
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3417

Design and Characterization of MAEC IP Core

Shinnu M.S1, Sujeesh K.V2, R. Nandakumar3

1M.Tech Student, Department of ECE, GEC Idukki, Kerala, India
2Assistant Professor, Department of ECE, GEC Idukki, Kerala, India

3Scientist /Engineer ‘D’ NIELIT Calicut, Kerala, India
--***---
Abstract - In many applications such as cellular telephony

or wireless local area networking, Message Authentication

Codes (MACs) that provided error correction capability (ECC)

would be ideal. As conventional MACs are vulnerable to any

alteration in the message, causing straightaway rejection of

messages and retransmission is requested. This retransmission

leads to wastage of energy and increase latency. In this paper,

introduced a MAC with integrated error correction capability

called MAEC. A simple scheme for generation and decoding of

single-byte error-correcting codes based on Cellular Automata

(CA) is presented and it is implemented on Xilinx Spartan-6

LX16-FPGA (XC6SLX16-CSG324C).

Key Words: MAC, Byte Error Correcting Code, Cellular
Automata, Mersenne Prime, VLSI

1. INTRODUCTION

 Message Authentication Code (MAC), also referred to as a
keyed hash function, is a cryptographic primitive that
verifies the data integrity and the authenticity of its sender.
However, as conventional MACs are susceptible to any
alteration in the message, even simple channel noises are
detrimental to its functionality, causing straightaway
rejection of authentic messages. Though this is preferable in
some situations, many of the less information sensitive
applications, such as image and other multimedia
communications, can allow few errors occurred during
transmission. The message should be rejected only if large
number of errors are present, indicating a probable attempt
of forgery. But, classical MAC algorithms do not convey any
information about the number or location of the errors. This
concludes the need for a MAC construction technique with
integrated error correction property that offers some
resilience against random channel noises, especially in
environments where latency is a concern or resources are
limited [1].

 Various coding techniques have been used for error
detection and correction. Error correcting codes have been
used to enhance reliability of the system and data integrity.
The key idea is to add checkbytes or redundancy to the
information bytes at the encoder so that decoder can
retrieve the information bytes from the received block
possibly corrupted by the channel noise. Reed-Solomon (RS)
codes are widely used codes for error correction, because

these codes can detect both random errors as well as burst
errors. RS code has found many applications in storage
devices (CD, DVD), wireless communications, high speed
modems and satellite communications. The complexity of RS
encoder and RS decoder increases with the error correcting
capability of the code. Hence many researchers have put
their effort to minimize the complexity of RS
encoder/decoder for communication applications. But VLSI
system designer always prefers to have simple, regular and
cascadable structure with local interconnection for reliable
high speed operations of the circuit. It has been found that
these factors are supported by local neighborhood Cellular
Automata (CA). Here, proposed a practical and secure
integrated ECC-MAC design, named MAEC. In this design CA
based byte error correcting code has been proposed. The
required hardware for the proposed design is limited
compared to the existing techniques used for RS code.

1.1 Cellular Automata (CA)

 Cellular Automata (CA) consists of a number of cells
arranged in a regular fashion where the state transitions of
the cell depend on the state of its neighbours and each cell
consists of a D flip-flop and a combinational logic
implementing the next-state function [2]. The next-state
function for a three- neighbourhood one-dimensional (1D)
CA, a cell can be expressed as follows:

qi(t + 1) = f [qi−1(t), qi(t), qi+1(t)]

where qi(t + 1) and qi(t) are the output state of the ith cell at
the (t + 1)th and tth time step respectively and f denotes the
local transition function realized with a combinational logic,
and is known as a “rule” of the CA. For a two state three CA,
there are 23 that is, 8 distinct neighbourhood configurations
and 256 (28) distinct next state functions. However, it turns
out that out of 28 possible boolean functions, only two linear
functions are of prime interest viz., rule 90 and 150. The state
of ith cell at time instant t can be expressed as:

si
t+1 = si-1

t ⊕ di si
t ⊕ si+1

t , di = 0, if di⟶ rule 90

 1, if di⟶ rule 180

 Thus, a CA rule can be completely specified by an n-tuple
R=[d1,d2,......dn] called Rule Vector of CA. The transition
function f : {0,1}n →{0,1}n of an n-cell CA can be represented
by a n×n square matrix T, referred to as the characteristic
matrix of the CA is in the form:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3418

A CA characterized by EXOR or EXNOR dependence is
called an additive CA. If in a CA, the neighbourhood
dependence is EXOR, then it is called non-complemented CA
and the corresponding rule is non-complemented rule. For
EXNOR dependence, CA is called complemented CA and the
such rule is called complemented rule. There exists 16
additive rules which are:

Rules:- 0, 15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195,
204, 240, 255.

