
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 918

Implementation and Unittests of AWS, Google Storage (Cloud) and

Amazon S3 Functions using Mock, Boto and MagicMock in Python

Swati Sinha1, Preetam Pati2

1Application Development Analyst in Accenture Services Pvt. Ltd. Gurugram, Haryana, India
2Student, GreatLakes Institute of Management, Gurugram, Haryana, India

---***---
Abstract - Earlier, we ran such service tests against the

service to be tested, which connects against managed backend

services as such AWS S3. Doing so, we faced some

disadvantages. Firstly, these tests are potentially long-running

as they depend directly on managed services that include

network latency, especially when running the build and tests

on a local developer machine. Secondly, tests rely on the

availability and reachability of managed services. If a test run,

for whatever reason, cannot access managed services the build

will fail as a result and we’re potentially not able to roll out

new versions. A mock object is meant to quickly and easily

represent some complex object without having to manually go

through and set up stubs for that object during a test, which

overcome above problems. Anything that is external to the

module-under-test should be mocked. Amazon S3 is an object

storage service which can be created, configured and managed

with Boto3, which is an AWS SDK for Python. In other words, it

is used to interact with AWS. It provides an easy to use, object-

oriented API as well as low-level access to AWS services (e.g.

class S3.Client- A low-level client representing Amazon S3).

There are various methods available inside this class which

will be used directly to handle the migration of data. And

hence these methods can be tested using mock (mock_s3) i.e.

we are mocking S3 services. We are using the decorator

@mock_s3 to specify we want to mock out all the calls to S3.

Key Words: mock, patch, unittest, side_effect,
MagicMock, s3, moto, boto3

1.INTRODUCTION

unittest.mock is a library for testing in Python, not a framework. It

allows you to replace parts of your system under test with mock

objects and make assertions about how they have been used.

unittest.mock provides a core Mock class removing the need to

create a host of stubs throughout your test suite. After performing

an action, you can make assertions about which methods/attributes

were used and arguments they were called with. You can also specify

return values and set needed attributes in the normal way.

Additionally, mock provides a patch() decorator that handles

patching module and class level attributes within the scope of a test,

along with sentinel for creating unique objects Mock is very easy to

use and is designed for use with unittest. Mock is based on the

‘action -> assertion’ pattern instead of ‘record -> replay’ used by

many mocking frameworks. In other words, it works in AAA

(Arrange Act Assert) rather than record and replay. There is a

backport of unittest.mock for earlier versions of Python, available as

mock as PYPI.

Mock and MagicMock objects create all attributes and methods as

you access them and store details of how they have been used. You

can configure them, to specify return values or limit what attributes

are available, and then make assertions about how they have been

used:

>>> from unittest.mock import MagicMock

>>> thing = ProductionClass()

>>> thing.method = MagicMock(return_value=3)

>>> thing.method(3, 4, 5, key='value')

3

>>> thing.method.assert_called_with(3, 4, key='value')side
_effect allows you to perform side effects, including raising an
exception when a mock is called:

>>> mock = Mock(side_effect=KeyError('foo'))

>>> mock()

Traceback (most recent call last):

 ...

KeyError: 'foo'

>>> values = {'a': 1, 'b': 2, 'c': 3}

>>> def side_effect(arg):

... return values[arg]

...

>>> mock.side_effect = side_effect

>>> mock('a'), mock('b'), mock('c')

(1, 2, 3)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 919

>>> mock.side_effect = [5, 4, 3, 2, 1]

>>> mock(), mock(), mock()

(5, 4, 3)

Why was MagicMock made a separate thing rather than just folding
the ability into the default mock object?

Ans - One reasonable answer is that the way MagicMock works is
that it preconfigures all these protocol methods by creating new
Mocks and setting them, so if every new mock created a bunch of
new mocks and set those as protocol methods and then all of those
protocol methods created a bunch more mocks and set them on
their protocol methods, you've got infinite recursion...

What if you want accessing your mock as a container object to be an
error -- you don't want that to work? If every mock has
automatically got every protocol method, then it becomes much
more difficult to do that. And also, MagicMock does some of this
preconfiguring for you, setting return values that might not be
appropriate, so I thought it would be better to have this
convenience one that has everything preconfigured and available
for you, but you can also take an ordinary mock object and just
configure the magic methods you want to exist...

