
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2108

Evaluating and Comparing the Two Variation with Current Scheduling

Algorithms

P.Chenna Kesava1, P.Subhan Basha2

1PG Student, Department of C.S.E, SSITS, Rayachoti Kadapa, A.P, India.
2Assistant Professor Dept. of C.S.E, SSITS, Rayachoti Kadapa, A.P, India.

---***---
Abstract - It is cost-efficient for a tenant with a limited
budget to establish a virtual MapReduce cluster by renting
multiple virtual private servers (VPSs) from a VPS provider.
To provide an appropriate scheduling scheme for this type of
computing environment, we propose in this paper a hybrid
job-driven scheduling scheme (JoSS for short) from a
tenant’s perspective. JoSS provides not only joblevel
scheduling, but also map-task level scheduling and reduce-
task level scheduling. JoSS classifies MapReduce jobs based
on job scale and job type and designs an appropriate
scheduling policy to schedule each class of jobs. The goal is
to improve data locality for both map tasks and reduce tasks,
avoid job starvation, and improve job execution
performance. Two variations of JoSS are further introduced
to separately achieve a better map-data locality and a faster
task assignment. We conduct extensive experiments to
evaluate and compare the two variations with current
scheduling algorithms supported by Hadoop. The results
show that the two variations outperform the other tested
algorithms in terms of map-data locality, reduce-data
locality, and network overhead without incurring significant
overhead. In addition, the two variations are separately
suitable for different MapReduce-workload scenarios and
provide the best job performance among all tested
algorithms.)

Key Words: MapReduce, Hadoop, virtual MapReduce
cluster, map-task scheduling, reduce-task scheduling

1. INTRODUCTION

MapReduce works by dividing input files into chunks and
processing these in a series of parallelizable steps.

More and more applications with their data relying on cloud
platforms are geo distributed, for many reasons. Working on
such remote outsourced data sets present in those cloud
data centers most efficiently with MapReducing is much
more complex. Assume that there are substantially sized
web caches on multiple continents and that a web
administrator needs to execute a query across this data set.
Some methods are as follows Gathering all subdata sets into
a single data center before handling them with MapReduce is
one possibility. Execute individual instances of the
MapReduce job separately on each subdata set in respective
data centers and then aggregate the results. Perform the
MapReduce jobs as a single remote outsourced operation
where mappers and reducers may be deployed in different

data centers, via random allocation in the considered data
centers. One & Two Solutions are inefficient and complex but
third one is optimal. Current MapReduce implementations
such as Hadoop are not designed to work across multiple
data centers and will perform poorly in such deployments.
So a better system is required to achieve that.

We implement Joss-T and JOSS-J in a Custom MapReduce
Framework conduct extensive experiments to compare them
with several known scheduling algorithms supported by
Hadoop, including the FIFO algorithm, Fair scheduling
algorithm, and Capacity-scheduling algorithm. The
experimental results demonstrate that both JOSS-T and JOSS-
J outperform the other tested algorithms in terms of map-
data locality, reduce-data locality, and network overhead
without causing too much overhead, regardless of job type
and scale.

 1.1 PURPOSE OF THE PROJECT

 We analyze the problem of executing remote
outsourced MapReduce job sequences as arising in
distributed applications.

 We present a job-driven scheduling scheme JOSS, a
system for efficiently executing sequences of
MapReduce jobs on remote outsourced data sets
using a novel algorithm named data transformation
that determines an effective execution path to
execute a given sequence of MapReduce jobs on a
remote outsourced data set, optimizing for either
the execution time or the cost.

 JOSS is a Hadoop based framework that can
efficiently perform a sequence of MapReduce jobs
on a remote outsourced data set across multiple
data centers.

 With current frameworks for “the cloud” operating
only in single data centers, JOSS thus—
metaphorically speaking—acts much like the
atmosphere surrounding the clouds.

 Processing Steps
 A given node of a cluster describes the number of

MapReduce phases that have been applied on input
data and the location of the derivative of each
partition.

