
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3086

ARGON2id IP Core

Aparna R1, R. Nandakumar2, Dr. Anil Kumar C.D3

1PG Scholar & Dept. of Electronics and Communication Engineering, GEC Idukki, kerala, India
2Scientist/Engineer & Dept. of Electronics and Communication Engineering, NIELIT, Calicut, Kerala, India

3Professor, Dept. of Electronics and Communication Engineering, GEC Idukki, kerala, India
---***--
Abstract - Cryptography is that the art of concealing info
from eavesdroppers by suggesting a secret key and a process
of converting ordinary plain text into unintelligible text and
vice-versa. The data integrity assurance and data origin
authentication are important security services in financial
transactions, e-commerce, data storage, etc. For assuring the
integrity of transmitted data we use cryptographic hash
functions. This paper demonstrates cryptographic hash
function Argon2id, which is a hybrid of Argon2i and Argon2d.
It has been oriented for the protection of low-entropy secrets
without secret keys. It decodes passwords of any length and
can produce a message digest of 256 bits. Argon2id is
important because it compares and stores hash much more
easily than the entire original sequences. Also, it is capable to
store hashes instead of passwords. When a user switches their
password, the system computes the hash of it and compares it
to the hashes listed. Argon2id mainly composed of using a
hash function and a compression function. The Hash function
is for implementing argon2id is Blake2b algorithm. The
Blake2b hash function is a modified version of Dan Bernstein's
ChaCha stream cipher, however a permuted copy of the input
local vector, XOR with some initialization vector, is added
before each round. BLAKE2b use 64-bit words and produce
digest sizes of 512 bits and 384 bits, respectively.BLAKE2b is
faster than SHA-3, SHA-2, SHA-1, and MD5 on 64-bit x64 and
ARM architectures. Through this project, Argon2id design is
discussed and is implemented on Xilinx Spartan-6 LX16FPGA
(XC6SLX16-CSG324C).

Key Words: Memory hard function, Blake2b, Internal
permutation, Time-memory trade-offs, Side channel attacks,
Indexing function, Compression function.

1. INTRODUCTION

A cryptographic hash function h maps an input M bit string
of arbitrary length to an output string h(M) of some fixed bit-
length d. Cryptographic hash functions have many
applications; for example, they are used in digital signatures,
time-stamping methods, and file modification detection
methods. Our envisioned attacker has obtained a copy of 1
or many (possible millions of) hashed passwords from an
info, and wants to find one or many passwords matching a
number of these hash values. Due to Moore’s law, the hash
function computation becomes faster, have been called
multiple times to increase the cost of password trial for the
attacker by using memory hard functions. Even though all

these terms stand for a lot of more general functions with
rather totally different properties and functions.

•One-wayness, or Pre-image Resistance: It should be
infeasible for an adversary to calculate an input that maps to
that element.

•Collision-Resistance: It should be infeasible for an
adversary to find distinct values M and Mo such that,
 h(M) = h(Mo).

• Second Pre-image Resistance: It should be infeasible for
an adversary, given M, to and a different value M0 such that,
 h(M) = h(Mo).

•Pseudo-randomness: The function h must appear to be a
random function (but deterministic) of its input. This
property requires some care to define properly.

1.1 Problems of existing schemes

 Hashing an input means the transformation of a string of
input or message into a shorter or harder fixed-length value
or message digest that represents the original message string.
Hashing is used to index the memory either dependent or
independent of the input sequence. Thus mathematically
related hash functions are known as "Provably Secure
Cryptographic Hash Functions". The other category is hash
functions that are not based on mathematical equations but
on an ad hoc basis, where the message bits are mixed to
produce the digest. PHC which started in 2014 highlighted
the following problems,

• Should the indexing functions be password-independent or
password-dependent?
• Is it better to fill more memory but suffer from time-space
tradeoff or make more passes over the memory to be more
robust?
• How should the input-independent addresses be computed?
• Reading smaller random-placed blocks is slower (in cycles
per byte) due to the special locality principle of the CPU
cache.
 •If the block is large, how to choose the internal compression
function and it should be cryptographically secure or more
lightweight.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3087

1.2 Our solution

 Here demonstrates a hash function called Argon2id.
Argon2id is a state of the art in the design of MHFs. It is a
streamlined and simple design. It provides high resistance
against tradeoff attacks and working principle is optimized
for the x86 architecture and exploits the cache and memory
organization of the recent Intel and AMD processors.
Argon2id is composed of two variants: Argon2d and Argon2i.
Argon2d maximizes resistance to GPU cracking attacks. It
accesses the memory array in an input dependent order,
which increases resistance against time–memory trade-off
[3] attacks, but introduces possible side-channel attacks.
Argon2i is optimized to resist side-channel attacks. It
accesses the memory array in an input independent order.