The simple answer is: just use MagicMock everywhere if that's
the behavior you want. One important point to add MagicMock is
iterative.

1.1 Advantages of Mocking

 Avoiding Too Many Dependencies. Mocking reduces
the dependence of functions. For instance, if you have a
function A class that depends on a function B, you will
need to write a few unit tests covering the features
provided by function B. Let's say the code grows in future
and you have more functions, i.e. A depends on B, B
depends on C, and C depends on D. If a fault is introduced
in Z, all your unit tests will fail.

 Reduced overload. This applies to resource-intensive
functions. A mock of that function would cut down on
unnecessary resource usage during testing, therefore
reducing test run time.

 Bypass time constraints in functions. This applies to
scheduled activities. Imagine a process that has been
scheduled to execute every hour. In such a situation,
mocking the time source lets you actually unit test such
logic so that your test doesn't have to run for hours,

waiting for the time to pass.

1.2 When to Mock

1.21 Only mock types that you own
External types have dependencies on their own. I also might
not fully understand how they work, and they might even
change their behavior in a next version. Mocking third-party
code can be a problem

1.22 Don’t mock values

If an object is mocked to return it from the service. This type
is a value. It has no identity and its fields are most probably
immutable. Values should not be mocked. Because, mocking is
a technique that is used to make the relationships and
interactions between objects visible. It’s not a tool to make it
easier to instantiate complex objects. Getting the value of a
price is not an interaction.

1.23 Avoid mocking concrete classes

If an object has five public methods, but current object under
test is using only two of them (the Interface Segregation
Principle is violated), it’s a good indicator that we need to
create another type. This extra relationship is harder to spot
when we use concrete objects instead of interfaces.
Additionally, if we mock a method of an object, but forget a
different method that the object under test also calls, the test
might fail with obscure errors.

1.3 Application of Mocking

1.3.1 Various ways of introspect

>>>mock = Mock(name=’bar’, return_value=’fish’)

>>>mock(1,7, spam=99)

‘fish’

>>>mcok.assert_called_once_with(1,7, spam =99)

>>>mock.called

True

>>mock.call_count

1

>>>mock.call_args

((1,7), ,‘span’: ‘eggs’})

>>>mock = Mock(return_value=None)

>>>mock(1,2,3)

>>>mock.assert_called_with(1, 2, 3)

>>>mock(4, 5, 6)

>>>mock.call_Args_list

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 920

[((1, 2, 3), {}), ((4, 5, 6), {})]

>>> mock.reset_mock()

>>>mock.call_args_list

[]

.

side_effect is passed to a function, it is going to be called in same

argument as the mock is called with. Dynamic stuff can be done

using side-effects. If side effect is an instance of an exception or

an exception is called, mock is called exception is raised

1.32 MagicMock is even better

MagicMock is a class. There is python protocol method which

require return value of specific type or cast return value to specific

type, so MagicMock has all these features configured. You can

access dictionary, return mock object, power, divided by mock.

>>>mock = MagicMock()

>>> mock*‘foo’+

<mock.Mock object at 0x…>

>>> mock ** mock / mock

<mock.Mock object at 0x…>

>>> int(mock), float(mock), hex(mock)

(1, 1.0, ‘0x1’)

>>> with mock:

---- pass

…

>>> list(mock)

[]

1.33 Magic Method Assertions

>>> mock = MagicMock()

>>> mock*‘foo’+ = 3

>>> mock.__setitem__.assert_called_with(‘foo’, 3)

>>> int(mock)

1

>>> mock.__int__.call_count

1

2 USAGE OF MOTO

Code to test:
import boto
from boto.s3.key import Key

class MyModel(object):
 def __init__(self, name, value):
 self.name = name
 self.value = value

 def save(self):
 conn = boto.connect_s3()
 bucket = conn.get_bucket('mybucket')
 k = Key(bucket)
 k.key = self.name
 k.set_contents_from_string(self.value)

2.1 Decorator

With a decorator wrapping, all the calls to S3 are
automatically mocked out.

import boto
from moto import mock_s3
from mymodule import MyModel
@mock_s3
def test_my_model_save():
 conn = boto.connect_s3()
 # We need to create the bucket since this is all in Moto's
'virtual' AWS account
 conn.create_bucket('mybucket')
 model_instance = MyModel('steve', 'is awesome')
 model_instance.save()
 assert
conn.get_bucket('mybucket').get_key('steve').get_contents
_as_string() ==
 ˓→'is awesome'

