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Abstract - In this paper, we analyze a two-class single-server preemptive priority queueing system with restricted number of 
priority customers and catastrophes. The arrivals per class follow the Poisson process with exponentially distributed service times. 
Customers are served on a first-come, first-served basis within their queue. Explicit expressions for the mean queue length and the 
joint distribution are derived in the steady-state case for the number of high and low priority customers in the system. The analysis 
is based on the generating function technique. Also, we study the impact of catastrophe on the system and other performance 
measures. 
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1. INTRODUCTION  
 

This Priority queues occur in many aspects of daily life, especially in cases where preferential treatment is given to certain 

types of individuals, for example. Telecommunications field. Priority mechanisms are an invaluable scheduling method that 

allows messages from different categories to receive different quality of service. For this reason, the priority queue has 

received considerable attention in the literature. Cobham [1] was the first to consider the non-preemptive priority of the queue 

was considered with Poisson inputs and exponential retention time and discussed them for single and multi-channel cases. 

Holley [2] simplified Cobham’s work. Barry [3] and Stephan [4] studied the problem of preemptive priority system problem 

with two priorities, Poisson inputs and exponential retention time. White and Christie [5] and Heathcote [6] studied the same 

problem for two channels and used the generating function method to describe the steady-state and transient queue length 

distributions, respectively. The main difficulty is to extend these results to multiple categories with general service time 

allocations in processing Laplace transformations that characterize the dynamics of the system. An extensive study of two 

priority plans can be cited in Miller [7] where he obtained several results in this model using the functions of generating and 

transformations of Laplace. A different approach to converting Laguerre to this model has also been applied, see for example 

Keilson and Sumita [8] and Keilson and Nunn [9]. Miller [10] considered exponential single server priority queues with two 

classes of customers. He Obtain repeated calculation formulas for steady distributions using Neuts [11] theory of matrix-

geometric invariant probability vectors. Shack and Larson [12] are treated with a multi-server, non-preemptive, Multi-

stationary queueing system with Poisson arrivals and exponential servers. They assumed a limited discipline in the priority 

queue and derived many performance measures. Franti [13,14] developed algorithms for a dynamic priority queue to compute 

performance measures such as the distribution of queue length and moments. Nishida [15] gave an approximation analysis for 

a heterogeneous multiprocessor system with preemptive and non-preemptive priority discipline and also presented the 

numerical comparison between simulation and approximation analysis. Recently, Bitran and Caldentey [16] analyzed a two-

class single queueing system that features state dependent arrivals and preemptive priority service discipline. For this system, 

they computed the mean balance queue length and studied the effective service time and other first passage time quantities for 

both classes. More recently, Drekic and Woolford [17] analyzed a two class, single-server preemptive priority queueing model 

with low priority balking customers. They considered arrivals to each class are assumed to follow a Poisson with 

exponentioally distributed service times and obtained the steady state joint distribution of the number of high and low priority 

customers in the system. Choa and Zheng [20] considered an immigration birth and death process with total catastrophes and 

studied its transient as well as equilibrium behavior Kirshna Kumar et al. [23,24] obtained transient solution for  analytically 

using continued fractions for the system size in an M/M/1 queueing system with catastrophes, server failures and nonzero 

repair time , the steady state probability of the system size, and obtained transient solution for the system size in the M/M/1 

queueing model with the possibility of catastrophes at the service station in the direct way.  Dharmaraja and Rakesh  
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Kumar [25] used the generation function technique to derive the model's transient solution directly. Explicit time dependent 

probabilities are obtained for system size . Other contributions are due to Economou and Fakinos [26,27] that extend some 

previous results on birth-death processes with catastrophes to the more general cases of continuous-time Markov chains with 

catastrophes resulting from a point process, and of the non-homogeneous Poisson process with total or binomial catastrophes. 