1.3 Motivation

 Our main objective is to maximize the cost of password
trails on ASICs or FPGA. This memory size M translates to
ASIC or FPGA area A. The running ASIC time T denotes the
length of the longest computational chain in the algorithm
and determines the latency of ASIC memory. The memory-
hard functions (MHF) can be defined using the following
mode of operations. Let consider an array of memory B is
filled with the compression function G. For maximizing the
cost we use memory hard function, it can be modeled as
flows, The memory array B[ij] is filled with the compression
function G:

 B [0] = H (P; S);
The addresses can be calculated by the adversaries should

satisfy the following conditions they are, independent of the
password and salt but dependent on the public parameters
used for hashing.

1.4 Tools used

1.4.1 Xilinx ISE

 Xilinx ISE (Integrated Synthesis Environment) could be a
software system tool made by Xilinx. The main functions of
this tool are synthesis and analysis of HDL designs, enabling
the designer to synthesize and mapping their designs,
perform timing analysis, examine RTL diagrams, through
Xilinx device programming we can synthesize the design
from design entry. Here Argon2id design is discussed and is
implemented on Xilinx Spartan-6 LX16FPGA (XC6SLX16-
CSG324C).

1.4 .3 IP CORE

 An IP (Intellectual Property) core is a block of logic or is a
reusable unit of logic. In IP core layout design that is
normally developed with the idea of licensing to multiple
vendors with different chip designs. IP cores mainly used in
electronic design automation (EDA) industry for reusing the
design logic or functionality to multiple users. An IP core

should be easily portable and able to easily be inserted into
any vendor technology or design methodology.

2. DESCRIPTION OF ARGON2id

In this chapter describes the specification and algorithm of
the next generation of the memory-hard hash unction
Argon2id[1]. The pin diagram of Argon2id is shown in fig-1.

2.1 Specification of Argon2id

 It is suitable for password hashing, password-based key
derivation, cryptocurrencies, proofs of work/space, etc.
 Argon2id has two types of inputs:
 1. Primary inputs
 • Message or password ’P’ - 0 to 232- 1 byte.
 • Nonce or salt ’S’ - 8 to 232- 1 byte.
 2. Secondary inputs or parameters
 • Degree of parallelism ’p’ -1 to 224- 1 byte.
 • Number of iterations‘t’ -1 to 232 – 1 byte.
 • Version number ’v’ is one byte 0x13;
 • Secret value or key ’K’ -0 to 32 byte.
 • Associated data ’X’ -0 to 232- 1 byte.
 • Type ’y’- 2 for argon2id.
 • Tag length or output digest size ’T’ -4 to 232- 1
 • Memory size ’m’ represented in KiB -4p.

Fig -1: Argon2id entity

2.2 ARGON2id OPERATION

 Argon2id uses an internal compression function G with
two 1024-byte inputs and a 1024-byte output, and an
internal hash function H. Here H is the BLAKE2b hash
function, and the compression function G is based on Blake2b
internal round function. A variable-length hash function H’
built upon H is also used. G and H’ are described in a later
section. All the other parameters are also added to the input.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3088

The variable length inputs Password, Salt, Key, and
Associated data are prepended with their lengths. Password
string P is the primary input of password hashing
applications. The mode of operation of Argon2id is quite
simple to illustrate when compression function G is iterated
m times with no parallelism. Single-pass Argon2 with p lanes
and 4 slices is shown in fig-2.

The Argon2id operation is as follows.

1. Establish Ho as the 64-bit. Here H is BLAKE2b and the non-
strings p, T, m, t, v, y, length (P), length(S), length (K), and
length(X) are treated as a 32-bit little-endian encoding of the
integer.

2. Allocate the memory as m’ and each block size is 1024 byte.

3. Compute B[i][0] and B[i][1] for all i ranging from 0 to p-1.

4. Compute B[i][j] for all i ranging from zero to p-1, and for all
j ranging from two to q-1.

5. If the number of iterations t is larger than 1, we repeat the
steps.

6. After t steps have been iterated, the final block C is
computed as the XOR of the last column:

Algorithm

1. Generate initial 64-byte block Ho.

• buffer=(LE32(p)||LE32(T)||LE32(m) ||LE32(t) ||LE32(v)
||LE32(y)||LE32(length(P)) ||P||LE32(length(S))

 • Ho = Blake2b (buffer, 64)

2. Allocate the memory as m’ 1024-byte blocks, where m is
the memory size.

• m’=floor (m/4p)*4p.