 A uniform CA is one in which same rule applies to all cells
while in hybrid CA (Fig.1.1) different rules are applied to
different cells. In this design, rule 90 and rule 150 are used
for cells in CA. Based upon this, designed an efficient error
detecting and correcting code.

Fig. 1.1 A Hybrid Cellular Automata

2. DESIGN OVERVIEW

 This section describes the design of an authentication
scheme with integrated error correction capability, suitable
for practical applications. Proposed ECC is based on CA,
making it highly efficient in hardware. The authentication
algorithm works in two different stages, MAC-GENeration
stage and the MAC-VERification stage.

2.1 Block Diagram

 MAEC IP core comprises 2 modules- Transmitter (Sender)
and Receiver side as shown in Fig. 2.1.

Fig.2.1 Basic I/O Diagram of MAEC IP core

 The input of the transmitter side is Msg and output is Msg
||Tag. The input of the Receiver side is Msg’ ||Tag’ and output
is Corrected Msg. There is a Tx/Rx signal to select
transmitter side or receiver side and an Error Flag signal to
indicate an uncorrectable error. Clock and Reset signals are
common to both transmitter and receiver end.

2.2 MAC Generation

The MAC generation process starts with sharing two keys k1
and k2 between the sender and the receiver before the
initiation of a session. At first, the data goes through a
optional padding phase if necessary and partitioned into
blocks of size w (w is the number of the cells in the cellular
automata, used for error correction). Now, with the help of
key k1, a CA based error correcting code is selected, which
serves the purpose of forward error detection/correction.
Next, the checkbytes computed by the ECC, are mixed with
key k2 in a non-linear fashion by NMix to get the MAC. This
MAC value is then transmitted to the receiver along with the
data as (Message, MAC) pair. The MAC generation process is
depicted in Fig.2.2 and Algorithm 1 shows the detail.

Fig.2.2 MAC generation at the sender

ALGORITHM 1. MAC-GEN(t,m,k1,k2) ⊳|m| ≤ 2w,
⊳ |k1| = w-1, |k2| = w

1.Procedure PREPROCESS (m)
2. m’ ⟵ P(m) ⊳ P is the padding function

 |P(m)| = w × n, n ∈ Z+

3. {m1,m2,…,mn}⟵ B(m’) ⊳ B partitions m’ into n blocks
4. end procedure
5. procedure SELECT RANDOM CA (k1)
6. r1⟵ prefixed linear CA rule ⊳ |r1| = w-1

 ⊳ r1 is any maximal
length 90,150 CA rule

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3419

7. s ⟵ Cr1(k1) ⊳ Apply CA with rule r1 , CA
initialized with seed k1

8. S ⟵ {1, s, 1}
9. while IRREDUCIBLE (S) = FALSE do ⊳ Rabin’s Test
[7]
10. s ⟵ Cr1(s)
11. S ⟵ {1, s, 1}
12. end while
13. r2 ⟵ SYNTHESIZE CA(S)
14. return r2 ⊳ r2 is the randomly selected
CA
15. end procedure
16. procedure COMPUTE MAC(B(m’), r2, t, k2)
17. ci ⟵ CA ENCODER(B(m’), t, i), 0 ≤ i ≤ 2t-1
18. maci ⟵ NMix(ci, k2)
19. return MAC ⟵ {mac0, mac1, …., mac2t-1}
20. end procedure

