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Abstract - In many applications such as cellular telephony 

or wireless local area networking, Message Authentication 

Codes (MACs) that provided error correction capability (ECC) 

would be ideal. As conventional MACs are vulnerable to any 

alteration in the message, causing straightaway rejection of 

messages and retransmission is requested. This retransmission 

leads to wastage of energy and increase latency.  In this paper, 

introduced a MAC with integrated error correction capability 

called MAEC.  A simple scheme for generation and decoding of 

single-byte error-correcting codes based on Cellular Automata 

(CA) is presented and it is implemented on Xilinx Spartan-6 

LX16-FPGA (XC6SLX16-CSG324C).   
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1. INTRODUCTION  
 
     Message Authentication Code (MAC), also referred to as a 
keyed hash function, is a cryptographic primitive that 
verifies the data integrity and the authenticity of its sender. 
However, as conventional MACs are susceptible to any 
alteration in the message, even simple channel noises are 
detrimental to its functionality, causing straightaway 
rejection of authentic messages. Though this is preferable in 
some situations, many of the less information sensitive 
applications, such as image and other multimedia 
communications, can allow few errors occurred during 
transmission. The message should be rejected only if large 
number of errors are present, indicating a probable attempt 
of forgery. But, classical MAC algorithms do not convey any 
information about the number or location of the errors. This 
concludes the need for a MAC construction technique with 
integrated error correction property that offers some 
resilience against random channel noises, especially in 
environments where latency is a concern or resources are 
limited [1]. 
 
     Various coding techniques have been used for error 
detection and correction. Error correcting codes have been 
used to enhance reliability of the system and data integrity. 
The key idea is to add checkbytes or redundancy to the 
information bytes at the encoder so that decoder can 
retrieve the information bytes from the received block 
possibly corrupted by the channel noise. Reed-Solomon (RS) 
codes are widely used codes for error correction, because 

these codes can detect both random errors as well as burst 
errors. RS code has found many applications in storage 
devices (CD, DVD), wireless communications, high speed 
modems and satellite communications. The complexity of RS 
encoder and RS decoder increases with the error correcting 
capability of the code. Hence many researchers have put 
their effort to minimize the complexity of RS 
encoder/decoder for communication applications. But VLSI 
system designer always prefers to have simple, regular and 
cascadable structure with local interconnection for reliable 
high speed operations of the circuit. It has been found that 
these factors are supported by local neighborhood Cellular 
Automata (CA). Here, proposed a practical and secure 
integrated ECC-MAC design, named MAEC. In this design CA 
based byte error correcting code has been proposed. The 
required hardware for the proposed design is limited 
compared to the existing techniques used for RS code. 
 

1.1 Cellular Automata (CA) 
 
     Cellular Automata (CA) consists of a number of cells 
arranged in a regular fashion where the state transitions of 
the cell depend on the state of its neighbours and each cell 
consists of a D flip-flop and a combinational logic 
implementing the next-state function [2].  The next-state 
function for a  three- neighbourhood one-dimensional (1D)  
CA,  a cell can be expressed as follows:  

qi(t + 1) =  f [qi−1(t), qi(t), qi+1(t)] 

where qi(t + 1) and qi(t) are the output state of the ith cell at 
the (t + 1)th and tth time step respectively and f denotes the 
local transition function realized with a combinational logic, 
and is known as a “rule” of the CA. For a two state three CA, 
there are 23 that is, 8 distinct neighbourhood configurations 
and 256 (28) distinct next state functions. However, it turns 
out that out of 28 possible boolean functions, only two linear 
functions are of prime interest viz., rule 90 and 150. The state 
of ith  cell at time instant t can be expressed as: 

si
t+1 = si-1

t ⊕ di si
t ⊕ si+1

t ,     di  =    0, if di⟶ rule 90 

                                                                1, if di⟶ rule 180 

 
     Thus, a CA rule can be completely specified by an n-tuple  
R=[d1,d2,......dn] called Rule Vector of CA. The transition 
function  f : {0,1}n →{0,1}n of an n-cell CA can be represented 
by a n×n square matrix T, referred to as the characteristic 
matrix of the CA is in the form: 
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A CA characterized by EXOR or EXNOR dependence is 
called an additive CA. If in a CA, the neighbourhood 
dependence is EXOR, then it is called non-complemented CA 
and the corresponding rule is non-complemented rule. For 
EXNOR dependence, CA is called complemented CA and the 
such rule is called complemented rule. There exists 16 
additive rules which are: 

Rules:- 0, 15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195,     
204, 240, 255. 

