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Abstract - Cloud manufacturing is a hybrid model that 
provides both hardware and software resources through 
computer networks. Data services (hardware) together with 
their functionalities (software) are hosted on web servers 
rather than on single computers connected by networks. 
Through a computer, a browser and an internet connection, 
each user accesses a cloud platform and asks for specific 
services. This model creates a brand new opportunity for 
enterprises. It is largely impossible to carry out some 
manufacturing tasks without the support of suppliers, 
contractors and business partners. There is a need to connect 
manufacturers together to share risks, benefits, competiveness 
and costly resources. More than just deploying manufacturing-
related software applications in the computing Cloud, Cloud 
Manufacturing is an integrated solution that provides a pool 
of machine capabilities provided by Cloud participants. 
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1. INTRODUCTION  

Cloud Manufacturing is a model for enabling ubiquitous, 
convenient and on-demand network access to a shared pool 
of configurable manufacturing resources (e.g., manufacturing 
software tools, manufacturing equipment, and 
manufacturing capabilities) that can be rapidly provisioned 
and released with minimal management  effort or service 
provider interactions. Like Cloud Computing concept, 
manufacturing infrastructure, platform and software 
application in Cloud Manufacturing can be offered as a 
service to a Cloud User. By extending the concept to a 
broader scope, all the production objects and features can be 
treated as a service, hence everything as a service. The rest 
of this section discusses the Cloud Manufacturing structure 
and related technologies.  

Cloud concept presents a promising future for computing 
business and the same can be said for manufacturing 
business. Cloud Manufacturing is described as a computing 
and service-oriented manufacturing model developed from 
existing  advanced manufacturing models (e.g., Application 
service  provider,  Agile Manufacturing, Networked 
Manufacturing, and Manufacturing Grid), enterprise 
information technologies under  the support of cloud 
computing, Internet of things, virtualization and service-
oriented technologies, and advanced computing  

technologies. In this paper, we focus on minimizing the total 
execution cost of applications on these resources provided 
by Cloud service providers, such as Amazon and GoGrid3. 
We achieve this by using a meta- heuristics method called 
Particle Swarm Optimization (PSO). 

2. PROBLEM FORMULATION 

The mapping of tasks of an application workflow to 
distributed resources can have several objectives. We focus 
on minimizing the total cost of computation of an application 
workflow. Figure 5 depicts a workflow structure with five 
tasks, which are represented as nodes. The dependencies 
between tasks are represented as arrows. 

 

Figure1 An example workflow, compute nodes (PC) & 
storage (S). 

 This workflow is similar in structure to our version of the 
Evolutionary Multi-objective Optimization (EMO) application. 
The root task may have an input file (e.g. f.in) and the last 
task produces the output file (e.g. f.out). Each task generates 
output data after it has completed (f12, f13, ..., f45). These 
data are used by the task’s children, if any. The numeric 
values for these data is the edge-weight (ek1,k2) between 
two tasks k1 Є T and k2 Є T . The figure also depicts three 
compute resources (PC1, PC2, PC3) interconnected with 
varying bandwidth and having its own storage unit (S1, S2, 
S3). The goal is to assign the workflow tasks to the compute 
resources such that the total cost of computation is 
minimized. 

Task 1 Task 2 Task 3 Task 4 Task 5 

PC2 PC2 PC3 PC3 PC1 
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 A sample particle for the workflow 

 Task 1 Task 2 Task 3 Task 4 Task 5 

PC 

1 3 3 2 1 

2 3 1 1 3 

1 2 3 3 2 

3 2 3 1 2 

3 2 2 3 1 

   
Table 1: The Taskflow 

3. PARTICLE SWARM OPTIMIZATION ALGORITHM 

PSO was first introduced by Kennedy and Eberhart as an 
optimization method for non-linear functions with 
continuous variables. The initial intention of PSO was to 
simulate the social behavior of flocking birds searching for 
food by means of exchanging knowledge among flock 
members. By applying simple formulae, Kennedy and 
Eberhart developed an optimization algorithm that mimics 
this knowledge sharing. Each individual in the flock was 
represented by a point in a two- dimensional space, and 
future movement of each point in the search space is 
determined using a combination of previous experience of 
the individual, and of other individuals in the group. 

