
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1417

Latin Square Computation of Order-3 using Open CL

Avnish Kansal1, Ashish Chaturwedi2

1,2Department of Computer Science & Engineering, Carlox Teacher’s University, Ahmedabad, Gujarat
---***---
Abstract: Latin sqaure is widely used in steganography,
cryptography, digital watermarks, computer games,
sudoku, graph analysis, error correcting codes; generate
magic squares, statistics and mathematical field. The
Sudoku puzzles are a special case of Latin squares. When
we have to make the latin computation using the
sequential algorithm then it waste more clock time. By
using parallel programming (OpenCL) the time taken is
reduced and throughput is increased. Traditionally Latin
square methodology is based on heuristic cell based
technique and generates random Latin square using
genetic algorithmic approach both consumes high
processing time and decreases the throughput. Here we
are presenting the algorithm by using parallel processing
environment using OpenCL for computing latin square of
order3.

Keywords: OpenCL, gnuplot, Sequential architecture,
parallel architecture, GPU.

I. Introduction:

Latin square is an 𝑛×𝑛 array in which each cell is having at
most one symbol, chosen form an n-set, such that every
symbol occurs at most one time in each row and at- most
one time in each column. The “Latin square” name was
stimulated by mathematical papers by Leonhard Euler.
Two latin squares are said to be orthogonal if both Latin
squares of the same size such that when one latin square is
superposed on the other latin, each letter of the one
coincides once with each letter of the other. The two Latin
squares are held to be conjugate if the rows of one are the
columns of the other that is if the rows and columns of a
square be interchanged then conjugate square is
generated. An Adjugacy is a generality of the concept to
conjugacy in which a permutation of the constraints of one
generates another [12]. Each Latin square is defined as a
triple (r,c,s), where r is the row, c is the column, and s is
the symbol and from this triplet we attain a set of n2 triples
called the orthogonal array representation of the
square. Latin square of n x n order, in which every row is
derivative from any other in a cyclic permutation of
degree n, or by a power of such a permutation, is
a cyclic Latin square [9].

While the implementation done using sequential
algorithms techniques but with help of high level
languages parallel processing technique we are able to
decrease the processing time for matrix processing
application [3]. As the problem is divided into discrete set
of instances which are solved concurrently [1]. With help
of this parallel computation technique we are able to
execute two or more instructions at a same time
simultaneously. While executing the sequential algorithms
on a CPU it runs slower. In the proposed system the
sequential algorithms which have task parallelism or data
parallelism those algorithms are implemented to OpenCL
[14]. By the help of OpenCL we minimizes overhead on the
CPU and makes matrix processing run faster and efficiently
to get higher throughput.

Concurrency is the way to sharing of multiple resources in
a software. For the applications that are naturally parallel
the concurrency provides an abstraction [5].

When the execution of the multiple threads running in
parallel, this means that the active thread running
simultaneously on different hardware resources and
processing elements [10]. The execution of the
simultaneous threads is provided by the platforms, for
achieving parallel computing. In latest computing
machines we have SIMD or MIMD which have capabilities
to exploit either data level or task level parallism[6].

Task level parallism, to handle different number of tasks,
within a single problem at the same time. The efficiency of
this model will depend on the independent operations of
the task [6].

Data level parallelism, to handle the discrete chunks of
the same task at the same time simultaneously. The
efficiency of this model will depend on the independent
operations of the task [6].

1.1 Existing System & Proposed System

Traditionally all the computations and execution of
instructions are handled by the CPU in the computer.
Architecturally, the CPU consists of very few cores with
lots of cache memory which are able to handle a few
software threads at a time concurrently. These few cores
are used to optimize the query by sequential serial

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1418

processing architecture. So to alleviate the load of the CPU
by handle all its advanced computations which are
necessary to project the final display on the monitor a
concept of GPU’s being introduced. The capability of the
GPUs with 100+ cores to process thousands of threads can
accelerate software by 100x over a CPU alone. The GPUs
have massively parallel architecture which consists of
thousands of smaller and more efficient cores that are
designed for handling multiple tasks simultaneously. This
is the reason for the wide and mainstream acceptance of
the GPU’s now a day. The GPU-accelerated computing has
now grown into a mainstream movement that is supported
by the latest operating systems from Apple (with OpenCL)
and Microsoft (using DirectCompute). This accelerated
computing consist of graphics processing unit (GPU)
together with a CPU to accelerate scientific, analytics,
engineering, consumer, and enterprise applications.

1.2 Defining Algorithm

The parallel processing algorithms are intended for Latin
square. The representation of algorithms is presented in
Figure 1.The first step is input matrix of order 3, we have
input as a matrix in OpenCL programming code. The
matrix have complex data in the form of array values when
we applying sequential algorithm on an matrix it takes
more of time for execution on CPU. But if we are applying
the parallel processing concepts then we positively we
reduce time taken by the matrix execution.

Second step, is decomposing the input matrix according to
task parallelism or data parallelism technique. Then this
divided matrix is being used in third step for concurrent
execution

Third step, is defining the individual sub matrices which
are further being processed by various processing
elements.

Fourth step, after the division of matrix into sub matrices
each individual sub matrix is sent to number of processing
elements simultaneously in GPU.

Fifth step, the sub matrices result is being calculated with
the help of processing elements concurrently.

Sixth step is to combine the results of all matrices in single
processing element so as to obtain the final output of input
matrix in reduced time using parallel architecture.

Figure 1 Flowchart of Proposed Work

Seventh step, is to store the final result of input matrix
from various sub matrices which are further being saved
in the dynamic random access memory (DRAM) of
graphical processing unit.

