

EXPERIMENTAL STUDY OF BAGASSE ASH AS A CEMENT REPLACING MATERIAL

Dhrmveera Singh¹, Siddharth Jain²

¹Dhrmveera Singh, Post Graduate Student, Radha Govind Group of Institutions, Uttar Pradesh, India ²Siddharth Jain, Guide & Assistant Professor, KIET Group of Institutions, Uttar Pradesh, India

Abstract – This research is therefore, conducted to examine the potential of bagasse ash as a cement replacing material bagasse ash samples are collected from Wonji's sugar factory and its chemical properties are investigated. The bagasse ash are then ground until the particles passing the 63 µm reaches about 85%, which is similar to that of Ordinary Portland Cement. Ordinary Portland cement and Portland Pozzolana Cement are replaced by ground bagasse ash. Normal consistency and setting time of the pastes containing ordinary Portland cement and bagasse ash from 5% to 30% replacement were investigated. The compressive strength of mortars containing ordinary Portland cement and pozzolana Portland cement with bagasse ash from 5% to 30% replacements are also investigated. Four different concrete mixes with the bagasse ash replacing 0%, 5%, 15% and 25% of the ordinary Portland cement were prepared for 35MPa concrete with water to cement ratio of 0.55 and 350kg/m³ cement content. The properties of these mixes have then been assessed both at the fresh and hardened state.

Key Words: Bagasse, Concrete, Cement Hydration eliminate

1. INTRODUCTION

Concrete is the most commonly used construction material in the world. It is basically composed of two components: paste and aggregate. The paste contains cement and water and sometimes other cementitious and chemical admixtures, whereas the aggregate contains sand and gravel or crushed stone. The paste binds the aggregates together. The aggregates are relatively inert filler materials which occupy 70% to 80% of the concrete and can therefore be expected to have influence on its properties. The proportion of these components, the paste and the aggregate is controlled by; the strength and durability of the desired concrete, the workability of the fresh concrete and the cost of the concrete.

Cement which is one of the components of concrete plays a great role, but is the most expensive and environmentally unfriendly material. Therefore requirements for economical and more environmental-friendly cementing materials have extended interest in other cementing materials that can be used as partial replacement of the normal Portland cement.

```
C3S + 4.3H C1.7SH3 + 1.3CH
C2S + 3.3H C1.7SH3+0H
```

Ground granulated blast furnace slag, fly ash, silica fume, etc. have been used successfully for this purpose.

2. CASE STUDY

Recently sugarcane bagasse ash, which is a byproduct of sugar factories found after burning sugarcane bagasse which in turn is found after the extraction of all economical sugar from sugarcane, has been tested in some parts of the world for its pozzolanic property and has been found to improve some of the properties of the paste, mortar and concretelike compressive strength and water tightness in certain replacement percentages and fineness. However, nothing has been done to check the feasibility of the bagasse ash produced in Ethiopia for this purpose

Table 2.1 Typical composition of ordinary Portland cement

Chemical Name	Chemical formula	Shorthand					
Notation Weight percentage							
Tricalcium silicate	3CaO.SiO2	C3S	55				
Dicalcium silicate	2CaO.SiO2	C2S	18				
Tricalcium alumina	ate 3CaO.Al2O3	C3A	10				

RIET Volume: 06 Issue: 06 | June 2019

www.irjet.net

C	15514.	2375	0050
p	-ISSN:	2395	0072

Tetra calcium			
Aluminoferrite	4Ca0.Al203.Fe03	C4AF	8
Calcium sulfate			
dehydrate (gypsum)) CaSO4.2H2O	CSH2	6

Hydration of C3A. The hydration of C3S and C2S are shown in Eq.2.1 and Eq.2.2:

After a rapid initial reaction C3S will pass through a dormant stage which has a practical significance because it allows concrete to be placed and compacted before setting and hardening commences.

the levels found in china, which is about 800 kilograms and India about 125 kilograms per capita.

Plant Name	Max	2009 Capacity			
	Capacity	PPC	OPC	Total	
Mugher Cement	900,000	775,000	89,000	864,000	
Messebo Cement	900,000	845,000		845,000	
National Cement	300,000	300,000		300,000	
Jemma Cement	240,000		200,000	200,000	
Abyssinia Cement	150,000		100,000	100,000	
Midroc Dejen	90,000		90,000	90,000	
Red Fox Intl	150,000		150,000	150,000	
CGOCC Cement	150,000	100,000		100,000	
Total	2,880,000	2,020,000	629,000	2,649,000	

Table 2.2 Cement production in Ethiopia in 2009.