• q=m’/p.

• Memory is organized in a matrix B[i][j] of blocks with p
rows (lanes) and q = m’ /p columns.

3. Compute the first and second block of each lane

• Bi[0] =H’(Ho || LE32(0) || LE32(i))

• Bi[1] =H’(Ho || LE32(1) || LE32(i))

• H’ function used here is the Variable-length hash function.

4. Compute remaining columns of each lane

• Bi[j]=G(Bi[j-1], Bi’[j’])

• Compression function G is based on blake2b permutation.

5. If t>1, we repeat the procedure and we XOR the new blocks
to the old ones.

6. Compute final block C as the XOR of the last column of each
row.

 C = B[0][q-1]_ B[1][q-1]_:::_ B[p-1][q-1]

7. Compute output tag H’(C, tag Length)

Fig -2: Argon2id mode of operation with parallelism.

2.2.1 BLAKE2b

 BLAKE and BLAKE2 are the modification of Bernstein’s
ChaCha stream cipher, the only difference is that the input
block is permuted and finally XOR with some round
constants, the XOR output is added before each ChaCha round
is shown in fig-3.

Fig -3: Blake2b operation

Like Secure Hash Algorithm, there are two variants whose
word size is not equal. ChaCha round function operates on a
four symmetric array of words. BLAKE generates 8-word
hash value and repeatedly combined it with 16 message
words and finally truncating the ChaCha result to obtain the
final hash value.

Algorithm

1. BLAKE2b[2] uses an initialization vector that is the same as
that used in SHA-512.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3089

 IV[i]=floor(264*frac(sqrt(prime number(i+1))))

IV0 = 0x6A09E667F3BCC908 IV1 = 0xBB67AE8584CAA73B

IV2= 0x3C6EF372FE94F82B IV3 = 0xA54FF53A5F1D36F1

IV4= 0x510E527FADE682D1 IV5 = 0x9B05688C2B3E6C1F

IV6= 0x1F83D9ABFB41BD6B IV7 = 0x5BE0CD19137E2179

2. Initialize local work vector V[0......15]

 (a) V[0...7]=h[0...7]

 (b) V[8..15]=IV[0..7]

 (c)V[12]=V[12] ⊕t0

 (d) V[13]=V[13] ⊕ t1

 (e) V[14]=V[14]⊕0Xffff….f(If last block is send)

3. Apply compression function to local work vector. The input
Compress function 128-byte chunk of the input message and
mixes it differently for each round:

Mix (V0, V4, V8, V12, m[S0], m[S1])

Mix (V1, V5, V9, V13, m[S2], m[S3])

Mix (V2, V6, V10, V14, m[S4], m[S5])

Mix (V3, V7, V11, V15, m[S6], m[S7])

Mix (V0, V5, V10, V15, m[S8], m[S9])

Mix (V1, V6, V11, V12, m[S10], m[S11])

Mix (V2, V7, V8, V13, m[S12], m[S13])

Mix (V3, V4, V9, V14, m[S14], m[S15])

4. The Mix function is called by the Compress function, and
mixes two 8-byte words from the message into the hash state.

• Va =Va + Vb + x

• Vd=(Vd ⊕ Va)>>>32

• Vc= Vc + Vd

• Vb=(Vb ⊕ Vc) >>> 24

• Va=Va + Vb + y

• Vd=(Vd ⊕ Va)>>> 16

• Vc=Vc + Vd

• Vb=(Vb ⊕ Vc) >>> 63

5. Mix the upper and lower halves of V into ongoing state
vector h

• h0..7= h0..7⊕ V0..7

• h0..7= h0..7 ⊕ V8..15

• Result_ h

2.2.2 VARIABLE LENGTH HASH FUNCTION (H’)

Argon2id is capable of producing digests up to 232 bytes
long. This hash function is internally built upon Blake2, Let

Hx be a hash function with x-byte output. We define Ho as
follows. Let Vi be a 64-byte block and Ai be its first 32 bytes.
For desired hashes over 64-bytes (e.g. 1024 bytes for Argon2
blocks), then

1. Calculate the number of whole blocks:

 r = Ceil(x/32)-1

2. The initial block is generated from the message:

 V1 =Blake2b(x||message, 64);

3. Subsequent blocks are generated from previous blocks for
i=2 to r do

 Vr+1 = Blake2b(Vr, q) {q=x – 32*r}

4. Concatenate the first 32-bytes of each block Vi. Let Ai
represent the lower 32-bytes of block-A1 || A2 ||... ||Ar||Vr+1

2.2.3 COMPRESSION FUNCTION

 Compression function G(X, Y) operates on two 1024-byte
blocks X and Y is shown in fig-4.