     A uniform CA is one in which same rule applies to all cells 
while in hybrid CA (Fig.1.1) different rules are applied to 
different cells. In this design, rule 90 and rule 150 are used 
for cells in CA. Based upon this, designed an efficient error 
detecting and correcting code. 

 

Fig. 1.1 A Hybrid Cellular Automata 

 

2. DESIGN OVERVIEW 
 
    This section describes the design of an authentication 
scheme with integrated error correction capability, suitable 
for practical applications. Proposed ECC is  based on CA, 
making it highly efficient in hardware. The authentication 
algorithm works in two different stages, MAC-GENeration 
stage and the MAC-VERification stage. 
 

2.1 Block Diagram 
 
     MAEC IP core comprises 2 modules- Transmitter (Sender) 
and Receiver side as shown in Fig. 2.1. 

 
 

Fig.2.1 Basic I/O Diagram of MAEC IP core 
 
     The input of the transmitter side is Msg and output is   Msg 
||Tag. The input of the Receiver side is Msg’ ||Tag’ and output 
is Corrected Msg. There is a Tx/Rx signal to select  
transmitter side or receiver side and an Error Flag signal to 
indicate an uncorrectable error. Clock and Reset signals are 
common to both transmitter and receiver end. 

2.2 MAC Generation 

The MAC generation process starts with sharing two keys k1 
and k2 between the sender and the receiver before the 
initiation of a session. At first, the data goes through a 
optional padding phase if necessary and partitioned into 
blocks of size w (w is the number of the cells in the cellular 
automata, used for error correction). Now, with the help of 
key k1, a CA based error correcting code is selected, which 
serves the purpose of forward error detection/correction. 
Next, the checkbytes computed by the ECC, are mixed with 
key k2 in a non-linear fashion by NMix to get the MAC. This 
MAC value is then transmitted to the receiver along with the 
data as (Message, MAC) pair. The MAC generation process is 
depicted in Fig.2.2 and Algorithm 1 shows the detail. 

 
 

Fig.2.2 MAC generation at the sender 
 

ALGORITHM 1. MAC-GEN(t,m,k1,k2)                       ⊳|m| ≤ 2w,      
⊳ |k1| = w-1, |k2| = w 

1.Procedure PREPROCESS (m)  
2. m’ ⟵ P(m)                                ⊳      P is the padding function 

                                                             |P(m)| = w × n, n ∈ Z+ 

3. {m1,m2,…,mn}⟵ B(m’ )       ⊳ B partitions m’ into n blocks 
4. end procedure 
5. procedure SELECT RANDOM CA (k1) 
6. r1⟵ prefixed linear CA rule                 ⊳ |r1| = w-1 

                                                               ⊳ r1 is any maximal 
length 90,150 CA rule 
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7.  s ⟵ Cr1(k1)                                ⊳ Apply CA with rule r1 , CA          
initialized with seed k1 

8.  S ⟵ {1, s, 1} 
9. while  IRREDUCIBLE (S) = FALSE do    ⊳ Rabin’s Test 
[7] 
10. s ⟵ Cr1(s)   
11. S ⟵ {1, s, 1} 
12. end while 
13. r2 ⟵ SYNTHESIZE CA(S) 
14. return  r2                           ⊳ r2  is the randomly selected 
CA 
15. end procedure 
16. procedure COMPUTE MAC(B(m’), r2, t, k2) 
17. ci  ⟵ CA ENCODER(B(m’), t, i),      0 ≤ i ≤ 2t-1 
18. maci ⟵ NMix(ci, k2) 
19. return MAC ⟵ {mac0, mac1, …., mac2t-1} 
20. end procedure 
 
2.3 MAC Verification 

     At the receiving end, verification of the MAC is performed 
to detect the presence of errors in the transmitted data, if  
any.  At first, checkbytes  C  are recomputed from the received 
data. This step is similar to the checkbyte computation 
procedure described in the MAC generation process. In 
parallel to this, the received MAC is subjected to the inverse 
of the non-linear transformation (INMix) to get back the 
original checkbytes C’ transmitted by the sender. Next, the 
received checkbytes C’ and the computed checkbytes C are 
passed to the CA based decoder to find out if the transmitted 
message has arrived correctly, or not.  If all of the syndromes 
are zero, the message is readily accepted as its error-free. 
However, if any error creeps in, a decision is to be taken 
depending on the number of words in error. If  the number of 
errors are greater than the error correction capability of the 
code, it leads to straightaway rejection of the message. 
Otherwise, its corrected and subsequently accepted. The 
whole process is depicted in Fig.2.3, and Algorithm 2 shows 
the detail. 

