

Hydrothermal Synthesis of Molybdenum Disulfide

Mohammed Mukarram Ahmed Ansari¹, Dr.Chandrakumar. R², Dr. Manjunatha. C³

¹Dept. of Mechanical Engineering, RV College of Engineering, Bengaluru, Karnataka, INDIA. ²Professor, Dept. of Mechanical Engineering, RV College of Engineering, Bengaluru, Karnataka, INDIA. ³Professor, Dept. of Chemistry, RV College of Engineering, Bengaluru, Karnataka, INDIA.

Abstract – In this study we report the effect of preparation conditions of MoS₂ nanoparticles by hydrothermal method by varying the Sulphur precursors (thiourea, thioacetamide, sulphur) on the morphologies of MoS_2 where investigated. The as-synthesized materials were characterized by x-ray diffraction (XRD), field emission scanning microscopy (FESEM).

Results showed that the three kinds of morphologies of MoS_2 were obtained by varying sulphur precursors. Morphologies varied from tube spheres shape to cluster of threads to clusters of spongy cotton.

Key Words: Hydrothermal, MoS₂, Controllable Morphologies.

1. INTRODUCTION

Molybdenum disulfide (MoS₂) is a typical layered transition metal dichalcogenide formed by the stacking of weakly interacting 2D S-Mo-S layer like graphite, which shows many potential applications [1], such as solid state lubricants [2], supercapacitor [3, 4], rechargeable batteries [5], hydrogen generation [6], hydrogen storage [7] and as a photocatalyst to degrade pollutants or produce hydrogen [8]. The performance of nano-MoS₂ were varying or depending upon its size, shape and structure. Therefore, the preparation of MoS₂ with specific morphology is of great interest. During these preparation processes, the additive [9, 10] were usually used to control their morphologies. It is well-known that the starting materials, molar ratios, hydrothermal temperature and time during the hydrothermal processes will play important role in the morphologies control, crystal phase and performance. Zheng [11] group used MoO₃ and Na₂S·9H₂O as precursors to prepare MoS₂ materials which morphologies varied from amorphous nano-spheres to crystalline nano-flowers when hydrothermal temperatures enhanced from 200 to 320 °C. Chen[12] group used Na₂MoO₄·9H₂O, SC(NH₂)₂ and graphene oxide as starting reactants to anchor nano-flakes MoS₂ onto graphene. The results showed that the nano-flakes structure

is unchanged and crystal phase of MoS₂ changed from 1T in the low-temperature region (below 180 °C) to 2H in the high-temperature region (above 210 °C). The present work focuses on investigating effects of S/Mo molar ratios, hydrothermal temperature and time on crystal phase structure and pore structures and morphologies of MoS₂.

2. Materials and Methods

All the chemicals used were of analytical grade. Sodium Molybdate (Na_2MoO_4) , Sulphur (S_8) , Thiourea $((NH_2)_2CS)$, Thioacetamide (CH₃CSNH₂), surfactants namely, Sodium Dodecyl Sulphate $(CH_3(CH_2)_{11}SO_4 Na)$, N,N,N,N-Cetyl Trimethy Ammonium Bromide ($C_{19}H_{42}BrN$) and solvents like Tetrahydrofuran (THF), N,N Dimethylformamide (DMF), Acetone and Toluene were purchased from Merck India Ltd.