 Each row of nodes of the cluster belongs to the
same stage.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2109

 So, a node in the cluster is described as Ns, where s is
the number of MapReduce operations in the sequence
that have been applied so far and x is a p-tuple of
integers of the form d1; d2... di describing the current
distribution of data across a data center.

 To and From Transfer of Data across geo-distributions
and Main Processor with respect to above states is
required.

 JOSS scheduling algorithm involves constructing a graph
named a data transformation cluster, representing
possible execution paths for performing MapReduce
phases on input data.

 JOSS scheduling algorithm can minimize execution time
or cost. Using Virtual MR Clusters reduces execution
time or cost accordingly.

 A user can specify if the JOSS algorithm should
determine an optimized solution for execution time or
the (monetary) cost, where cost involves both cost to
maintain nodes and for transferring data. We implement
with respect to time as default metric and Performance
results are highlighted.

1.2 MAPREDUCE

MapReduce is a distributed programming model proposed
by Google to process vast amount of data in a parallel
manner. Due to programming-model simplicity, built-in data
distribution, scalability, and fault tolerance, MapReduce and
its open-source implementation called Hadoop have been
widely employed by

Many companies, including Face book, Amazon, IBM,
Twitter, and Yahoo!, to process their business data.
MapReduce has also been used to solve diverse applications,
such as machine learning, data mining, bioinformatics, social
network, and astronomy. Other MapReduce-like
implementations can be found.

Each VPS is a virtual machine with its own operating system
and disk space. Due to some reasons, such as availability
issue of a datacenter or resource shortage on a popular
datacenter, a tenant might rent VPSs from different
datacenters operated by a same VPS provider to establish
his/her virtual MapReduce cluster.

 In this paper, we concentrate on a virtual MapReduce
cluster of this type. For a person/organization that
establishes a conventional MapReduce cluster, map-data
locality (which is defined as how close a map task and its
input data) in the cluster is classified into node locality, rack
locality, and off-rack since the person/organization is aware
of the physical interconnection and placement among all
nodes and all racks. However, for a tenant who establishes a
virtual MapReduce cluster, the tenant only knows each VPS’s
IP address and each VPS’s datacenter location (e.g., city
name).

VPS-locality, which means that a map task and its input data
are co-located at the same VPS.

Well data intensive is nothing but big data and distributed
applications are the application that works on network by
communicating and coordinating with each other by passing
messages. . Again remember it’s a framework that handles
large amount of data for processing. You will get to know the
difference between Hadoop and Databases as you go down
the line in the coming tutorials. Hadoop was derived from
the research paper published by Google on GFS and Google's
MapReduce. There are two integral parts of Hadoop HDFS.

Fig.1.Hadoop

HADOOP DISTRIBUTED SYSTEM (HDFS)

 Cluster

A hadoop cluster is made by having many machines in a
network; each machine is termed as a node, and these nodes
talks to each other over the network.

Fig. 2.Hadoop distributed file system (HDFS)

 Block size

This is the minimum amount of size of one block in a file
system, in which data can be kept contiguously. The default
size of a single block in HDFS is 64Mb.In HDFS, Data is kept
by splitting it into small chunks or parts. Let’s say you have a
text file of 200 MB and you want to keep this file in a Hadoop
Cluster. Then what happens is that, the file breaks or splits
into a large number of chunks, where each chunk is equal to
the block size that is set for the HDFS cluster (which is 64 MB
by default). Hence a 200 Mb of file gets split into 4 parts, 3

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2110

parts of 64 MB and 1 part of 8 MB, and each part will be kept
on a different machine

 Master node

The name node manages the file system namespace. It
maintains the file system tree and the metadata for all the
files and directories in the tree. So it contains the
information of all the files, directories and their hierarchy in
the cluster in the form of a Namespace Image and edit logs.

Worker node

These are the worker that does the real work. And here by
real work we mean that the storage of actual data is done by
the data node. They store and retrieve blocks when they are
told to (by clients or the name node), and they report back to
the name node periodically with lists of blocks that they are
storing. Here one important thing that is there to note: In
one cluster there will be only one Name node and there can
be N number of data nodes.