 

Fig. 2.3 MAC verification at the Receiver 
 
ALGORITHM 2.  MAC-VER(m, MAC, t, k1, k2) 
 
1.  PREPROCESS(m) 
2.  SELECT RANDOM CA (k1) 
3.  C  ⟵ CA ENCODER(B(m’), t,  i),      0 ≤ i ≤ 2t-1     

                                                              ⊳ C = {c0, c1, … c2t-1}  

4.  C’ ⟵ INVERSE NMix(maci)              ⊳ C’ = {c0
’, c1

’, … c2t-1
’} 

5.  X ⟵ C ⊕ C’                     ⊳ X = {x0, x1, … xt} is the syndrome 
6.  X’ ⟵  { xi :  xi ≠ 0} 
7.  if  X’ = ⏀   then             ⊳ All zero syndrome 
8.  return  Accept 
9.  else 
10.if  No. of Errors > t   then 
11.return  Reject        ⊳ More that t errors, so discard m 
12.else 
13.Correct and Accept 
14.end if 
15.end if 
 

2.4 Random Selection of CA with Key k1 

 
     This section describes how to randomly select a CA with 
the help of key k1 and still make efficient implementation 
of it. It is to be noted that if the checkbytes are also used to 
provide authenticity, it will be vulnerable to simple 
forgeries if a fixed known ECC is used. 
  
     To come up with an efficient solution, we exploit the work 
of Cattel and Muzio [8], where they presented a detailed 
method for the synthesis of a one-dimensional linear hybrid 
CA from a given irreducible polynomial. But, to be able to use 
such CA based ECC, one must first find a maximum length CA 
i.e. having a period of (2n −1), n being the number of cells in 
the CA. To tackle this issue, exploit another important result 
that if a given irreducible polynomial is primitive, then the 
synthesized CA will be unique as well as of maximum-length. 
This result is interesting, since it maps the problem of 
randomly selecting a linear code to the problem of finding a 
primitive polynomial over a finite field. However, finding 
primitive polynomials in large finite fields is a non-trivial 
problem. The verification of primitive polynomials and its 
associated complexity is too costly to implement either in 
software or in hardware, and hence, not suitable for any 
practical application. The fastest known algorithms for 
testing primitivity of polynomials of degree n require the 
factorization of (2n −1) to be known beforehand, in addition 
to find a primitive root over the defining field. To overcome 
this, use the result given by the following theorem, which 
establishes a one-to-one correspondence between primitive 
and irreducible polynomials. 
 
Theorem 1.  If 2r − 1 is a prime number  (Mersenne Prime) 
then all degree-r irreducible polynomials are also primitive 
[13]. 
      
     The result furnished in Theorem 1 reduces the hard 
problem of finding a primitive polynomial to the easier 
problem of finding an irreducible polynomial. Once such a w 
(2w−1∈P) is fixed, one can choose any irreducible polynomial 
of degree w, and synthesize it into a maximum-length CA 
using the technique described in [8]. 
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     Due to the arguments stated above, random CA based ECC 
selection turns out to be equivalent to selecting an 
irreducible polynomial randomly. First, fix GF(2w) as the 
extension field in accordance with Theorem 1.  A polynomial 
f(x) = ∑ bi. xi , 0 ≤ i ≤ w over GF(2w) is represented as the bit 
string {bw,bw−1,....b0}. Now, the key k1  serves as the seed to a 
CA  based PRNG [5] [6]. A (w−1)-bit CA based PRNG 
produces random patterns of (w−1)-bits, to which 1 is 
concatenated at either end to get a pattern of (w+1)-bits. The 
reason behind prepending 1 is quite straightforward as the 
polynomials are monic . The appending of 1 at the LSB is also 
trivial. Otherwise, x will be a non-trivial factor of the 
polynomial, implying it not irreducible. The polynomial 
corresponding to the resulting bit-pattern is subjected to 
Rabin’s irreducibility test [7]. This whole process continues 
until find an irreducible polynomial. Finally, this irreducible 
polynomial is synthesized into an equivalent maximum-
length CA according to [8]. This step corresponds to SELECT 
RANDOM CA (k1) in Algorithm 1. 
 