Following this introduction, the present is organized as follows. In section 2, we describe the model along with the assumption 

and several notation used throughout the paper. Moreover, we obtain the generating function for queue size of each priority 

classes. Using the obtained generating function and partial fractions technique, we derive explicit expressions for the steady-

state probabilities. Finding explicit expressions for , .iP  and . , jP   the marginal distributions of the high and low priority classes, 

respectively is presented in Section 3. In Sections 4 include a simple way to obtain and compute the mean queue length of the 

high priority classes. In Section 5, several special cases obtained to support our work and conclusion. Also, some numerical 

results conclude the paper in Section 6. 

2.  Model Description and Analysis 

We consider a single server queueing system serving two types of customers; class-1 and class-2 each having its own respective 

line and the arrival process for both types is state independent. A higher priority is assigned to class-1. Suppose that the rule of 

service within each class is FCFS and that the priority system is preemptive resumed. i.e. during the service of a low priority 

customer, if high priority customers joins the system, then the low priority customer’s service will stop and will resume 

working when there are no high-priority customers in the system. Let also by the number of the customers of class i (i = 1, 2). 

We denote the number of customers in the first class is restricted to a finite number L including the one being served, if any, 

and the number of the second class is infinite. Suppose also 1 2,   denote the arrival rates for the two classes and let 1 2,   

denote the service rates for the two classes. We define the traffic intensities by 1 2
1 2

1 2

,
 

 
 

  and the steady state probability 

that the system is in state (i, j), where i is the number of the high priority customers and j is the number of low priority 

customers in the system. The catastrophes also     Whenever a catastrophe occurs at the system, all the available customers 

there are destroyed immediately, the server gets inactivated momentarily and the server is ready for service when a new 

arrival occurs. Clearly, the governing difference equations of the system under consideration are given by 

1 2 0,0 1 1,0 2 0,1( )      P P P           (1) 

1 2 2 0, 2 0, 1 1 1, 2 0, 1( )   , 1   j j j j jP P P P              (2) 

1 2 1 ,0 1 1,0 1 1,0 , 1 1( )  i i iP P P i L             (3) 

1 2 1 , 1 1, 2 , 1 1 1,( )   , 1 1, 1i j i j i j i jP P P P i L j                   (4) 

2 1 ,0 1 1,0( ) L LP P        (5) 

2 1 , 1 1, 2 , 1( ) , 1L j L j L jP P P j          . (6) 
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Then the above system (1) – (6) can be written as 

1 1

21 0 2 0,02 1 1( () (1 ) ( ) (1 ))G ss G s s Ps              (7) 

 1 1 1 1 2 1 1( )  ( 1) ( )   ( ) 0, 1 1i i iG s s G s G s i L                  (8) 

1 1 1 2( ) ( ( 1)) ( ) 0L LG s s G s         , (9) 

where ( )iG s is the generating function for the steady state probabilities
,i jP . Now, these equations can be written as 

( ) ( ) ( )A s G s B s , (10) 

where  0 1 2( ) ( ) ( ) ( ) ..... ( )
t

i LG s G s G s G s G s is the generating function state probability vector for
,i jP , 

1

2 0,0( ) (1 ) 0 0 .... 0
t

B s s P       and 
,( ) i jA s a     is ( 1) ( 1)L L    order tridiagonal matrix and its 

coefficients are given by 

1

1 2 2

1

, 1 , 1 2

1

( )(1 ), 0

, 1, 0,1,2,...,

(1 ) ( 1), , 1,2,....,

, 1, 1,2,....,

0, .

i j i L

s s i j

j i L

a s j i i L

j i i L

otherwise

   



    



      

  



       

   




 

We find explicit expression for ( )iG s  by the following theorem. 