Despite the rising supply, the cement demand in the country has been increasing even more than the supply due to large-scale public sector infrastructure projects (roads, power plants) and private sector construction activity for residential housing, industry, and real- estate developments. Table 2.3 below shows the consumption estimates and the growth rate of cement in Ethiopia:

Table 2.3	Cement consum	ption in	Ethiopia	(million)
-----------	---------------	----------	----------	-----------

Year (G.C)	Consumption Estimate (million tons)	Growth rate (%)
1996	0.67	
1997	0.77	14.9
1998	0.75	- 2.60

RJET Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

1999	0.74	- 1.30
2000	0.82	10.80
2001	0.82	0.00
2002	0.97	18.30
2003	1.04	7.20
2004	1.17	12.50
2005	1.81	54.70
2006	2.00	10.50
2007	2.50	25.00
2008	3.20	27.00

3. USED MATERIALS AND METHODOLOGY

3.1 USED MATERIALS

Following materials are used in this experiment -

- Cement
- Fine aggregate
- Coarse Aggregate
- Water
- Bagasse Ash

3.2 METHODOLOGY

3.2.1 WORKABILITY

The workability of cement concrete is tested as per using standard sizes of Slump Molds as per IS: 1199 – 1999.

3.2.2 COMPRESSIVE STRENGTH

For find out compressive strength of cement concrete we casted steel cube mold of size of 150mm*150mm*150mm. After 24 hour casting of cube removing the mold and allowed for curing in a curing tank for a period of 28 days. After 7 days & 28 days of curing of cube we tested the cube on Universal Testing Machine. The test procedure is used as per IS: 516-1979.

4. **RESULTS & CONCLUSIONS**

4.1 RESULTS

In this Study we will compare cement mortar with OPC-BA mortar-

• COMPRESSIVE STRENGTH OF OPC-BA MORTAR

• Twenty eight Days Compressive strength of OPC-BA mortar

No.	Age(days)	Di: (mensi (mm)	on	Weight (gm)	Failure Load	Compressive Strength (MPa)	
		L	W	Н		(KN)	(MFa)	
BAM 0								
1	28	50.1	50.1	50.0	271	137.0	54.82	

TRIET Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

		9 2 0						
2		50.3 50.3 50.0 9 8 4	275	134.2	53.68			
3		50.050.150.2123	276	132.7	53.09			
		Average	274	134.6	53.86			
			BAM 5					
1		49.550.149.8254	271	141.5	56.62			
2	28	49.850.049.1037	268	142.2	56.86			
3		$\begin{array}{cccc} 50.1 & 50.2 & 50.1 \\ 2 & 3 & 1 \end{array}$	268	136.4	54.56			
		Average	269	140.1	56.01			
			BAM 10					
1		49.850.151.1413	267	141.7	56.70			
2	28	50.350.050.1127	272	139.1	55.66			
3		50.250.050.1413	271	134.8	53.91			
		Average	270	138.5	55.42			
			BAM 15					
1		49.750.550.0181	266	134.8	53.94			
2	28	50.150.150.3073	271	132.1	52.83			
3		50.150.150.4122	267	135.4	54.15			
		Average	268	134.1	53.64			
	1		BAM 20	1				
1		49.950.250.5645	270	128.3	51.32			
2	28	50.450.050.0245	264	126.8	50.72			
3		50.350.150.5343	264	125.0	50.00			
		Average	266	126.7	50.68			
BAM 25								
1		50.350.250.2059	262	114.4	45.76			
2	28	50.049.950.2172	264	116.5	46.61			
3		50.149.550.0164	266	113.6	45.47			
		Average	264	114.8	45.95			
			BAM 30					
1	28	50.2 50.5 50.4	266	112.2	44.89			

RJET Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

		2	5	2			
2		50.0 1	50.0 7	50.0 5	265	107.2	42.87
3		49.7 4	50.0 2	50.1 4	261	108.6	43.46
Average		264	109.3	43.74			