2.5 Calculation of Checkbytes 
 
     After a suitable maximum-length CA is selected, it is used 
for the calculation of checkbytes which helps to keep track of 
transmission errors. But before any computation begins, the 
data goes through an optional padding phase to make it a 
multiple of word-size (w), where w : 2w −1∈P and partitioned 
into blocks of size equal to w. This corresponds to procedure 
PREPROCESS(m) of Algorithm 1. After this, the data is 
passed to the CA based Encoder for the computation of 
checkbytes. The checkbytes and syndromes for a t-word 
error correcting code, where each word is n-bit long, can be 
generated using an n-cell maximum-length CA in the 
following manner: 
 
         N-1 

Ci  =  ⊕   Ti×(N-1-j) [Bj],         i = {0, 1,…., 2t}; 
         J=0                               B = [B0, B1, …., BN-1]; 
                                              T⟶characteristic matrix of the CA 

 
 

Si  =  Ci ⊕ Ci
’   ,   0 ≤ i ≤ 2t ,        Ci is the received checkbyte 

                                                     Ci
’  is the checkbyte computed 

                                                   
     Now, elaborate how the choice of t i.e. the error correction 
capability of the code, relates to the security of the scheme. 
Here, the inherent belief lies on the fact that in wireless 
transmission systems, burst errors are more common in 
nature, and are confined to a small part of the data. Thus, it 
can at most affect a few words of information rather than 
spanning over the whole data. However, if some intentional 
tampering or some outright forgery happens, the chances 
are more that it will be spanned throughout the data. This 
causes a large number of errors and the message is 
discarded accordingly. This leads to the careful choice of t   
by the user. 
 
 

2.6 Generation of MAC Using ECC 
 
     This section describes how the checkbytes computed in 
the previous section also serves the purpose of 
authentication. However, due to its linear nature checkbytes 
alone are not sufficient enough to provide authentication, as 
it’s linear property makes it susceptible to several well 
known cryptanalysis techniques like linear/differential 
cryptanalysis. However, a non-linear operation can prevent 
these type of threats, making it secure. So, for this purpose, 
proposed algorithm uses NMix as the nonlinear key mixing 
function in the design. The choice of NMix is driven by the 
fact that it is a non-linear bent function, i.e. it is as different 
as possible from all linear or affine functions and thus, 
naturally hard to approximate. 
 
     NMix is applied to the checkbytes C ← {c0,c1,...,ct}  with  key 
k2 as the random pad r  to get the MAC← {mac0,mac1,...,mact} 
as output. These MAC values along with the message, is then 
sent to the receiver as the authenticator. It is to be noted that 
applying non-linear mixing may propagate the error to 
multiple bits within a single word. However, as CA based 
decoder deals with byte-errors rather than bit-errors, NMix 
does not affect the error correction property of the code. 
 

2.7 Forward Non-Linear Mixing (NMix) 
 
     NMix function operates on two n-bit variables X= 
(xn−1,xn−2,...,x0), K = (kn−1,kn−2,...,k0) and produces a n-bit 
output variable Y = (yn−1,yn−2,...,y0) where each output bit is 
related to the input bits by the following relationship: 
 

yi = xi ⊕ ki ⊕ ci−1 

 

                                       i 

ci =  ⊕  xj kj ⊕ xi−1 xi ⊕ ki−1 ki 

                                     j=0 
 
where 0 ≤ i < n, c−1 = 0, x−1 = 0, k−1 = 0 and ci is the carry term 
propagating from ith bit position to (i +1)th bit position. The 
end carry cn−1 is neglected. Each output bit yi is balanced for 
all 0 ≤i < n. 
 

2.8 Inverse Non-Linear Mixing (INMix) 
 
In inverse mixing, the mixer takes two n-bit variables Y = 
(yn−1,yn−2,...,y0),  K = (kn−1,kn−2,...,k0)  as inputs and produces an 
n-bit output X= (xn−1,xn−2,...,x0).  Inverse mixing operation can 
be defined as: 

xi = yi ⊕ ki ⊕ di−1 

 

                                       i 

di =  ⊕  xj kj ⊕ xi−1 xi ⊕ ki−1 ki 

                                     j=0 
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where 0 ≤ i < n, d−1 = 0, x−1 = 0, k−1 = 0 and di is the carry 
term propagating from ith  bit position to (i + 1)th  bit 
position. The end carry dn−1 is neglected. 
 