Theorem 1. For any non-negative integer , 0i i L   , we have 

1

1 2 0,0

2 1 2 1 , 1 1 2

0

( (1 ) ) ( )
( ) ,

( ( 1)) ( )

i

L i

i L

L k

k

s P D s
G s

s s

  

         







 


      
 

(11) 

where 

1 1 1 2( ) ( ) ( ) 2 ,m m mD s D s D s m L        (12) 

with 
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1 1 2

2 1 2 1 1

1 1 2

1 1

1
0,0 21 1

2

2

1 1 1 1 1 1

2

1 1 1 1 1 1

'

0

( ) ( 1),

( ) ( 1) ,

( 1),

( ) ( )
( ),

( )

( ) ( ) 4
,

2

( ) ( ) 4
,

2

( ) (1),

L L L L

L L

L

i

i

D s s

D s s

s

a b a b
P E Y

a b

a

b

E y G

  

     

    

 




       

       

 

 



   

    

    

  
  



     


     




 

1 1 1 2 2 2,        and 
, , 1,2,3,...,L k k L  are the root of Chebychev's polynomials of second kind. 

Proof. The proof closely parallels the elementary construction of continuous-time Markovian queue, see for instance  
Tarabia [ 19]. We will start by solving above system (10) using Crammer's rule, we obtain 

( )
( ) , 0,1,2,3,...,

( )

i
i

A s
G s i L

A s
  , (13) 

where ( ) , 0,1,2,...,
i

A s i L  is determinant of the matrix ( )A s  with replacing its ith column by the elements of the vector 

( )B s . Expanding the determinant ( )
i

A s , we easily obtain 

1

1 2 0,0( ) ( (1 ) ) ( ), 0,1,2,...,i

L ii
A s s P D s i L   

    , (14) 

where ( )L iD s  represents the determinant of the bottom right square matrix obtained by eliminating the first row and column 

of the matrix ( )A s  and it can be satisfied the following recurrence relations 

1 1 1 2( ) ( ) ( ) 2 ,m m mD s D s D s m L        (15) 

where  

 1 1 2 2 1 2 1 1( ) ( 1), ( ) ( 1) ,D s s D s s                 and 1 1 2( 1).s          

On other hand, we do some operations on the matrix ( )A s  and it can be seen that satisfies the following recurrence relations 

1

1 1 2 1 1 1 2( ) ( ) (1 ) ( ) ( ) ,L LA s s C s C s      

 
         

 (16) 

1 1 1 2( ) ( ) ( ), 2 ,n n nC s C s C s n L        (17) 

where 1C  and 
2

2 1 1.D       

So 
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 1

1 2 0,0

1

1 1 2 1 1 1 2

(1 ) ( )
( ) , 0,1,2,...,

( ) (1 ) ( ) ( )

i

L i

i

L L

s P D s
G s i L

s C s C s

  

      







 

 
 

        

 (18) 

Now, to compute
0,0P  we add all the Equations (7) – (9) for 0,1,....j  . then we take limited at 1s  , we get 

'

2 2 0
1

0 0

2 2

0 0 0

'

2 0,0 0

'

( ) ( ) ( )

( ) ( ) ( )

lim ( 1) ( )

( 1) ( 1)

L L

s
i i

L L L

i i i

i i

i i i

P G s s G s G s

G s G s G s

s G s

s s s

 

  

 


 

  

  
     

 

 
     


 

 

 

  
 

'

2 2

0 0 0

2 0,0 0 (1) (1) .(1) ( )
L L L

i i

i i i

i

P G G G G s   
  

 
  

     
  

    (19) 

We use the facts 
0

(1) 1
L

i

iG


  and 
0

' ((1) ),
L

i

i

E yG


 we obtain 

0 0,0 2

2

(1) ( ),G P E y





    (20) 

Using Equation (18) with i=0,s=1, we get 

 0

1 1 1 2

(1)
(1) ,

(1) (1)

L

L L

D
G

C C   




 (21) 

where  

1 1 1

1(1) ( ) [( ) ( )],L L L L

LD a b a b a b        (22) 

1

1(1) ( ) ( ),L L

LC a b a b

     (23) 

1 1 1

2(1) ( ) ( ).L L

LC a b a b  

     (24) 

Substituting from Equations (22)-(24) into Equation (21), the marginal probability 0, .P  can be written as 

1 1

1
0 0, . 1 1

( ) ( )
(1) ,

( )

L L L L

L L

a b a b
G P

a b

 

 

  
 


 (25) 

On the other hand, Equations (20) and (25) together with some little simplifications imply that 

1 1

1
0,0 2 1 1

2

( ) ( )
( ) .