The PSO provides a population-based search procedure in 
which the individuals, called particles, change their positions 
with time. Each particle adjusts its position according to its 
own best experience and the best experience of neighboring 
particles.  

     The PSO heuristic is applied by first generating a number 
of random solutions (or positions of particles) in the solution 
space. PSO searches for optimal solution by updating 
generations. Each particle is updated by means of two ‘best’ 
values, namely pbest (p_k

i) and gbest (p_k
g) in successive 

iteration. The pbest (p_k
i) is the best solution, a particle has 

achieved so far. The gbest (p_k
g) is the best solution obtained 

so far by any particle in the population. The quality of each 
particle position is then evaluated based on the objective 
function. To proceed from iteration k to the next iteration 
k+1, the velocity of a particle i is calculated using the 
following equation (1). 

 

 

The new position of the particle is obtained by equation (2), 

 

Where s_k
i  is particle i position in the current iteration k. ω 

can be expressed by the inertia weights approach, Ca and Cb 
are the acceleration  constants  which  influence  the 
convergence  speed  of  each particle,  and  rand( )  is a 
random number between 0 and 1. In equation (1), the first 
part represents the inertia of the previous velocity, the 
second part is the “cognition” part which represents the 
private thinking by itself, and the third part is the “social” 
part which represents the cooperation among the particles. 
If the summation in equation (1) causes the velocity vki, on 
that dimension, to exceed Vmax, then vki will be limited to 
Vmax. Vmax determines the resolution with which regions 
between the present position and the target position are 
searched. If Vmax is too large, the particles might fly over the 
past good solutions. If Vmax is too small, the particles may 
not explore sufficiently beyond local solutions. Usually the 
range of particle is taken as the Vmax. In this project, Vmax = 
6. The constants Ca and Cb represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
p_ki and p_kg positions. Low values allow particles to roam far 
from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward 
or passed the target regions. Hence the acceleration 
constants Ca and Cb are often set to be 2.0 according to the 
past experiences. Suitable selection of inertia weight ω 
provides a balance between global and local explorations, 
thus requiring less iteration on average to find a sufficiently 
optimal solution. As originally developed, ω often decreases 
linearly from about 0.9 to 0.4 during a run. In general, the 
inertia weight ω is set according to the following equation: 

 

ω Inertia weight; 

v_ki Velocity of particle i in the current iteration k; 

v_(k+1)i  Velocity of particle i in the next iteration k+1; 

p_ki The best solution that particle i reached throughout 
iterations 1,2, …….k,; 

p_kg The best solution that the group has reached 
throughout iterations 1,2, …..k,; 

s_ki Particle i position in the current iteration k; 

s_(k+1)i Particle i position in the next iteration k+1; 

rand() Uniformly distributed random number generated 
between 1 and 3; 

Ca& Cb Learning factors. 

Where itermax represents the maximum number of 
iteration, and iter is the current number of iterations.  
itermax depends on the problem to be optimized. Here, it is 
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taken as 500. Moreover, ωmax and  ωmin are the maximum 
and minimum weight values respectively. 

 4. Proposed PSO Algorithm 

 Set particle dimension as equal to the size of ready 
tasks 

 Initialize particles position randomly For each 
particle, calculate its fitness valueIf the fitness value is better 
than the previous best pbest, set the current fitness value as 
the new pbest. 

 After Steps 3 and 4 for all particles, select the best 
particle as gbest. 

 For all particles, calculate velocity using Equation 1 
and update their positions using Equation 2. 

 If the stopping criteria or maximum iteration is not 
satisfied, repeat from Step3. 

5. Experimental Evaluation 

In this section, we present the metric of comparison, the 
experiment setup and the results. 

Five possible combinations of tasks are considered in the 
initialization module. Matrix [1] shows the initial population 
consists of five particles. Each and every particle in the initial 
population has a single row.  