2.9 Error Correction 
 
     This section presents a scheme for the decoding of the CA 
based Single Byte Error Correcting (SbEC) codes. The 
primary objective is to retrieve the correct information 
bytes.  So when an error is detected in the checkbytes only, it 
can be ignored. This assumption is justified for many 
applications, where the main criteria is the correct retrieval 
of information bytes. 
 
Definitions:- 
 
1. Error syndrome:- Let Ci denote the ith check byte for a 
given information block (in absence of errors), and Ci

’ is the 
ith checkbyte recomputed from the received information 
bytes (with possibility of errors present). Then the error 
syndrome corresponding to the ith checkbyte is defined as:           
 

Si  =  Ci ⊕ Ci
’   ,   0 ≤ i ≤ 2t 
 

2. Error Byte:- Let BN−1−j and B’
N-1-j, respectively, denote the 

jth information byte in absence of errors and the jth 
information byte as received. As noted in Fig. 2.4, byte Bj 
counted from left is same as byte BN−l−j counted from right. 
Then the error byte for Bj is defined as: 
 

Ej = BN−1−j ⊕ B’
N-1-j

    ,    j ≤ 0 
 

jth byte 
 

B0, B1, B2, …….., Bj, ……..,BN-2, BN-1 

 
                                                 (N-1-j)th byte     
     

Fig. 2.4 Byte position counted from left and right 
 
     Clearly, an all-zero error byte is indicative of the fact 
that the corresponding information byte is fault-free, and a 
non-zero value indicates the byte positions in error. The 
objective of error correction is to deduce the error vector 
[E] = [E0,E1,…,EN−1] from the received information bytes 
[B’]=[B’

N-1, B’
N-2,…, B’

0] and the received checkbytes [C]=[C’
0, 

C’
1,…, C’

2t].  The correct information bytes can then be 
obtained as: 

[B] = [B’ ] ⊕ [E] 
 

     On receiving a block of bytes, the checkbytes are 
recomputed using the same logic as in encoding. The error 
syndromes SO, S1 and S2 are computed by EXOR-ing the 
newly generated checkbytes with the received checkbytes. 
Assume that the errors have occurred in the ith  byte from the 
left, i.e., the corresponding error byte is Ei. The checkbytes 
generated on the receiving side can be expressed as: 

          C’
0 = BN−1 ⊕ BN−2 ⊕.....BO ⊕ Ei 

          C’
1 = BN−1 ⊕ T [BN−2] ⊕.....TN−1  [BO] ⊕ Ti [Ei] 

          C’
2 = BN−1 ⊕ T2 [BN−2] ⊕.....T2(N−1) [BO] ⊕ T2i [Ei] 

 
Hence, the syndrome generated on the receiving side can be 
expressed as 
                                   S0  =  C0 ⊕ C’

0    =  Ei 
 S1 =  Ci ⊕ C’

1      =  Ti [Ei] 
   S2 =  Ci ⊕ C’

2      =  T2i [Ei] 
 

Decoding Algorithm:- 
 
1. If all the syndrome bytes S0, S1 and S2 are zeros then      
there is no error in the received information block                                  
 
2. If any one of the syndrome bytes Sk  (k= 0, 1, 2) is non zero 
but the other two are zeros, then only the checkbyte Ck is in 
error 
 
3. If more than one of the syndrome bytes are non zero, try 
to find an i such that 

Ti[S0] = S1   and    T2i[S0] = S2 

 

4. If such an i exists, then a single error has occurred in the 
(N−1−i)th byte, and the error byte is S0 

 

5. If no such i can be found, it indicates the presence of an 
uncorrectable error (double or more) 
 

3. EXPERIMENTAL RESULTS 
  
     The design has been implemented and verified in Xilinx 
Spartan-6 LX16 FPGA (XC6SLX16-CSG324C). Xilinx ISE 14.1 
is used as an FPGA development environment during the 
implementation process (i.e., synthesis, map, place & route). 
The Table 3.1 shows the overall resource consumption. 
 

 
 

Table 3.1 Resourse Utilization Summary 
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     Hardware implementation of MAEC core has been done 
using FPGA Spartan 6 (XC6SLX163-CSG324C). After 
configuring the device, analyzed the design using Xilinx 
ChipScope Pro Analyzer as shown in Fig 3.2. It mainly 
consists of 3 cores- VIO, ILA  and ICON. 
 