( )

L L L L

L L

a b a b
P E y

a b






 

 

  
  


 

Then 
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1 1

1
0,0 21 1

2

( ) ( )
( ).

( )

L L L L

L L

a b a b
P E y

a b

 




 

 

  
  


 (26) 

Proposition 1. For any , 0i i L   we have 

0 2
, 2 1

12 2( ) ( )

j
L

j k
i j j

k k

A A
P




     


 
  

  
  (27) 

Proof. The proof this proposition is directly from the using of  partial fractions and using the definition of Chebychev's 

polynomial of second kind (see Abramowitz and Stegun [28]) A can be written as 

 2 1 2 1 , 1 1 2

0

( 1) ( ),
L

L k

k

A s s         


         (28) 

where 1 2 1 , 1 1 , 1,2,..., .k L k k L             Hence  

 
0

12 1 2 1 , 1 1 2

( )
( ( 1)) 2

L
k

i

k L k

A A
G s

s s         

 
      

  

0

12 2
2

2

( ) , 0,1,2,..., .

( ) 1 1

L
k

i

k

k

k

A A
G s i L

s s 
  

  



  
   

     
   

  
(28) 

Extending in power of s and comparing the coefficient of in the both sides drives to , .i jP    

0 2
, 2 1

12 2

,
( )

j
L

j k
i j j

k k

A A
P




     


 
  

  
  

with 

1 1 1 2 2 0,0

0 1

1 2 1 2 1

(1 )( )
,

( )(1 ) (1 )

i

L L

P
A

      

      

  


   
 

1

1 2 0,0

2
2

0

( (1 ) ) ( )
, .

( ( 1)) ( )

i

k L i k k
k kL

k k i

k
k i

s P D s
A s

s
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3. The Marginal Distributions of the High and Low Priority Classes 
 

Finding explicit expressions for , .iP   and . , jP  the marginal distributions of the high and low priority classes, respectively is 

obtained in the following propositions 

Proposition 2. The marginal distributions of the high priority is given by 

1 1

1 1

, . 1 1

( ) ( )
, 0,1,2,...,

( )

i L i L i L i L i

i L L

a b a b
P i L

a b

      

 

     


 (29) 

Proof. As is clearly defined,  (1)iG  represents the marginal distribution of high priority, thus one can put into Equation(18), we 

may get 

 
1

1 1 1 2

(1)
(1) , 0,1,2,..., ,

(1) (1)

i

L i
i

L L

D
G i L

C C



  


 

 


 

where 

1 1 1

1(1) ( ) [( ) ( )],L i L i L i L i

L iD a b a b a b      

       (30) 

now using  Equations (23),(24) and (30), we obtain 

1 1

1 1

, . 1 1

( ) ( )
(1) ,

( )( ) ( )

i L i L i L i L i

i i L L L L

a b a b
P G

a b a b a b a b

      

 

     
     

 

where a b   and 1 1 ,a b   then 

1 1

1 1

, . 1 1

( ) ( )
, 0,1,2,...,

( )

i L i L i L i L i

i L L

a b a b
P i L

a b

      

 

     


 

Proposition 3. The marginal distributions of the low priority is given by 

2 2 2 2
. , 0, 1 0,2

12 2 2 2 2

, 0
( ) ( ) ( )

j k j
j

j j k

k

P P P j
    

         







   
      

       
  (31) 

Proof. By adding Equations. (1), (3) and (5) for , 0i i L  , we get 

1 1

2 . ,0 1 ,0 1 ,0 1 ,0 1 ,0 2 0,1

0 0 0 0

( )       ,
L L L L

i i i i

i i i i

P P P P P P       
 

   

           

which leads to 

2
. ,0

2 2

.
( ) ( )

P
 

   
 