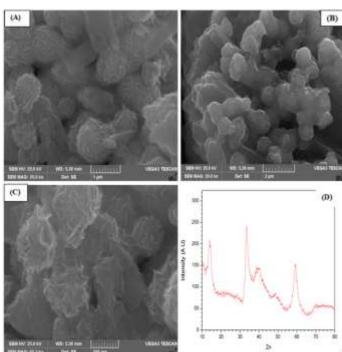
2.1Experimentation

In a typical hydrothermal procedure, 0.6048 g of Na₂MoO₄ and 0.16 g of S_8) were weighed and dissolved in 30mL of deionized water. 0.1g of SDS was added to the reactant solution under vigorous stirring for well dispersion of reactants and transferred into a Teflon lined autoclave. The autoclave was sealed, maintained at 180°C for 24h, and then cooled to room temperature naturally. A black precipitate was first retrieved from the solution: finally the as-formed precipitate was centrifuged, washed sequentially with deionized water and acetone and dried at 60°C for 2h. The same procedure was followed for second set of experiment $(0.6048 \text{ g of } \text{Na}_2\text{MoO}_4 \text{ and } 0.38 \text{ g}((\text{NH}_2)_2\text{CS}))$ and third set of experiment (0.6048 g of Na₂MoO₄ and 0.375 g Thioacetamide (CH₃CSNH₂)).

2.2 Characterization

The synthesized nanoparticles were characterized on a PANalytical powder diffractometer with CuKa radiation $(\lambda = 1.5418 \text{ Å})$. The morphologies, sizes and purity of the nanoparticles were analysed by SEM (Tescan-VEGA3 LMU) analysis.

International Research Journal of Engineering and Technology (IRJET) IRIET Volume: 06 Issue: 06 | June 2019 www.irjet.net


e-ISSN: 2395-0056 p-ISSN: 2395-0072

Expt. No.	Precursor	Surfactant	Temp(^o C)	Phase	Morphology
1	0.6048 g Na2MoO4 + 0.16 g S8	SDS	180	MoS ₂	Tube Spheres
2	0.6048 g Na2MoO4 + 0.38 g ((NH2)2CS)	-	180	MoS ₂	Clusters of Threads
3	0.6048 g Na2MoO4 + 0.375 g (CH3CSNH2))	СТАВ	180	MoS ₂	Clusters of spongy cotton

Table -1: Characteristics of experiment performed

3. Results and discussion

MoS₂ powders were synthesized by hydrothermal method using $0.6048 \text{ g} \text{ Na}_2 \text{MoO}_4 + 0.16 \text{ g} \text{ S}_8 + 0.5 \text{ g} \text{ SDS at } 180 \,^{\circ}\text{C}$ for 24 hours. Table-1 shows the characteristics of experiments performed.

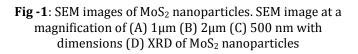
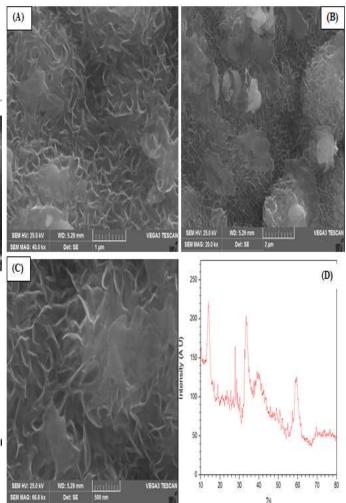



Fig-1(D) shows the XRD pattern of synthesized powder. It can be seen that the diffraction peaks are indexed as MoS₂. Fig-1 (A)-(C) shows the SEM images. It can be seen that many tube like spheres like nano architectures with aggregation are present. Further, these images show the uniform nanoparticle clusters. The aggregation can be attributed to the surfactant SDS which aids in self-assembly of nanoparticles. The end to end growth of nanoparticles helped in the formation of clusters of MoS₂ architectures.

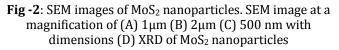


Fig -2(D) shows the XRD pattern of synthesized powder using 0.6048 g Na₂MoO₄ + 0.38 g ((NH₂)₂CS))) without surfactant at 180 °C for 24 hours. It can be seen that the diffraction peaks are indexed as MoS₂. Fig -2 (A)-(C) shows the SEM images. It can be seen that spheres of spongy cotton architectures agglomerated like nano elongated nanoparticles.