2.3 MAC Verification

 At the receiving end, verification of the MAC is performed
to detect the presence of errors in the transmitted data, if
any. At first, checkbytes C are recomputed from the received
data. This step is similar to the checkbyte computation
procedure described in the MAC generation process. In
parallel to this, the received MAC is subjected to the inverse
of the non-linear transformation (INMix) to get back the
original checkbytes C’ transmitted by the sender. Next, the
received checkbytes C’ and the computed checkbytes C are
passed to the CA based decoder to find out if the transmitted
message has arrived correctly, or not. If all of the syndromes
are zero, the message is readily accepted as its error-free.
However, if any error creeps in, a decision is to be taken
depending on the number of words in error. If the number of
errors are greater than the error correction capability of the
code, it leads to straightaway rejection of the message.
Otherwise, its corrected and subsequently accepted. The
whole process is depicted in Fig.2.3, and Algorithm 2 shows
the detail.

Fig. 2.3 MAC verification at the Receiver

ALGORITHM 2. MAC-VER(m, MAC, t, k1, k2)

1. PREPROCESS(m)
2. SELECT RANDOM CA (k1)
3. C ⟵ CA ENCODER(B(m’), t, i), 0 ≤ i ≤ 2t-1

 ⊳ C = {c0, c1, … c2t-1}

4. C’ ⟵ INVERSE NMix(maci) ⊳ C’ = {c0
’, c1

’, … c2t-1
’}

5. X ⟵ C ⊕ C’ ⊳ X = {x0, x1, … xt} is the syndrome
6. X’ ⟵ { xi : xi ≠ 0}
7. if X’ = ⏀ then ⊳ All zero syndrome
8. return Accept
9. else
10.if No. of Errors > t then
11.return Reject ⊳ More that t errors, so discard m
12.else
13.Correct and Accept
14.end if
15.end if

2.4 Random Selection of CA with Key k1

 This section describes how to randomly select a CA with
the help of key k1 and still make efficient implementation
of it. It is to be noted that if the checkbytes are also used to
provide authenticity, it will be vulnerable to simple
forgeries if a fixed known ECC is used.

 To come up with an efficient solution, we exploit the work
of Cattel and Muzio [8], where they presented a detailed
method for the synthesis of a one-dimensional linear hybrid
CA from a given irreducible polynomial. But, to be able to use
such CA based ECC, one must first find a maximum length CA
i.e. having a period of (2n −1), n being the number of cells in
the CA. To tackle this issue, exploit another important result
that if a given irreducible polynomial is primitive, then the
synthesized CA will be unique as well as of maximum-length.
This result is interesting, since it maps the problem of
randomly selecting a linear code to the problem of finding a
primitive polynomial over a finite field. However, finding
primitive polynomials in large finite fields is a non-trivial
problem. The verification of primitive polynomials and its
associated complexity is too costly to implement either in
software or in hardware, and hence, not suitable for any
practical application. The fastest known algorithms for
testing primitivity of polynomials of degree n require the
factorization of (2n −1) to be known beforehand, in addition
to find a primitive root over the defining field. To overcome
this, use the result given by the following theorem, which
establishes a one-to-one correspondence between primitive
and irreducible polynomials.

Theorem 1. If 2r − 1 is a prime number (Mersenne Prime)
then all degree-r irreducible polynomials are also primitive
[13].

 The result furnished in Theorem 1 reduces the hard
problem of finding a primitive polynomial to the easier
problem of finding an irreducible polynomial. Once such a w
(2w−1∈P) is fixed, one can choose any irreducible polynomial
of degree w, and synthesize it into a maximum-length CA
using the technique described in [8].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3420

 Due to the arguments stated above, random CA based ECC
selection turns out to be equivalent to selecting an
irreducible polynomial randomly. First, fix GF(2w) as the
extension field in accordance with Theorem 1. A polynomial
f(x) = ∑ bi. xi , 0 ≤ i ≤ w over GF(2w) is represented as the bit
string {bw,bw−1,....b0}. Now, the key k1 serves as the seed to a
CA based PRNG [5] [6]. A (w−1)-bit CA based PRNG
produces random patterns of (w−1)-bits, to which 1 is
concatenated at either end to get a pattern of (w+1)-bits. The
reason behind prepending 1 is quite straightforward as the
polynomials are monic . The appending of 1 at the LSB is also
trivial. Otherwise, x will be a non-trivial factor of the
polynomial, implying it not irreducible. The polynomial
corresponding to the resulting bit-pattern is subjected to
Rabin’s irreducibility test [7]. This whole process continues
until find an irreducible polynomial. Finally, this irreducible
polynomial is synthesized into an equivalent maximum-
length CA according to [8]. This step corresponds to SELECT
RANDOM CA (k1) in Algorithm 1.