 
Fig 3.2 ChipScope Pro Analyzer Output 

 
     After implementing the design on a Xilinx Spartan-6 LX16-
FPGA (XC6SLX16CSG324C), the maximum clock frequency is 
found out as 143.225 MHz and the total power consumption 
is obtained as 0.055W. 
 

4. CONCLUSIONS 
 
     This paper presented a MAC algorithm for message 
authentication with single byte error correction capability 
using cellular automata based approach. It also introduced 
an efficient technique for random selection of an error 
correcting code making it secure. The CA based 
encoding/decoding scheme for correcting and detecting byte 
errors of such a code is suitable from VLSI design view point 
and attractive for its simplicity and regularity. 
 
     The behavioral description of the proposed design is 
written in VHDL and simulated using Xilinx isim 14.1 
platform. Then the design is successfully implemented on a 
Xilinx Spartan-6 LX16 FPGA (XC6SLX16-CSG324C). Design 
verification is performed with the help of ChipScope ILA tool 
of Xilinx. The maximum frequency of operation of core is 
obtained from Post-PAR static timing report and is found as 
143.225 MHz. The synthesis result shows that the circuit 
requires much less hardware. So CA based implementation 
of the proposed scheme provides a simple cost effective 
solution. 
 

ACKNOWLEDGEMENT  
 
     This work is supported by National Institute of Electronics 
and Information Technology (NIELIT), Calicut. 
 

REFERENCES 
 
[1] Sengupta, Abhrajit, et al.  "AEC: A Practical Scheme for 

Authentication with Error Correction.", International 
Conference on Security, Privacy, and Applied 
Cryptography Engineering., Springer, Cham,2014.  

[2] Bhaumik, Jaydeb, Dipanwita Roy Chowdhury, and 
Indrajit Chakrabarti. "An improved double byte error 
correcting code using cellular automata." International 
Conference on Cellular Automata. Springer, Berlin, 
Heidelberg, 2008. 

[3] D. Roy Chowdhury, I. Sen Gupta, P. P. Chaudhuri, “ CA-
Based Byte Error- Correcting code,” IEEE Transaction on 
Computers, vol.44, no.3, pp. 371-382 Mar. 1995. 

[4] Bhaumik,J., RoyChowdhury,D.: "An integrated ecc-mac 
based on rscode.", Transactions on Computational 
Science 4, 117–135 2009. 

[5] Comer, J.M., Cerda, J.C., Martinez, C.D., Hoe, D.H.K.: 
“Random number generators using cellular automata 
implemented on fpgas.” In: 2012 44th Southeastern 
Symposium on System Theory (SSST), pp. 67–72 , March 
2012 

[6] Wolfram, S.: “Random sequence generation by cellular 
automata”. Advances in Applied Mathematics 7(2), 123–
169 ,1986 

[7] Gao, Shuhong, and Daniel Panario. "Tests and 
constructions of irreducible polynomials over finite 
fields.", Foundations of computational mathematics. 
Springer, Berlin, Heidelberg, 346-361, 1997. 

[8] Cattell, Kevin, and Jon C. Muzio. "Synthesis of one-
dimensional linear hybrid cellular automata." IEEE 
Transactions on Computer-Aided Design of Integrated 
Circuits and Systems 15.3: 325-335, 1996. 

[9] Fournaris, Apostolos P., and O. Koufopavlou. "A systolic 
inversion architecture based on modified extended 
euclidean algorithm for GF (2k) fields." , 2006 13th IEEE 
International Conference on Electronics, Circuits and 
Systems. IEEE, 2006. 

[10] Bhaumik, Jaydeb, and Dipanwita Roy Chowdhury. 
"Nmix: An Ideal Candidate for Key Mixing.", SECRYPT. 
2009. 

[11] Bhaumik, Jaydeb, Balaji Janakiram, and Dipanwita Roy 
Chowdhury. "Architectural design of CA-based double 
byte error correcting codec." 2008 IEEE Region 10 and 
the Third international Conference on Industrial and 
Information Systems. IEEE, 2008. 

[12] Chowdhury, Dipanwita Roy, and Parimal Pal Chaudhuri. 
"Architecture for VLSI design of CA based byte error 
correcting code decoders.", Proceedings of 7th 
International Conference on VLSI Design. IEEE, 1994. 

[13] Golomb, S.W.: Shift register sequences (1967) 

 
 