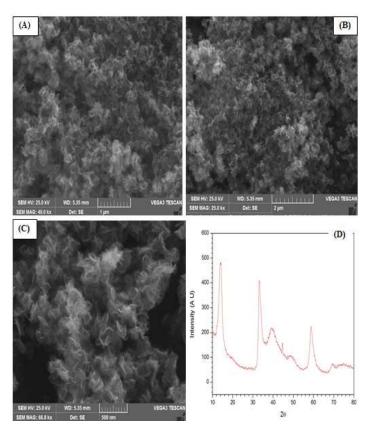


Fig -3: SEM images of MoS₂ nanoparticles. SEM image at a magnification of (A) $1\mu m$ (B) $2\mu m$ (C) 500 nm with dimensions (D) XRD of MoS₂ nanoparticles

Fig -3(D) shows the XRD pattern of synthesized powder using 0.6048 g Na₂MoO₄ + 0.375 g (CH₃CSNH₂)) + 0.05 g CTAB at 180 °C for 24 hours. It can be seen that the diffraction peaks are indexed as MoS₂. It can be seen that clusters of spongy cotton like nano architectures agglomerated elongated nanoparticles. It can be inferred that without surfactants there would be formation of clusters. Also, these clusters of nanoparticles are uniform. However, the aggregation is not much pronounced as compared to the addition of SDS. Hence it can be concluded that the SDS results in the agglomeration of nanoparticles giving rise to nanoclusters of large sizes. CTAB, being cationic surfactant caps MoS₂, inhibits the lateral growth of MoS₂ clusters and helps reduce agglomeration of nanoparticles.

3. CONCLUSIONS

In summary, the effect factors on morphologies of MoS₂were investigated. The Results showed that the morphologies of MoS₂ were obtained by hydrothermal method at 180 °C for 24 hours by varying sulphur precursors. Morphologies varied from tube spheres shape to cluster of threads to clusters of spongy cotton, which is meaningful to obtain three kinds of morphologies to meet the different applications demand in other field.

REFERENCES

- [1] Y.P. Venkata Subbaiah, K.J. Saji, A. Tiwari, Atomically Thin MoS2 : A Versatile Nongraphene 2D Material, Adv. Funct. Mater. 26 (2016) 2046-2069.
- [2] H. Wu, L. Qin, G. Dong, M. Hua, S. Yang, J. Zhang, An investigation on the lubrication mechanism of MoS2 nano sheet in point contact: The manner of particle entering the contact area, Tribol. Int. 107 (2017) 48-55.
- [3] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nature Nanotechnol. 10 (2015) 313-318.
- [4] M. Chen, Y. Dai, J. Wang, Q. Wang, Y. Wang, X. Cheng, X. Yan, Smart combination of three-dimensional-flower-MoS2 nanospheres/interconnected carbon like nanotubes for application in supercapacitor with enhanced electrochemical performance, J. Alloys Compd. 696 (2017) 900-906.
- [5] Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, J. Chen, Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode, Adv. Mater. 23 (2011) 640-643.
- G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, P.M. Ajayan, Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction, Nano Lett. 16 (2016) 1097-1103.
- J. Chen, K. Nobuhiro, Y. Huatang, H.T. Takeshita, T. Sakai, [7] Electrochemical Hydrogen Storage in MoS2 Nanotubes, J.Am. Chem. Soc. 123 (2001) 11813-11814.
- [8] S.V. Prabhakar Vattikuti, J. Shim, Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2, IOP Conference Series: Mater. Sci. Eng., 317 (2018) 012025.
- [9] W. Huang, Z. Xu, R. Liu, X. Ye, Y. Zheng, Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres, Mater. Res. Bull. 43 (2008) 2799-2805.
- [10] L. Ma, W.-X. Chen, H. Li, Z.-D. Xu, Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route, Mater. Chem. Phys. 116 (2009) 400-405.
- [11] H. Zhang, H. Lin, Y. Zheng, Y. Hu, A. MacLennan, Understanding of the effect of synthesis temperature on the crystallization and activity of nano-MoS2 catalyst, Appl. Catal. B: Environ. 165 (2015) 537-546.
- [12] X. Guo, Y. Hou, R. Ren, J. Chen, Temperature-dependent crystallization of MoS2 nanoflakes on graphene nanosheets for electrocatalysis, Nanoscale Res. Lett. 12 (2017) 479.