         [1] 

A. Evaluation module 

Matrix [1] is called s_ki and the manufacturing system 
efficiency is calculated for all particles. The maximum total 
indexing time in seconds is corresponding to the second 
particle.  Hence, the second particle is selected and is called 
gbest. pkg for the first iteration. The p_kg is then converted 
into the same size of ski (i.e., 5 x 3), by repeating the same 
row.  

B.Scheduling heuristic Algorithm. 

 Calculate average computation cost of all tasks in all 
compute resources. Calculate average cost of 
(communication/ size of data) between resources Set task 
node weight wkj as average computation cost Set edge 
weight ek1,k2 as size of file transferred between tasks 
Compute PSO({ti}) /*a set of all tasks i ∈ k*/repeat for all 
“ready” tasks {ti} ∈ T do Assign tasks {ti} to resources {pj} 
according to the solution provided by PSO end for Dispatch 
all the mapped tasks Wait for polling time Update the ready 

task list Update the average cost of communication between 
resources according to the current network load Compute 
PSO({ti}) until there are unscheduled tasks  

C. Scheduling Heuristic 

We calculate the average computation cost all tasks on all the 
computer resources. This cost can be calculated for any 
application by executing each task of an application on a 
series of known resources. It is represented as TP matrix in 
Table 2. As the computation cost is inversely proportional to 
the computation time, the cost is higher for those resources 
that complete the task quicker. Similarly, we store the 
average value of communication cost between resources per 
unit data, represented by PP matrix in Table 2, described 
later in the paper. The cost of communication is inversely 
proportional to the time taken. We also assume we know the 
size of input and output data of each task.In addition, we 
consider this cost is for the transfer per second (unlike 
Amazon CloudFront which does not specify time for 
transferring). The initial step is to compute the mapping of 
all tasks in the workflow, irrespective of their dependencies 
(Compute PSO(ti)).  

This mapping optimizes the overall cost of computing the 
workflow application. To validate the dependencies between 
the tasks, the algorithm assigns the “ready” tasks to 
resources according to the mapping given by PSO. By “ready” 
tasks, we mean those tasks whose parents have completed 
execution and have provided the files necessary for the 
tasks’ execution. After dispatching the tasks to resources for 
execution, the scheduler waits for polling time. This time is 
for acquiring the status of tasks, which is middleware 
dependent 

 

 

TP (5x3)= 

 PC1 PC2 PC3 

T1 1.23 1.12 1.15 

T2 1.17 1.17 1.28 

T3 1.13 1.11 1.11 

T4 1.26 1.12 1.14 

T5 1.19 1.14 1.22 

 
Table 2 The Cost of execution of Ti at PCj 

Depending on the number of tasks completed, the ready list 
is updated, which will now contain the tasks whose parents 
have completed execution. We then update the average 
values for communication between resources according to 
the current network load. As the communication costs would 
have changed, we recompute the PSO mappings. Also, when 
remote resource management systems are not able to assign 
task to resources according to our mappings due to resource 
unavailability, the recomputation of PSO makes the heuristic 
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dynamically balances other tasks’ mappings (online 
scheduling). 

 

 

PP (3x3)= 

 PC1 PC2 PC3 

PC1 0 0.17 0.21 

PC2 0.17 0 0.22 

PC3 0.21 0.22 0 

     

 
Table 3 The Cost of Comunication between PCi & PCj 

Based on the recomputed PSO mappings, we assign the 
ready tasks to the compute resources. These steps are 
repeated until all the tasks in the workflow are scheduled. 

6. CONCLUSIONS 

In this work, we presented a scheduling heuristic based on 
Particle Swarm Optimization (PSO).We used the heuristic to 
minimize the total cost of execution of application workflows 
on Cloud computing environments. We obtained total cost of 
execution by varying the communication cost between 
resources and the execution cost of compute resources. We 
compared the results obtained by our heuristic against “Best 
Resource Selection” (BRS) heuristic. 

We found that PSO based task-resource mapping can achieve 
at least three times cost savings as compared to BRS based 
mapping for our application workflow. In addition, PSO 
balances the load on compute resources by distributing tasks 
to available resources. The heuristic we proposed is generic 
as it can be used for any number of tasks and resources by 
simply increasing the dimension of the particles and the 

number of resources, respectively. 
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