 
 

In general and using similar approach by adding Equations. (2), (4) and (6) for , 0i i L  , we obtain 

1 1

2 . , 1 , 1 , 2 0, 1 , 1 , 2 . , 1 2 0, 1

0 0 0 0

( )           ,
L L L L

j i j i j j i j i j j j

i i i i

P P P P P P P P        
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which simply leads to 

2 . , 2 0, 2 . , 1 2 0, 1( )         .j j j jP P P P          

By induction method, the marginal probabilities . , jP   satisfy the following recursion relation 

2 2 2 2
. , 0, 1 0,2

12 2 2 2 2

, 0
( ) ( ) ( )

j k j
j

j j k

k

P P P j
    

         







   
      

       
  

 

4. The Mean Queue Length of the High Priority Class 
 
In this section, our main objective is to get the mean queue length of high priority class. To obtain it, we have supposed that  

1N  be the queue length of the first class and define 

1 , , .

0 0 0

( )
L L

i j i

i j i

E N i P i P


  

    

By substituting from Proposition 2 into the above equation, we have 

1 1

1 1

1 1 1
0

1 11 1 1 1
1 11 1

0 0 0 0

1
11 1

0 1

( ) ( )
( )

( )

1

( )

1
( )

( )
( )

i L i L i L i L i
L

L L
i

i i i i
L L L L

L L L L

L L
i i i i

L
L i

L L
i

a b a b
E N i

a b

a i b i a i b i
a b a b a b

d
a

a b a
d

a

 

   
 






     

 


 

 
   

 


    


        
           

         











   

 1
1

0 1

2 1 2 11 1
1 1

0 01 1

( )

( )

( ) ( )

( ) ( )

L
L i

i

L L
L i L i

i i

d
b

b
d

b

d d
a b

a b
d d

a b






 
 

 



 

 








 





 

 

1
( 1) 1

1 1 1

0 01
1 1 1

1

( )
( ) ( )

L L
k L k k L k L

k k

L L

b a a a b

E N
a b b

  





   

 

 

 
  

 
  

  

 
 (32) 

5. Special Cases 
 

a) If we take 1a   and 1,b  we obtain 

1

1 1 1

1 1

1 1

1 ( 1)
( )

(1 )(1 )

L L

L

L L
E N

  

 





    
 

 

which agress with the know result given by Tarabia [20] and Sharma and Gupta [21] when t   . Moreover, it shows 
that high priority queue is functioning independently as an M/M/1/L queue. 
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b) When there is no catastrophe, i.e., ( 0)    and we put 
2 0  , we get all of result the well known M/M/1/L  model 

such as 

  1 1
1 11

1

(1 )
( ) , 0,1,2,..., , 1.

(1 )

i

L
E N i L

 


 


  


 

6. Numerical Results 
 
To conclude, we shall now make use of the results outlined in the foregoing to indicate by means of some examples the goodness 

of our continuous approximation to the queueing system with catastrophes. For different values of parameters 1 1 2 2, , ,     

and , we study the impact of catastrophe  on the steady state probability of the system, when 

1 1 2 20.12, 0.2, 0.2, 0.57        and 25L   on 0,0P   of the given system and the results are shown in Table1 . 

 

Table -1: Effect of   on the steady state probability of the system 0,0P   

when 1 1 2 20.12, 0.2, 0.2, 0.57        and 25L   

  0.02 0.2 0.5 0.6 0.85 0.98 

0,0P  0.152632 0.428241 0.584867 0.620027 0.693817 0.727395 

 

 

Chart -1: Effect of   on the steady state probability of the system 0,0P  

From Table (1) and Chart (1) all show that the 0,0P increase as the catastrophe rate increases. 

7. CONCLUSIONS 
 
We remark that the explicit expressions obtained for the mean queue length and the steady state joint distribution of the 
number of high priority customers in the system are simple and with catastrophe . Moreover, on the whole, the analysis of the 
first class behaves like M/M/1/L Markovian queue. 
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