Fig -4: Block diagram of the compression function

• It first computes R = X ⊕Y

• Then P is first applied to each row to get Q.

• Then P is applied to each column to get Z.

• Finally, Output=Z _R

2.2.4 INDEXING FUNCTION

 For paralleling the computational process, memory is
partitioned into S = 4 vertical slices. The intersection of a slice
and a lane is a segment of length q/S is shown in fig-5. All the
components of the same slice are computed in parallel and
there is no reference from each other. All other blocks can be
referenced.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3090

 Fig -5: Indexing function

Getting the 32-bit values J1 and J2

(i) Argon2d

• J1 = extract(B[i][j-1], 1)

• J2 = extract(B[i][j-1], 2)

(ii) Argon2i

 (LE64(r) || LE64(l) || LE64(s) || LE64(m’) || LE64(t) ||
LE64(y) || LE64(i) || ZERO)

• r – the pass number

• l – the lane number

• s – the slice number

• m’ – the total number of memory mapped

• t – the total number of passes

• y – the Argon2 type (2 for Argon2id)

• i – the counter

(iii) Argon2id

If the pass number is 0 and the slice number is 0 or 1, then
compute J1 and J2 as for Argon2i, else compute J1 and J2 as for
Argon2d.

 Mapping J1 and J2 to reference block index

The value of l = J1mod p gives the index of the lane from
which the block will be taken. The set W contains the indices
that can be referenced according to the following rules:

• W includes the indices of all blocks depending on i’.

• J1=W(1-(J1
2/232))

• x = J1
2/232

• y =(Wx)23

• j’ = W - 1 - y

• i’= J2modp

3. SECURITY ANALYSIS

 Cryptanalysis[4]is the study of analyzing cryptography
systems in order to study the hidden aspects of the chosen
functions. Cryptanalysis is used to breach cryptographic
security systems and gain access to the contents of the
hashed message or encrypted message, even if the
cryptographic key is unknown. In addition to the
mathematical analysis of cryptographic algorithms, to study
cryptographic algorithms with side-channel attacks that do
not depend on target weaknesses can be performed using
cryptanalysis, but exploit weaknesses in their cryptographic
algorithm implementation.

3.1 RANKING TRADEOFF ATTACKS

 Ranking tradeoff attack mainly used to figure out the costs
of the ASIC-equipped adversary. For determining the cost
first we need to calculate the time-space tradeoffs for
Argon2id. This applies to both data-dependent and data-
independent schemes;

• The area A determined by the amount of memory M on ASIC
used for calculating the hash.

• The ASIC running time T is calculated by the time taken by
the longest computational chain and also depend on the ASIC
memory latency.

• Suppose that an adversary tries to compute H by creating
time-space tradeoff similar to original condition using a
fraction αM of memory for some α< 1.

• Using some time-memory tradeoff specific to H, the
adversary has to spend C(α) times as much computation of
hash and the running time used to calculate the hash
increases by factor D(α).

• In order to fit the increased computation into time, the
attacker has to place additional cores on a chip.

• Therefore, the time-area product changes from AT to Atα as,

ATα=AT(C(α)+ αD(α))

• The memory bandwidth limit Bw may also increase the
running time, i.e cost of password trail is increased.

3.2 MEMORY OPTIMIZATION ATTACK

 Memory optimization attack possible to optimize the
memory use of hash functions. Therefore, for each block B[i]
there is a time gap between the moment the block is used for
the last time and the moment it is overwritten. We formalize
this issue as follows.

• Let us denote by _(i) the reference block index for block B[i].

• Since addresses li can be precomputed, an attacker can
figure out for each block B[i] when it can be discarded.

 Li=(1-lt/m)

• Our experiments show that in 1-pass Argon2id, L=.15, i.e. on
average 1/7-th of memory is used.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3091

• For t > 1, the address ’li’ is precomputed and the saving
strategy uses the fraction,

 Li=((m+i-lit)/m)

• For t > 1 this strategy uses 0.25 of memory on average, so
the time-area product is increased.

3.3 INTERNAL COLLISION RESISTANCE

 The compression function G violate collision resistant
property, then it produces identical outputs for distinct
inputs. Rewrite the compression G as follows:

 G(X; Y) = P (Z) ⊕ (Z); Z = X ⊕ Y

• Let us prove that all Z have different values while
considering certain assumptions.