Fig.3.Worker nodes

 2. PROCESS MODEL USED WITH JUSTIFICATION

Irjet Template sample paragraph .Define abbreviations and
acronyms the first time they are used in the text, even after
they have been defined in the abstract. Abbreviations such as
IEEE, SI, MKS, CGS, sc, dc, and RMS do not have to be defined.
Do not use abbreviations in the title or heads unless they are
unavoidable.

OUTPUT SCREENSHOTS

MASTER NODE

WORKER NODE

MAPREDUCE OUTPUT

GENDER WISE SOCIAL DISTRIBUTION PROCESSING OF
TOTAL DATA

GENDER WISE DISTRIBUTION PROCESSING OF TOTAL
DATA

OUT PUT

GENDER WISE DISTRIBUTION PROCESSING OF TOTAL
DATA

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2111

DYNAMIC GROUPING VM – JOSS OUTPUT

IMAGE DISTRIBUTION

VIDEO DISTRIBUTION

INTRODUCTION TO TESTING

Testing is a process, which reveals errors in the program. It
is the major quality measure employed during software
development. During software development. During testing,
the program is executed with a set of test cases and the
output of the program for the test cases is evaluated to
determine if the program is performing as it is expected to
perform

3. TESTING IN STRATEGIES

In order to make sure that the system does not have errors,
the different levels of testing strategies that are applied at
differing phases of software development are:

 Unit Testing

 Unit Testing is done on individual modules as they are
completed and become executable. It is confined only to the
designer's requirements. Each module can be tested using
the following two Strategies

Black Box Testing

In this strategy, some test cases are generated as input
conditions that fully execute all functional requirements for

the program. This testing has been uses to find errors in the
following categories:

 Incorrect or missing functions

 Interface errors

 Errors in data structure or external database access

 Performance errors

 Initialization and termination errors.

White Box Testing

 In this, the test cases are generated on the logic of each
module by drawing flow graphs of that module and logical
decisions are tested on all the cases. It has been uses to
generate the test cases in the following cases:

 Guarantee that all independent paths have been
executed.
Execute all logical decisions on their true and false
Sides.

 Execute all loops at their boundaries and within
their operational bounds

 Execute internal data structures to ensure their
validity.

Integrating Testing

Integration testing ensures that software and subsystems
work together a whole. It tests the interface of all the
modules to make sure that the modules behave properly
when integrated together. In this, case the communication
between the device and Google Translator Service.

System Testing

 Involves in-house testing in an emulator of the entire system
before delivery to the user. Its aim is to satisfy the user the
system meets all requirements of the client's specifications.

Acceptance Testing

It is a pre-delivery testing in which entire system is tested in
a real android device on real world data and usage to find
errors.

TEST APPROACH

Testing can be done in two ways:

 Bottom up approach

 Top down approach

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2112

Bottom up Approach

Testing can be performed starting from smallest and lowest
level modules and proceeding one at a time. For each module
in bottom up testing, a short program executes the module
and provides the needed data so that the module is asked to
perform the way it will when embedded within the larger
system. When bottom level modules are tested attention,
turns to those on the next level that use the lower level ones
they are tested individually and then linked with the
previously examined lower level modules.

Top down Approach

This type of testing starts from upper level modules. Since
the detailed activities usually performed in the lower level
routines are not provided stubs be written. A stub is a
module shell called by upper level module and that when
reached properly will return a message to the calling module
indicating that proper interaction occurred. No attempt is
made to verify the correctness of the lower level module.

Validation

The system has been tested and implemented successfully
and thus ensured that all the requirements as listed in the
software requirements specification are completely fulfilled.
In case of erroneous input corresponding error messages are
displayed

3. CONCLUSIONS

In this paper, we have introduced JOSS for scheduling
MapReduce jobs in a virtual MapReduce cluster consisting of
a set of VPSs rented from a VPS provider. Different from
current MapReduce scheduling algorithms, JOSS takes both
the mapdata locality and reduce-data locality of a virtual
MapReduce cluster into consideration. JOSS classifies jobs
into three job types, i.e., small map-heavy job, small reduce-
heavy job, and large job, and introduced appropriate policies
to schedule each type of job. In addition, the two variations
of JOSS are further introduced to respectively achieve a fast
task assignment and improve the VPS-locality.