2.5 Calculation of Checkbytes

 After a suitable maximum-length CA is selected, it is used
for the calculation of checkbytes which helps to keep track of
transmission errors. But before any computation begins, the
data goes through an optional padding phase to make it a
multiple of word-size (w), where w : 2w −1∈P and partitioned
into blocks of size equal to w. This corresponds to procedure
PREPROCESS(m) of Algorithm 1. After this, the data is
passed to the CA based Encoder for the computation of
checkbytes. The checkbytes and syndromes for a t-word
error correcting code, where each word is n-bit long, can be
generated using an n-cell maximum-length CA in the
following manner:

 N-1

Ci = ⊕ Ti×(N-1-j) [Bj], i = {0, 1,…., 2t};
 J=0 B = [B0, B1, …., BN-1];
 T⟶characteristic matrix of the CA

Si = Ci ⊕ Ci
’ , 0 ≤ i ≤ 2t , Ci is the received checkbyte

 Ci
’ is the checkbyte computed

 Now, elaborate how the choice of t i.e. the error correction
capability of the code, relates to the security of the scheme.
Here, the inherent belief lies on the fact that in wireless
transmission systems, burst errors are more common in
nature, and are confined to a small part of the data. Thus, it
can at most affect a few words of information rather than
spanning over the whole data. However, if some intentional
tampering or some outright forgery happens, the chances
are more that it will be spanned throughout the data. This
causes a large number of errors and the message is
discarded accordingly. This leads to the careful choice of t
by the user.

2.6 Generation of MAC Using ECC

 This section describes how the checkbytes computed in
the previous section also serves the purpose of
authentication. However, due to its linear nature checkbytes
alone are not sufficient enough to provide authentication, as
it’s linear property makes it susceptible to several well
known cryptanalysis techniques like linear/differential
cryptanalysis. However, a non-linear operation can prevent
these type of threats, making it secure. So, for this purpose,
proposed algorithm uses NMix as the nonlinear key mixing
function in the design. The choice of NMix is driven by the
fact that it is a non-linear bent function, i.e. it is as different
as possible from all linear or affine functions and thus,
naturally hard to approximate.

 NMix is applied to the checkbytes C ← {c0,c1,...,ct} with key
k2 as the random pad r to get the MAC← {mac0,mac1,...,mact}
as output. These MAC values along with the message, is then
sent to the receiver as the authenticator. It is to be noted that
applying non-linear mixing may propagate the error to
multiple bits within a single word. However, as CA based
decoder deals with byte-errors rather than bit-errors, NMix
does not affect the error correction property of the code.

2.7 Forward Non-Linear Mixing (NMix)

 NMix function operates on two n-bit variables X=
(xn−1,xn−2,...,x0), K = (kn−1,kn−2,...,k0) and produces a n-bit
output variable Y = (yn−1,yn−2,...,y0) where each output bit is
related to the input bits by the following relationship:

yi = xi ⊕ ki ⊕ ci−1

 i

ci = ⊕ xj kj ⊕ xi−1 xi ⊕ ki−1 ki

 j=0

where 0 ≤ i < n, c−1 = 0, x−1 = 0, k−1 = 0 and ci is the carry term
propagating from ith bit position to (i +1)th bit position. The
end carry cn−1 is neglected. Each output bit yi is balanced for
all 0 ≤i < n.

2.8 Inverse Non-Linear Mixing (INMix)

In inverse mixing, the mixer takes two n-bit variables Y =
(yn−1,yn−2,...,y0), K = (kn−1,kn−2,...,k0) as inputs and produces an
n-bit output X= (xn−1,xn−2,...,x0). Inverse mixing operation can
be defined as:

xi = yi ⊕ ki ⊕ di−1

 i

di = ⊕ xj kj ⊕ xi−1 xi ⊕ ki−1 ki

 j=0

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3421

where 0 ≤ i < n, d−1 = 0, x−1 = 0, k−1 = 0 and di is the carry
term propagating from ith bit position to (i + 1)th bit
position. The end carry dn−1 is neglected.