Eighth step, after the final result is saved in the DRAM of
GPU; that result is copy to the DRAM of CPU for displaying
the final output to the user.

2. Implementing Latin Square using OpenCL:

The algorithm which we are chosen to parallel the matrix
over a number of workgroups, the matrix is further
divided into number of chunks as per the coarse grained
division. The workgroup is the part of a matrix by which
we make the sub-matrix stored in the on chip local

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1419

memory of the GPU. These partial latin square are further
reduced into the single main latin square results.

 2.1 Overview is as follows, when we begin to design a
OpenCL kernel to the respective hardware we have to take
care work-items and the size of the work_group. The local
memory is resides in the work_group and we share the
data inside the work_group. The local memory is not
shared in the work_group only. If we want to share the
results of the each work_group to another then we are not
able to do this. The work_group in OpenCL consists of
work_items which further share between the local
memories within that work_group. We are performing all
this to reduce the memory overheads by storing sub-
matrix in local memory.

After that we have to define more work_groups for
exchanging more local memory data into the global
memory but we must assure that the number of
work_groups for efficient use of local memory and reduce
overhead on the global memory the number should be
close to the number of compute units we have in our
hardware.

To traverse the total input matrix we use here, global Ids,
local Ids, group Ids, group size, etc.

Our OpenCL program consists of two parts: First is kernel
part, the instances of kernel are copied to the different
compute units and the kernel is executed on the each
compute unit individually. Another is host code which we
have to add to work for the different models of the OpenCL
which is executed on the host or CPU.

 The host program defines the context for the kernels and
manages their execution. Each OpenCL device has a
command queue, where the host programs are queued for
kernel execution and memory transfer.

 The core of the OpenCL execution model is defined by
execution of kernels. When kernel is executed an index
space is defined which is an instance of the kernel as in our
problem. Each work_item executes the same code but the
execution pathway and the data used will be different.

Work items are organized into workgroups. Each
work_group is assigned a unique workgroup_Id and each
work_item in the workgroup assigned the local_Id.

 A single work_group can be identified by its global_Id or
by its workgroup_Id or local_Id. The work_item in a single
work_group executes concurrently on a processing
elements of a single compute units. Work_item in a
work_group can synchronize each other and share data

through local memory in the compute unit. All the
work_items has read and write access to any position in
the global memory. The global and constant memory can
also be accessed from the host processor before and after
kernel execution.

 3 Experiments and results: For each latin square, both
the GPU kernel code and CPU serial code are designed. The
processing that takes place on the CPU; the kernel code in
the algorithm as an instance copied to the GPU. The kernel
is executed on compute unit and after that the results are
copied to the CPU.

Figure 2: Latin Square Computation (Order-3) order v/s
time graph using procedural programming code technique

having more time complexity.

Figure 3: Latin Square Computation (order-3) time v/s
order graph using OpenCL code having reduced time

complexity.

The speed up of the latin square computation by the GPU is
significantly improves the computing speed by reducing
the time complexity and throughput. Here the graph
depicts while using the procedural programming

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1420

technique the time complexity increases as the order for
latin square increased. But when the same code is
implemented using OpenCL the time complexity decreases
tremendously.

4. Conclusions

 In this paper a framework is tried to be developed an
efficient algorithmic approach to find a solution to
different latin square to enhance the existing approach. We
implemented the Latin square problem definition of order-
3 in GPGPU (GP2U), which providing heterogeneous
environment to execute and capability to reduce time
complexity which improves the performance of Latin
square computation over intensive domains latin square
We executed the latin square by using OpenCL
environment and compared with the sequential
implementations on CPU. On CPU algorithm takes very
huge amount of time. Obviously, the time taken becomes
low on GPU device. It provides novel and efficient
acceleration technique for matrix calculation and is cheap
in hardware implementation.

 Future work is to gain deeper knowledge about the
parallization techniques to make best use of GPU device
and to work with other algorithms related to these project
concepts.

5. References

[1] “Heterogeneous computing with OpenCL” by Benedict
gaster,british libraries,printed USA

[2] http://www.khronos.org/OpenCL ,”Khronos Group”.

[3] Roberto Fontana, Random Latin squares and Sudoku
designs generation,2013

[4] Nan Zhang, Yun-shan Chen, Jian-li Wang. “Image
Parallel Processing Based on GPU”. International
Conference on Advanced Computer Control, March 2010.

[5] Pardalos P.M., Xue, J, “The maximum clique problem”,
Journal of Global Optimization, 4, 1994, 301—328.

[6] Demetres Christofides, Klas Markstrom (2003)
Random Latin square graphs

[7]http://developer.amd.com/pages/default.aspx
“University Kit 1.0”.

[8] C.Colbourn(1984) The Complexity of completing
partial Latin squares. Discrete Applied Mathematics8: 25-
30. Doi:10.1016/0166-218X(84)90075-1

[9] Denes, J. and A. Keedwell. 1991. Latin Squares: New
Developments in the Theory and applications. North-
Holland.

[10] AMD Accelerated Parallel Processing OpenCL
Programming Guide1.pdf

[11] Jacobson, M.T and P. Matthews (1996) Generating
uniformly distributed random Latin squares. Journals of
Combinatorial Designs 4(6), 405-406

[12] Brendan D. McKay and Ian M. Wanless(2000) On the
number of Latin squares Australian National University,
Canberra, ACT 0200, Australia

[13] J.A. Bate, G.H.J. van Rees, The Size of the Smallest
Strong Critical Set in a Latin Square University of
Manitoba, Winnipeg, Manitoba.

http://www.khronos.org/OpenCL
http://developer.amd.com/pages/default.aspx

