges 
on a set of weights and biases that minimizes the error. 

 

Figure 4: RBM work flow 

Let's take a closer look at that backward pass. During the 
backward pass, we are trying to reconstruct the original 
input by feeding back the output of the forward pass back 
through the hidden layer, and seeing what values we end up 
with out of the visible layer. Since those weights are initially 
random, there can be a big difference between the inputs we 
started with and the ones we reconstruct. In the process, we 
end up with another set of bias terms, this time on the visible 
layer. So, we share weights between both the forward and 
backward passes, but we have two sets of biases. The hidden 
bias that's used in the forward pass, and the visible bias used 
in this backward pass. We can then measure the error we 

end up with and use that information to adjust the weights a 
little bit during the next iteration to try and minimize that 
error. 

Adapting an RBM for book recommendations given five-star 
ratings data requires a few twists to the generic RBM 
architecture. 

The general idea is to use each individual user in our training 
data as a set of inputs into our RBM to help train it. So, we 
process each user as part of a batch during training, looking 
at their ratings for every book they rated. So, our visible 
nodes represent ratings for a given user on every book, and 
we're trying to learn weights and biases to let us reconstruct 
ratings for user/book pairs we don't know yet. 

First of all, our visible units aren't just simple nodes taking in 
a single input. Ratings are really categorical data, so we 
actually want to treat each individual rating as five nodes, 
one for each possible rating value. So, let's say the first rating 
we have in our training data is a five-star rating which will 
be represented as four nodes with a value of zero and one 
with a value of one, as represented here. Then we have a 
couple of ratings that are missing for user/item pairs that 
are unknown and need to be predicted. Then we have a 
three-star rating, represented like this with a one in the third 
slot. When we're done training the RBM, we'll have a set of 
weights and biases that should allow us to reconstruct 
ratings for any user. So, it is used to predict ratings for a new 
user, we just run it once again using the known ratings of the 
user we're interested in. We run those through in the 
forward pass, and then back again in the backward pass, to 
end up with reconstructed rating values for that user. We 
can then run softmax on each group of five rating values to 
translate the output back into a five-star rating for every 
item. But again, the big problem is that the data we have is 
sparse. 

If we are training an RBM on every possible combination of 
users and books, most of that data will be missing, because 
most books have not been rated at all by a specific user. We 
want to predict user ratings for every book though, so we 
need to leave space for all of them. That means if we have N 
books, we end up with N time five visible nodes, and for any 
given user, most of them are undefined and empty. We deal 
with this by excluding any missing ratings from processing 
while we're training the RBM. 

This is kind of a tricky thing to do, because most frameworks 
built for Deep Learning such as TensorFlow assume you 
want to process everything in parallel, all the time. Sparse 
data isn't something they were really built for originally, but 
there are ways to trick it into doing what we want. But, 
notice that we've only drawn lines between visible units that 
actually have known ratings data in them, and the hidden 
layer. So, as we're training our RBM with a given user's 
known ratings, we only attempt to learn the weights and 
biases used for the books that user actually rated. As, we 
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iterate through training on all of the other users, we fill in 
the other weights and biases as we go. We are using 
tensorflow for deep neural networks with sparse data for the 
sake of completeness.  

The other twist is how to best train an RBM that contains 
huge amounts of sparse data.  Gradient descent needs a very 
efficient expectation function to optimize on, and for 
recommender systems this function is called contrastive 
divergence. The basic idea is that its samples probability 
distributions during training using something called a Gibbs 
sampler. We only train it on the ratings that actually exist, 
but re-use the resulting weights and biases across other 
users to fill in the missing ratings. 

RBM is used for finding collaborative recommendations. 

5. EXPERIMENT 

We have conducted a set of experiments to examine the 
effectiveness of our proposed recommender system in terms 
of accuracy of books being recommended to the user. We 
have created a Personalized recommendation system-based 
on user interest, past history and ratings. Recommendation 
engine is running on book crossing database. 
Recommendation Engine consists of cosine similarity, KNN, 
RBM, SVD and Hybrid. Personalized recommendations are 
shown on web application. There are two types of 
technologies used in experiment. 

Client-side technology: Angular 7, HTML, CSS 

Server-side technology: python 3.6  

System configuration: 16 GB RAM, Intel core i3 CPU 2 GHZ 

 

Fig. 5 Architecture of recommendation system 

Cosine similarity is used for showing similar books which 
are searched by user and/or added into cart by user. Apart 
from searching it is also being used for finding similar users 
based on demographics. KNN, RBM, SVD and hybrid are used 
to show rating-based recommendations. 