2.2 Context manager

Same as the Decorator, every call inside the with statement is
mocked out.

def test_my_model_save():
 with mock_s3():
 conn = boto.connect_s3()

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 921

 conn.create_bucket('mybucket')
 model_instance = MyModel('steve', 'is awesome')
 model_instance.save()
 assert
conn.get_bucket('mybucket').get_key('steve').get_contents
_as_string()
 ˓→== 'is awesome'

2.3 Raw

You can also start and stop the mocking manually

def test_my_model_save():
 mock = mock_s3()
 mock.start()
 conn = boto.connect_s3()
 conn.create_bucket('mybucket')
 model_instance = MyModel('steve', 'is awesome')
 model_instance.save()
 assert
conn.get_bucket('mybucket').get_key('steve').get_contents
_as_string() ==
 ˓→'is awesome'
 mock.stop()

2.4 Stand-alone server mode

Moto also comes with a stand-alone server allowing you to
mock out an AWS HTTP endpoint. For testing purposes, it’s
extremely useful even if we don’t use Python. $ moto_server
ec2 -p3000 * Running on http://127.0.0.1:3000/ However,
this method isn’t encouraged if we are using boto, the best
solution would be to use a decorator method

3 S3 FUNCTIONS AND THEIR UNIT TESTS

3.1 Introduction to S3 and code for various function

Amazon Simple Storage Service is storage for the Internet. It
is designed to make web-scale computing easier for
developers. Amazon S3 has a simple web services interface
that you can use to store and retrieve any amount of data, at
any time, from anywhere on the web. It gives any developer
access to the same highly scalable, reliable, fast, inexpensive
data storage infrastructure that Amazon uses to run its own
global network of web sites. The service aims to maximize
benefits of scale and to pass those benefits on to developers.

def upload_file(file, bucket, key, raise_exception=False,

nolog=False,

 extra_args=None):

 uri = "s3://%s/%s" % (bucket, key)

 if not isinstance(extra_args, dict):

 extra_args = {}

 try:

 s3 = boto3.client('s3')

 s3.upload_file(file, bucket, key, ExtraArgs=extra_args)

 except Exception as e:

 if raise_exception is True:

 raise

 if not nolog:

 logging.error('unable to upload %s to %s: %s' %

(file, uri, e))

 return False

 if not nolog:

 logging.info('uploaded %s' % uri)

 return True

def upload_object(bucket, key, obj_str,

raise_exception=False, nolog=False,

 extra_args=None, encrypt_key=None):

 if not isinstance(extra_args, dict):

 extra_args = {}

 if key.endswith('.gz'):

 obj_str = gzip_string(obj_str)

 if encrypt_key is not None:

 obj_str = encrypt_decrypt('encrypt', encrypt_key,

obj_str)

 kwargs = {

 'Body': obj_str

 }

 kwargs.update(extra_args)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 922

 uri = "s3://%s/%s" % (bucket, key)

 try:

 s3 = boto3.resource('s3')

 s3.Object(bucket, key).put(**kwargs)

 except Exception as e:

 if raise_exception is True:

 raise

 if not nolog:

 logging.error('unable to upload object to %s: %s' %

(uri, e))

 return False

 if not nolog:

 logging.info('uploaded %s' % uri)

 return True

def list_objects(bucket, prefix, delimiter='/', limit=None,

transform=None,

 strip_prefix=False, return_prefixes=False):

 client = boto3.client('s3')

 kwargs = {

 'Bucket': bucket,

 'Delimiter': delimiter,

 'Prefix': prefix

 }

 if isinstance(limit, int):

 kwargs['MaxKeys'] = limit

 keys = []

 prefix_len = len(prefix)

 prefixes = {}

 while True:

 response = client.list_objects(**kwargs)

 marker = response.get('NextMarker')

 for d in response.get('Contents', []):

 if strip_prefix is True:

 d['Key'] = d['Key'][prefix_len:]

 if transform is not None:

 keys.append(jmespath.search(transform, d))

 else:

 keys.append(d['Key'])

 for d in response.get('CommonPrefixes', []):

 if strip_prefix is True:

 d['Prefix'] = d['Prefix'][prefix_len:]

 if d['Prefix'] != '/':

 prefixes[d['Prefix']] = True

 if marker is not None:

 kwargs['Marker'] = marker

 else:

 break

 if return_prefixes is True:

 return (keys, sorted(prefixes.keys()))

 return keys

def object_exists(bucket, key, modified_since=None,

return_response=False,

 raise_exception=False):