The extensive experimental results demonstrate that both
JOSS-T and JOSS-J provide a better map-data locality, achieve
a higher reduce-data locality, and cause much less inter-
datacenter network traffic as compared with current
scheduling algorithms employed by Hadoop.

The experimental results also show that when the jobs of a
MapReduce workload are all small to the underlying virtual
MapReduce cluster, employing JOSS-T is more suitable than
the other algorithms since JOSS-T provides the shortest job
turnaround time. On the other hand, when the jobs of a
MapReduce workload are not all small to the virtual
MapReduce cluster, adopting JOSS-J is more appropriate
because it leads to the shortest workload turnaround time.

In addition, the two variations of JOSS have a comparable
load balance and do not impose a significant overhead on the
Hadoop master server compared with the other algorithms.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] Hadoop. (2014, Dec. 3) [Online]. Available:
http://hadoop. apache.org TABLE 10 The Average VPS Loads
when the Five Algorithms Were Individually Used to
Perform the Mixed Workload Algorithm Average number of
tasks run by each VPS Standard deviation JoSS-T 98.23 7.78
JoSS-J 98.23 11.06 FIFO 98.23 18.30 Fair 98.23 9.46 Capa
98.23 14.74 Fig. 16. The CPU idle rate of the Hadoop master
server when the five algorithms are individually used to
execute the mixed workload. Fig. 17. The Memory load of the
Hadoop master server when the five algorithms are
individually used to execute the mixed workload. 1698 IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 27, NO. 6, JUNE 2016

[3] S. Chen and S. Schlosser, “Map-Reduce meets wider
varieties of applications,” Intel Res., Santa Clara, CA, USA,
Tech. Rep. IRPTR-08-05, 2008.

[4] B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale computer
vision using mapreduce for multimedia data mining,” in
Proc. 10th Int. Workshop Multimedia Data Mining, Jul. 2010,
pp. 1–10.

[5] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast:
Combining mapreduce and virtualization on distributed
resources for bioinformatics applications,” in Proc. IEEE 4th
Int. Conf. eScience, Dec. 2008, pp. 222–229.

[6] X-RIME. (2014, Dec. 3) [Online]. Available: http://xrime.
sourceforge.net/

[7] K. Wiley, A. Connolly, J. Gardner, S. Krughoff, M.
Balazinska, B. Howe, Y. Kwon, and Y. Bu, “Astronomy in the
cloud: using mapreduce for image co-addition,” Astronomy,
vol. 123, no. 901, pp. 366–380, 2011.

[8] Disco. (2014, Dec. 3) [Online]. Available:
http://discoproject.org

[9] Gridgain. (2014, Dec. 3) [Online]. Available: http://www.
gridgain.com

[10] MapSharp. (2014, Dec. 3) [Online]. Available:
http://mapsharp. codeplex.com

[11] Amazon Web Services. (2014, Dec. 3) [Online].
Available: https:// aws.amazon.com/elasticmapreduce/

http://discoproject.org/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2113

 [12] Linode. (2014, Dec. 3) [Online]. Available:
https://www.linode. com/

[13] Future Hosting. (2014, Dec. 3) [Online]. Available:
http://www. futurehosting.com/

[14] Z. Guo, G. Fox, and M. Zhou, “Investigation of data
locality in mapreduce,” in Proc. 12th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., May 2012, pp. 419–426.

[15] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new
mapreduce scheduling technique,” in Proc. IEEE 3rd Int.
Conf. Cloud Comput. Technol. Sci., Nov. 2011, pp. 40–47.