2.9 Error Correction

 This section presents a scheme for the decoding of the CA
based Single Byte Error Correcting (SbEC) codes. The
primary objective is to retrieve the correct information
bytes. So when an error is detected in the checkbytes only, it
can be ignored. This assumption is justified for many
applications, where the main criteria is the correct retrieval
of information bytes.

Definitions:-

1. Error syndrome:- Let Ci denote the ith check byte for a
given information block (in absence of errors), and Ci

’ is the
ith checkbyte recomputed from the received information
bytes (with possibility of errors present). Then the error
syndrome corresponding to the ith checkbyte is defined as:

Si = Ci ⊕ Ci
’ , 0 ≤ i ≤ 2t

2. Error Byte:- Let BN−1−j and B’
N-1-j, respectively, denote the

jth information byte in absence of errors and the jth
information byte as received. As noted in Fig. 2.4, byte Bj
counted from left is same as byte BN−l−j counted from right.
Then the error byte for Bj is defined as:

Ej = BN−1−j ⊕ B’
N-1-j

 , j ≤ 0

jth byte

B0, B1, B2, …….., Bj, ……..,BN-2, BN-1

 (N-1-j)th byte

Fig. 2.4 Byte position counted from left and right

 Clearly, an all-zero error byte is indicative of the fact
that the corresponding information byte is fault-free, and a
non-zero value indicates the byte positions in error. The
objective of error correction is to deduce the error vector
[E] = [E0,E1,…,EN−1] from the received information bytes
[B’]=[B’

N-1, B’
N-2,…, B’

0] and the received checkbytes [C]=[C’
0,

C’
1,…, C’

2t]. The correct information bytes can then be
obtained as:

[B] = [B’] ⊕ [E]

 On receiving a block of bytes, the checkbytes are
recomputed using the same logic as in encoding. The error
syndromes SO, S1 and S2 are computed by EXOR-ing the
newly generated checkbytes with the received checkbytes.
Assume that the errors have occurred in the ith byte from the
left, i.e., the corresponding error byte is Ei. The checkbytes
generated on the receiving side can be expressed as:

 C’
0 = BN−1 ⊕ BN−2 ⊕.....BO ⊕ Ei

 C’
1 = BN−1 ⊕ T [BN−2] ⊕.....TN−1 [BO] ⊕ Ti [Ei]

 C’
2 = BN−1 ⊕ T2 [BN−2] ⊕.....T2(N−1) [BO] ⊕ T2i [Ei]

Hence, the syndrome generated on the receiving side can be
expressed as
 S0 = C0 ⊕ C’

0 = Ei
 S1 = Ci ⊕ C’

1 = Ti [Ei]
 S2 = Ci ⊕ C’

2 = T2i [Ei]

Decoding Algorithm:-

1. If all the syndrome bytes S0, S1 and S2 are zeros then
there is no error in the received information block

2. If any one of the syndrome bytes Sk (k= 0, 1, 2) is non zero
but the other two are zeros, then only the checkbyte Ck is in
error

3. If more than one of the syndrome bytes are non zero, try
to find an i such that

Ti[S0] = S1 and T2i[S0] = S2

4. If such an i exists, then a single error has occurred in the
(N−1−i)th byte, and the error byte is S0

5. If no such i can be found, it indicates the presence of an
uncorrectable error (double or more)

3. EXPERIMENTAL RESULTS

 The design has been implemented and verified in Xilinx
Spartan-6 LX16 FPGA (XC6SLX16-CSG324C). Xilinx ISE 14.1
is used as an FPGA development environment during the
implementation process (i.e., synthesis, map, place & route).
The Table 3.1 shows the overall resource consumption.

Table 3.1 Resourse Utilization Summary

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3422

 Hardware implementation of MAEC core has been done
using FPGA Spartan 6 (XC6SLX163-CSG324C). After
configuring the device, analyzed the design using Xilinx
ChipScope Pro Analyzer as shown in Fig 3.2. It mainly
consists of 3 cores- VIO, ILA and ICON.