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 923

 client = boto3.client('s3')

 response = None

 uri = 's3://%s/%s' % (bucket, key)

 kwargs = {

 'Bucket': bucket,

 'Key': key

 }

 if isinstance(modified_since, str):

 modified_since = parse_date(modified_since)

 if isinstance(modified_since, datetime):

 kwargs['IfModifiedSince'] = modified_since

 try:

 response = client.head_object(**kwargs)

 except botocore.exceptions.ClientError as e:

 code = e.response['Error']['Code']

 if code in ['NoSuchKey', '404']:

 if raise_exception is True:

 raise Exception('S3 URI %s not found' % uri)

 return False

 elif code in ['NotModified', '304']:

 return False

 else:

 raise Exception('unable to head_object %s: %s' %

(uri, e))

 if return_response is True:

 return response

 else:

 return True

def download_file(bucket, key, file, raise_exception=False,

nolog=False):

 uri = "s3://%s/%s" % (bucket, key)

 try:

 s3 = boto3.client('s3')

 s3.download_file(bucket, key, file)

 except Exception as e:

 if raise_exception is True:

 raise

 if not nolog:

 logging.error('unable to download %s to %s: %s' %

(uri, file, e))

 return False

 if not nolog:

 logging.info('downloaded %s' % uri)

 return True

3.2 Unit-tests of various S3 functions

4 TEST_DATA_DIR = os.path.dirname(__file__) + '/data/s3'

5 TEST_BUCKET_NAME = 'test_s3_mock_bucket'

6 from moto import mock_s3

7 def get_local_files():

8 file_info = []

9 for root, dirs, files in os.walk(TEST_DATA_DIR):

10 for file_name in files:

11 local_path = os.path.join(root, file_name)

12 s3_path = os.path.relpath(local_path,

TEST_DATA_DIR)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 924

13 file_info.append(

14 {

15 'local_path': local_path,

16 's3_path': s3_path

17 }

18)

19

20 return file_info

21

22 @mock_s3

23 def test_create_bucket():

24 s3_client = client('s3')

25 create_bucket =

s3_client.create_bucket(Bucket=TEST_BUCKET_NAME)

26 assert

create_bucket['ResponseMetadata']['HTTPStatusCode']

== 200

27 return TEST_BUCKET_NAME

28

29 @mock_s3

30 def test_blob_upload_file():

31 test_create_bucket()

32 file_info = get_local_files()

33 file = random.choice(file_info)

34 assert blob.upload_file(file['local_path'],

TEST_BUCKET_NAME,

35 file['s3_path'])

36

37 @mock_s3

38 def test_blob_object_exists():

39 test_create_bucket()

40 test_blob_upload_objects()

41 response = blob.object_exists(TEST_BUCKET_NAME,

42 'some_path',

43 modified_since=datetime.now(),

44 return_response=True,

45 raise_exception=False)

46 assert not response

47

48 @mock_s3

49 def test_blob_upload_objects():

50 test_create_bucket()

51 file_info = get_local_files()

52 for file in file_info:

53 with open(file['local_path'], 'r') as f:

54 file_content = f.read()

55 assert blob.upload_object(TEST_BUCKET_NAME,

file['s3_path'],

56 file_content)

57

58 @mock_s3

59 def test_blob_upload_object_exception():

60 test_create_bucket()

61 file_info = get_local_files()

62 file = random.choice(file_info)

63 with open(file['local_path'], 'r') as f:

64 file_content = f.read()

65 with pytest.raises(Exception) as e:

66 blob.upload_object('FAKE_BUCKET', file['s3_path'],

file_content,

67 raise_exception=True)

68 assert 'An error occurred (NoSuchBucket)' in

e.value.message

69

70 @mock_s3

71 def test_blob_list_objects():

72 test_create_bucket()

73 test_blob_upload_objects()

74 file_info = get_local_files()