• Consider Argon2id with d lanes, s slices, and t passes over
memory, then

1. P (Z) ⊕ Z is collision-resistant, i.e. it is hard to find a; b such
that P (a) ⊕a = P (b) ⊕ b.

2. P(Z) ⊕Z is 4-generalized-birthday-resistant, due to this
property it is hard to find distinct a, b, c and d such that it
satisfies P(a) ⊕P(b) ⊕P(c) ⊕P(d) = a ⊕b ⊕ c ⊕d

4. AVAILABLE FEATURES

The key feature of Argon2id is its performance and the ability
to use multiple computational cores due to parallel
processing in the way that enjoins time-memory tradeoffs.
Here provide an extensive list of features of Argon2id.

 Table -1: Available features of Argon2id

5. RESULT AND DISCUSSION

This chapter includes the experimental setup, simulation
result and FPGA implementation of hash function Argon2id.

5.1 EXPERIMENTAL SETUP

The arrangement comprises of Blake2b hash function and
Blake2b round like compression function. A 64-byte Ho is
generated first. The Ho is obtained by applying all input to
Blake2b hash function, the input applied is obtained by
concatenating all primary and secondary inputs +-in the
specified order. The H’ is composed of Blake2b depending on
the digest size. To find all remaining elements compression
and indexing function are applied. The next step is to XOR all
the elements in the last column. Again applying the hash
function to the XORed output.

5.2 SIMULATION RESULT

The simulation result of argon2id (It is a hybrid of
Argon2i and Argon2d, in the first pass memory is accessed in
password dependent and in other passes independent of
password, which gives some of Argon2i’s resistance to side-
channel cache timing attacks and much of Argon2d’s
resistance to GPU cracking attacks.) is shown in figure 6.

Fig -6: Simulation result of Argon2id

5.3 SYNTHESIS RESULTS

The design is implemented on a Xilinx ISE 14.3 is used as
an FPGA development environment during the
implementation process. The blocksize is a fixed amount of
data that the algorithm will process at a time. The latency is
the number of cycles that are needed to hash a password.
After implementing the design on a Xilinx Spartan-6
LX16FPGA (XC6SLX16 CSG324C), when analyzed the Post-
PAR static timing report the maximum check frequency is
found out as 63.56MHz. The blocksize, in this case, is 256 and
latency is 64 cycles. So the throughput can be easily
calculated using the above equation and the calculated
throughput is 603.4Mbps.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3092

5.4 HARDWARE RESULT

Integrated Logic Analyzer (ILA) core is a physical logic
analyzer core that samples various probes and displays the
internal signal and used to monitor and control any internal
signals used in our design.

Fig -7: VIO console for 128 bit output

Fig -8: Waveform

6. CONCLUSION

This work proposes a memory hard function Argon2id, which
maximize the ASIC or FPGA implementation cost of an
adversary for a given CPU computing time. The Argon2id
design has been successfully implemented on Xilinx Spartan-
6 LX16FPGA (XC6SLX16CSG324C) and verification was done
with the help of Chipscope ILA tool. Argon2id is a
multipurpose hashing function, mainly used for password
hashing, key generation, cryptocurrencies and other
applications that need high memory (MHF). The power
utilization is analyzed through Xilinx Power Analyzer (XPA).
Compared to other hash function power utilization is very
low in Argon2id. A clear and compact design is obtained by
implementing this, so the operation gets a certain ratio
rationale through this. The main objectives of the hash
function are to increase the cost of password trail. Thus the
cost of password trail can be increased through
implementing argon2id. This increase is usually because of a
hike in memory size.

ACKNOWLEDGEMENT

This work is supported by National Institute of Electronics
and Information Technology (NIELIT), Calicut.

REFERENCES

[1] Biryukov, Alex, Daniel Dinu, and Dmitry Khovratovich.

"Argon2: new generation of memory-hard functions for
password hashing and other applications." 2016 IEEE
European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016.

[2] Aumasson, Jean-Philippe, et al. "BLAKE2: simpler,
smaller, fast as MD5." International Conference on
Applied Cryptography and Network Security. Springer,
Berlin, Heidelberg, 2013.

[3] Biryukov, Alex, and Adi Shamir. "Cryptanalytic
time/memory/data tradeoffs for stream ciphers."
International Conference on the Theory and Application
of Cryptology and Information Security. Springer, Berlin,
Heidelberg, 2000.

[4] Hatzivasilis, G., Papaefstathiou, I, and Manifavas, C. "
Password Hashing Competition-Survey and
Benchmark." IACR Cryptology ePrint Archive, 265, 2015.