[16] T. White, Hadoop: The Definitive Guide. Sebastopol, CA,
USA: O’Reilly Media, Jun. 5, 2009.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay scheduling: A simple technique
for achieving locality and fairness in cluster scheduling,” in
Proc. 5th Eur. Conf. Comput. Syst., Apr. 2010, pp. 265–278.

[18] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An
efficient data locality driven task scheduling algorithm for
cloud computing,” in Proc. 11th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., May 2011, pp. 295–304.

 [19] Fair Scheduler Guide. (2014, Dec. 3) [Online]. Available:
http:// archive.cloudera.com/cdh/3/hadoop-
0.20.2+737/fair_scheduler. html

[20] Capacity Scheduler Guide (2014, Dec. 3) [Online].
Available: http:// archive.cloudera.com/cdh/3/hadoop-
0.20.2+737/capacity_scheduler.html [21] M. Ehsan, and R.
Sion, “LiPS: A cost-efficient data and task co-scheduler for
MapReduce,” in Proc. IEEE 27th Int. Symp. Parallel Distrib.
Process. Workshops PhD Forum, May 2013, pp. 2230–2233.

[22] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus:
Localityaware resource allocation for MapReduce in a cloud,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2011, pp. 58.

[23] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng, “Locality-
aware dynamic VM reconfiguration on MapReduce clouds,”
in Proc. 21st Int. Symp. High-Perform. Parallel Distrib.
Comput., Jun. 2012, pp. 27–36.

[24] X. Bu, J. Rao, and C.-Z. Xu, “Interference and locality-
aware task scheduling for Mapreduce applications in virtual
clusters,” in Proc. 22nd Int. Symp. High-Perform. Parallel
Distrib. Comput., Jun. 2013, pp. 227–238.

[25] S.-Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud
intermediate data fault-tolerant,” in Proc. ACM Symp. Cloud
Comput., 2010, pp. 181–192.

[26] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A
simulation approach to evaluating design decisions in

mapreduce setups,” in Proc. IEEE Int. Symp. Model., Anal.
Simul. Comput. Telecommun. Syst., 2009, pp. 1–11.

 [27] Statistical workload injector for mapreduce. (2014, Dec.
3)[Online]. Available: https://github.com/SWIMProjectUCB/
SWIM/wiki

[28] Apache. (2014, Dec. 3). Hadoop wiki, powered by
[Online]. Available:
http://wiki.apache.org/hadoop/PoweredBy

 [29] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar.
(2012). PUMA: Purdue MapReduce benchmarks suite. ECE
Tech. Rep., Purdue Univ. [Online]. Available:
http://docs.lib.purdue.edu/ ecetr/437

[30] enwiki. (2014, Dec. 3) [Online]. Available:
http://dumps.wikimedia.org/enwiki/

[31] Pseudomonas Genome Database. (2014, Dec. 3)
[Online]. Available:
http://www.pseudomonas.com/strain/list

[32] L. Kleinrock, “Queueing systems,” in Theory, vol. 1. New
York, NY, USA: Wiley, 1975.

[33] MapReduce Benchmarks. (2014, Dec. 3) [Online].
Available: https://878262af-a-62cb3a1a-s-
sites.googlegroups.com/site/farazahmad/home/puma.pdf
[34] Free txt mobile ebooks downloads. (2014) [Online].
Available: http://www.umnet.com/mobile-ebooks/0-0-0-
txt-0

 [35] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic
mapreduce scheduler for heterogeneous workloads,” in Proc.
IEEE 8th Int. Conf. Grid Cooperative Comput., 2009, pp. 218–
224.

[36] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguade, M.
Steinder, and I. Whalley, “Performance-driven task co-
scheduling for mapreduce environments,” in Proc. IEEE

Netw. Oper. Manage. Symp., 2010, pp. 373–380.

http://wiki.apache.org/hadoop/PoweredBy
http://dumps.wikimedia.org/enwiki/
http://www.pseudomonas.com/strain/list
http://www.umnet.com/mobile-ebooks/0-0-0-txt-0
http://www.umnet.com/mobile-ebooks/0-0-0-txt-0