In this Study we will compare cement mortar with PPC-BA mortar

• COMPRESSIVE STRENGTH OF PPC-BA MORTAR

• Twenty eight Days Compressive strength of PPC-BA mortar

		Dimension			Woight	Failure	Compressive			
No.	Age (days)	(mm)		(gm)	Load	Strength				
			W	Н	(gm)	(KN)	(MPa)			
BAM 0										
1		50.21	50.18	50.25	271	107.6	43.03			
2	28	50.14	50.11	50.26	274	109.9	43.96			
3		50.21	50.47	50.25	271	110.3	44.14			
		A	Average	;	272	109.3	43.71			
			BA	M 5						
1		50.31	50.41	50.01	267	94.5	37.81			
2	28	50.42	50.33	50.01	264	90.1	36.03			
3		50.12	50.13	50.41	264	97.5	39.02			
	I	A	Average	•	265	94.1	37.62			
			BAN	1 10			•			
1		50.41	50.65	51.14	263	93.8	37.51			
2	28	50.21	50.13	50.12	267	92.1	36.83			
3		50.58	50.14	50.12	265	94.1	37.65			
		Ā	Average)	265	93.3	37.33			
			BAN	1 15						
1		50.15	50.12	50.03	264	93.2	37.29			
2	28	50.00	50.01	50.21	264	89.1	35.63			
3		50.38	50.12	50.01	267	90.8	36.31			
	1	Ā	Average	9	265	91.0	36.41			
			BAN	1 20			·			

IRJET Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

1		50.21	50.44	50.11	265	86.4	34.57
2	28	50.21	50.12	49.65	261	89.8	35.94
3		50.15	50.19	50.30	263	88.2	35.30
		Ā	verage	9	263	88.1	35.27
			BAN	1 25			
1		50.14	50.12	50.38	263	78.4	31.35
2	28	50.11	50.10	50.20	259	80.3	32.11
3		50.74	50.21	50.12	261	80.7	32.27
		A	verage)	261	79.8	31.91
			BAN	1 30			
1		50.62	50.41	50.21	257	67.5	27.01
2	28	50.32	50.41	50.12	261	68.8	27.53
3		50.21	50.13	50.32	262	73.1	29.25
		A	lverage	260	69.8	27.93	

In this Study we will compare cement-Ca(OH) $_2$ mortar with OPC-BA- Ca(OH) $_2$ mortar

• COMPRESSIVE STRENGTH OF OPC-BA-Ca(OH)₂ MORTAR

• Twenty eight Days Compressive strength of OPC-BA-Ca(OH)₂ mortar

No.	Age (days)	Dimension (mm)			Weight	Failure	Compressive		
		L	w	Н	(gm)	(KN)	(MPa)		
					BAM 0				
1		50.41	50.3	50.4	273	130.3	52.11		
2	28	50.39	50.4	50.30	277	132.3	52.94		
3		50.05	50.52	50.33	278	131.6	52.65		
Average					276	131.4	52.57		
					BAM 15				
1		50.65	50.51	50.4	266	131.4	52.58		
2	28	50.63	50.67	50.5	265	128.1	51.25		
3		50.22	50.24	50.5	267	127.6	51.04		
		A	verage		266	129.0	51.62		
BAM									
15-3									
1		50.24	50.2	51.4	267	127.3	50.94		
2	28	50.51	50.24	50.53	271	130.8	52.32		
3		50.42	50.3	50.4	269	130.1	52.07		

TRIFT Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

		Average			269	129.4	51.78
					BAM		
					15-6		
1		50.45	50.6	50.09	266	129.4	51.78
2	28	50.45	50.15	50.3	270	130.1	52.03
3		50.45	50.48	50.5	271	129.0	51.60
Average					269	129.5	51.80

In this Study we will compare cement concrete with OPC-BA concrete

• COMPRESSIVE STRENGTH OF OPC-BA CONCRETE

o Twenty eight Days Compressive strength of OPC-BA concrete

No.	Age (days)	D	imensio	n	Woight	Failure	Compressive			
		(mm)			(gm)	Load	Strength			
		L	W	Н	(gm)	(KN)	(MPa)			
					BA 0					
1		152.44	150.36	149.93	8037	985.9	43.82			
2	28	150.15	150.0	149.5	8113	957.4	42.55			
3		151.2	152.51	152.4	8180	936.9	41.64			
			Average		8110	960.1	42.67			
					BA 5					
1		151.33	150.53	150.21	8005	1029.6	45.76			
2	28	151.5	152.02	150.1	8203	972.2	43.21			
3		152.31	150.72	149.8	7972	1022.2	45.43			
			Average		8060	1008.0	44.80			
BA 15										
1		152.58	150.01	149.53	7950	921.6	40.96			
2	28	152.64	150.0	151.1	8067	900.7	40.03			
3		150.73	150.3	151.21	8013	960.1	42.67			
			Average		8010	927.5	41.22			
BA 25										
1	28	153.0	152.7	149.34	8122	821.9	36.53			
2		151.23	149.9	149.82	7749	859.7	38.21			
3		151.56	150.2	150.4	8057	835.4	37.13			
		•	Average		7976	839.0	37.29			