Fig 3.2 ChipScope Pro Analyzer Output

 After implementing the design on a Xilinx Spartan-6 LX16-
FPGA (XC6SLX16CSG324C), the maximum clock frequency is
found out as 143.225 MHz and the total power consumption
is obtained as 0.055W.

4. CONCLUSIONS

 This paper presented a MAC algorithm for message
authentication with single byte error correction capability
using cellular automata based approach. It also introduced
an efficient technique for random selection of an error
correcting code making it secure. The CA based
encoding/decoding scheme for correcting and detecting byte
errors of such a code is suitable from VLSI design view point
and attractive for its simplicity and regularity.

 The behavioral description of the proposed design is
written in VHDL and simulated using Xilinx isim 14.1
platform. Then the design is successfully implemented on a
Xilinx Spartan-6 LX16 FPGA (XC6SLX16-CSG324C). Design
verification is performed with the help of ChipScope ILA tool
of Xilinx. The maximum frequency of operation of core is
obtained from Post-PAR static timing report and is found as
143.225 MHz. The synthesis result shows that the circuit
requires much less hardware. So CA based implementation
of the proposed scheme provides a simple cost effective
solution.

ACKNOWLEDGEMENT

 This work is supported by National Institute of Electronics
and Information Technology (NIELIT), Calicut.

REFERENCES

[1] Sengupta, Abhrajit, et al. "AEC: A Practical Scheme for

Authentication with Error Correction.", International
Conference on Security, Privacy, and Applied
Cryptography Engineering., Springer, Cham,2014.

[2] Bhaumik, Jaydeb, Dipanwita Roy Chowdhury, and
Indrajit Chakrabarti. "An improved double byte error
correcting code using cellular automata." International
Conference on Cellular Automata. Springer, Berlin,
Heidelberg, 2008.

[3] D. Roy Chowdhury, I. Sen Gupta, P. P. Chaudhuri, “ CA-
Based Byte Error- Correcting code,” IEEE Transaction on
Computers, vol.44, no.3, pp. 371-382 Mar. 1995.

[4] Bhaumik,J., RoyChowdhury,D.: "An integrated ecc-mac
based on rscode.", Transactions on Computational
Science 4, 117–135 2009.

[5] Comer, J.M., Cerda, J.C., Martinez, C.D., Hoe, D.H.K.:
“Random number generators using cellular automata
implemented on fpgas.” In: 2012 44th Southeastern
Symposium on System Theory (SSST), pp. 67–72 , March
2012

[6] Wolfram, S.: “Random sequence generation by cellular
automata”. Advances in Applied Mathematics 7(2), 123–
169 ,1986

[7] Gao, Shuhong, and Daniel Panario. "Tests and
constructions of irreducible polynomials over finite
fields.", Foundations of computational mathematics.
Springer, Berlin, Heidelberg, 346-361, 1997.

[8] Cattell, Kevin, and Jon C. Muzio. "Synthesis of one-
dimensional linear hybrid cellular automata." IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 15.3: 325-335, 1996.

[9] Fournaris, Apostolos P., and O. Koufopavlou. "A systolic
inversion architecture based on modified extended
euclidean algorithm for GF (2k) fields." , 2006 13th IEEE
International Conference on Electronics, Circuits and
Systems. IEEE, 2006.

[10] Bhaumik, Jaydeb, and Dipanwita Roy Chowdhury.
"Nmix: An Ideal Candidate for Key Mixing.", SECRYPT.
2009.

[11] Bhaumik, Jaydeb, Balaji Janakiram, and Dipanwita Roy
Chowdhury. "Architectural design of CA-based double
byte error correcting codec." 2008 IEEE Region 10 and
the Third international Conference on Industrial and
Information Systems. IEEE, 2008.

[12] Chowdhury, Dipanwita Roy, and Parimal Pal Chaudhuri.
"Architecture for VLSI design of CA based byte error
correcting code decoders.", Proceedings of 7th
International Conference on VLSI Design. IEEE, 1994.

[13] Golomb, S.W.: Shift register sequences (1967)