This experiment was firstly performed on a small section of 
book crossing dataset consisting of 675 users and 10,000 
books of all category. We have used different algorithms and 
combination as hybrid to ensure best outcome. 

Following are some parameters along with their outcome on 
which the system is tested.  

  Random RBM KNN SVD Hybrid 

RMSE 1.8102 1.4391 1.4346  1.4373 1.4365 

MAE 1.4932 1.2269 1.2152 1.2235 1.2233 

HR 0.0001 1.0000 1.0001 1.0000 1.0000 

CHR 0.0001 2.0000 2.0001 2.0000 2.0000 

ARHR 0.0001 2.0000 2.0001 2.0000 2.0000 

Coverage 1.0000 1.0000 0.4065 0.0093 0.0000 

Diversity 0.4896 1.0000 0.4368 0.9754 1.0000 

Novelty 1.3700 6.0000 1.1966 9.3053 7.0010 

Table 1: Performance Metrics 

 

Chart 1: Performance of different algorithms 

RMSE (Root Mean Squared Error): Root Mean Square Error 
(RMSE) puts more emphasis on larger absolute error and the 
lower the RMSE is, the better the recommendation accuracy. 

 

Where P is the predicted rating for user    is the predicted 

rating for user u on item , ,  is the actual rating and N is 

the total number of ratings on the item set. RMSE is 
comparatively lowest in RBM hence accuracy is more. 

MAE (Mean Absolute Error): MAE is the most popular and 
commonly used; it is a measure of deviation of 
recommendation from user’s specific value. It is computed as 
follows 

 

Where P is the predicted rating for user    is the predicted 

rating for user u on item , ,  is the actual rating and N is 

the total number of ratings on the item set. The lower the 
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MAE, the more accurately the recommendation engine 
predicts user ratings. MAE is comparatively lowest in 
Hybrid; hence accuracy is more. 

HR (Hit Rate): Hit rate means how often we are able to 
recommend a left-out rating. The whole hit rate of the 
system is the count of hits, divided by the test user count. It 
measures how often we are able to recommend a removed 
rating, higher is better. 

A very low hit rate simply means we do not have enough 
data to work with. As we have less data hit rate is equal for 
all algorithms. 

CHR (Cumulative Hit Rate): Cumulative hit rate, confined to 
ratings above a certain threshold. Because we care about 
higher ratings, we can ignore the predicted ratings lower 
than 4, to compute hit rate for the ratings > = 4. Higher is 
better. As we have less data CHR is equal for all algorithms. 

ARHR: Average Reciprocal Hit Rank - Hit rate that takes the 
ranking into account. Commonly used metric for ranking 
evaluation of Top-N recommender systems, that only takes 
into account where the first relevant result occurs. We get 
more credit for recommending an item in which user rated 
on the top of the rank than on the bottom of the rank. Higher 
is better. As we have less data ARHR is equal for all 
algorithms. 

Coverage: Ratio of users for whom recommendations above 
a certain threshold exist. We try to find good 
recommendations in our top n list by setting a threshold 
which allows only good recommendations for each user in 
the top-n list and summing them and dividing by the number 
of users. Higher is better. As we have a smaller number of 
users, coverage is comparatively good in RBM. 

Diversity: 1-S, where S is the average similarity score 
between every possible pair of recommendations for a given 
user. This is calculated by first finding similarity for a set of 
users and then subtracting it from 1 to find the diversity. We 
calculate similarity for all the combinations of users and sum 
them and then divide by the number of combinations. To 
calculate similarity, we need the inner ids of the users to find 
the similarity between the users, as the surprise library in 
python uses them for indexing similarity scores. Higher 
means more diverse. Hybrid system gives more diverse 
results. 

Novelty:   Novelty determines how unknown recommended 
items are to a user. It is average popularity rank of 
recommended items. Higher means more novel. Hybrid 
system gives more novel results. 

6. CONCLUSION 

Recommendation system is widely used from the last 
decades. Book recommendation system is recommending 
books to the buyers that suits according to their interest and 

stores recommendations in the buyer’s web profile. This 
system will ensure highly personalized and accurate 
recommendations eliminating the drawbacks of rating-based 
recommendation systems while reducing the cold start 
problem alongside. Apart from just the traditional 
Collaborative and Content based filtering techniques, many 
modern techniques are being exploited in this application. 
The hybrid algorithm we are using is a combination of 
content based and collaborative approaches. Demographic 
filtering which helps give more personalized 
recommendations is also used. The system is using multiple 
algorithms as explained in the paper to enhance the quality 
and accuracy of personalized results and recommendations. 
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