Fifty six Days Compressive strength of OPC-BA concrete 0

No	Age (days)	I	Dimension (mm)		Weight	Failure Load (KN)	Compressive Strength (MPa)			
		L	W	Н	(gm)					
BA 0										
1	56	151.30	149.67	150.32			45.50			

IRJET Volume: 06 Issue: 06 | June 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

					7965	1023.7				
2		151.24	150.16	150.50	8028	1017.7	45.23			
3		151.35	150.47	150.5	8076	1062.2	47.21			
	I		Average	8023	1034.5	45.98				
				BA 5		1				
1		150.15	149.43	152.70	7850	1113.9	49.51			
2	56	152.21	150.20	151.0	8203	1080.7	48.03			
3		151.03	150.35	150.75	7854	1111.0	49.38			
		1	Average		7969	1101.9	48.97			
			BA	15						
1		151.94	149.86	149.88	7838	959.2	42.63			
2	56	150.73	150.65	159.54	7786	1017.2	45.21			
3		151.23	150.45	148.96	7830	1043.5	46.38			
	Average					1006.6	44.74			
BA 25										
1		149.90	150.00	149.83	7787	910.1	40.45			
2	56	150.32	150.10	149.32	7802	974.9	43.33			
3		151.24	150.45	149.81	7835	883.1	39.25			
		•	Average	7808	922.7	41.01				

4.2 CONCLUSIONS

The use of bagasse ash as a cement replacing material in concrete production is studied and after the research work is done, the following conclusions are made:

- 1. The chemical composition test reveals that the bagasse ash from Wonji's sugar factory can be assigned as class N pozzolana, as prescribed by ASTM C 618, i.e. SiO2+ Al2O3+ Fe2O3 is greater than 70%.
- 2. Higher replacements of cement by bagasse ash resulted in higher normal consistency (implying higher water demand for certain workability) and longer setting time.
- 3. The workability of mortar and concrete containing bagasse ash decreases slightly as the bagasse ash content increases which is due to the higher water demand of bagasse ash.
- 4. The investigation of this thesis has revealed that replacement of ordinary Portland cement by bagasse ash from 5% to 10% results in a better compressive strength than that of the control mortar with 100% ordinary Portland cement. And the compressive strength decreases as the bagasse ash replacement increases over 10%.

Moreover, all of the OPC- BA blended mortars satisfy the ASTM C 618 minimum pozzolanic activity index requirement i.e. 75%.

REF.ERENCES

- 1. aik T.R. and Moriconi G., Environmental friendly durable concrete made with recycled materials for sustainable concrete construction , University of Wisconsin Milwaukee , 2006.
- 2. AjayTGoyalTandTAnwarTA.M.,THattoriTKunio,TOgataTHidehiko,TPropertiesTofTSugarcaneTbagasseTashTandTitsTp otentialTasTcement-pozzolanaTbinder,TAinTShamsTUniversity,TDecemberT2007.
- 3. Noor Ul Amin, TchemicalTactivationTofTbagasseTashTinTcementitiousTsystemTandTitsTimpactTonTstrength Tdevelopment,TJ.chem.soc.pak,TNoT4,TAbdulTWaliTKhanTUniversity,TPakistan, 2010.
- 4. GhazaliTM.TJ.,TAzhariTC.TH.,TAbdullahTS.T&TOmarTM.TZ.,TProceedingTofTworldTcongressTonTengineering,TLond on,TCharacterizationTofTNaturalTFibersT(SugarcaneTBagasse)TinTCementTComposites,T2008.
- 5. JohnTNewmanTandTBanTSengTChoo,TAdvancedTConcreteTTechnologyTConstituentTMaterials,TButterworth-HeinemannTElsevierTLtd,T2003,Tpp.1/15-1/19.
- 6. BelenTG.,TBethlehemTW.,TElshadayTW.,THelinaTB.,TDevelopmentTofTanTeconomicalTselfTcompactingTconcreteTinTEthiopia,TFinalTyearTresearchTpaper,TAddisTAbabaTUniversityTdepartmentTofTcivilTengineering,TJuneT2011.
- 7. DenamoTAddissie, THandlingTofTConcreteTmakingTmaterialsTinTtheTEthiopianTconstructionTindustryAddisTAbab aTUniversityTdepartmentTofTcivilTengineering, TschoolTofTgraduateTstudies, TOctoberT2005.