75

76 s3_all_paths = sorted(item['s3_path'] for item in

file_info)

77 s3_list_all_objects =

blob.list_objects(TEST_BUCKET_NAME, '', '')

78 assert s3_all_paths == sorted(s3_list_all_objects)

79

80 path_xyz = 'xyz'

81 s3_paths_xyz = sorted([item for item in s3_all_paths

82 if item.startswith(path_xyz)])

83 s3_list_objects_xyz =

blob.list_objects(TEST_BUCKET_NAME, path_xyz, '')

84 assert s3_paths_xyz == sorted(s3_list_objects_xyz)

85

86 path_some_path = 'some_path'

87 s3_paths_some_path = sorted([item for item in

s3_all_paths

88 if item.startswith(path_some_path)])

89 s3_list_objects_some_path = blob.list_objects(

90 TEST_BUCKET_NAME,

91 path_some_path,

92 ''

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 925

93)

94 assert s3_paths_some_path ==

sorted(s3_list_objects_some_path)

95

96 limit = 2

97 s3_list_objects_limit = blob.list_objects(

98 TEST_BUCKET_NAME,

99 '',

100 '',

101 limit

102)

103 assert s3_all_paths[:limit] ==

sorted(s3_list_objects_limit)

104

105 s3_paths_strip_prefix =

sorted([item[len(path_some_path):]

106 for item in s3_paths_some_path])

107

108 s3_list_objects_strip_prefix = blob.list_objects(

109 TEST_BUCKET_NAME,

110 path_some_path,

111 '',

112 strip_prefix=True

113)

114 assert s3_paths_strip_prefix ==

sorted(s3_list_objects_strip_prefix)

115

116 # test prefixes

117 (keys, prefixes) = blob.list_objects(

118 TEST_BUCKET_NAME,

119 '',

120 return_prefixes=True

121)

122 assert keys == ['a.json', 'c.yaml', 'd.csv']

123 assert prefixes == ['manual/', 'some_path/']

124

125

126 @mock_s3

127 def test_blob_download_file():

128 test_create_bucket()

129 test_blob_upload_objects()

130 file_info = get_local_files()

131 file = random.choice(file_info)

132 local_path = '/tmp/' + file['s3_path'].split('/')[-1]

133 assert blob.download_file(TEST_BUCKET_NAME,

file['s3_path'], local_path)

134 file_exists = os.path.isfile(local_path)

135 assert file_exists

136 if file_exists:

137 os.remove(local_path)

4 PATCHING

4.1 The Patch Context Manager

Monkey patching is easy. Un-monkey patching is hard, patch
does it for you. Replacing one object with other and store it
for you.

>>> import module

>>> from mock import patch

>>> original = module.SomeObject

>>> with patch(‘module.SomeObject’) as mock_obj:

… assert module.SomeObject is mock_obj

….

>>> assert module.SomeObject is original

4.2 The Patch Decorator

Patch can also be used as a decorator, often to decorate test

methods. You can nest them for multiple patches. The patch

decorators are used for patching objects only within the

scope of the function they decorate. They automatically

handle the unpatching for you, even if exceptions are raised.

All of these functions can also be used in with statements or

as class decorators.

class TestSomething(unittest2.TestCase):

 @patch(‘module.SomeObject’)

 @patch(‘module.OtherObject’)

 def test_something(Self, mock_other_object,
mock_Some_object):

 pass

patch is done where look up happened, not necessarily
where object is defined. Patch() is straightforward to use.
The key is to do the patching in the right namespace. How

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 926

would you test SomeClass.method without instantiating
BigExpensiveClass?

from othermodule import BigClass

class SomeClass(object):

 def method(self, arg):

 self.thing = BigClass(arg)

from mock import patch,sentinel

from module import SomeClass

with patch(‘module.BigClass’) as MockClass:

 Obj = SomeClass()

 Arg = sentinel.arg

 Obj.method(arg)

 instance = MockClass.return_value

 assert obj.thing is instance

 MockClass.assert_called_once_with(arg)

Mocking module of bigclass and look up is happening in our

module.

What if code look like below shown: It means lookup is

happening in another module not inside our namespace

What if the code looked like this instead?
import othermodule

class SomeClass(object):

 def method(Self, arg):

 self.thing = othermodule.BigClass(arg)

from mock import patch,sentinel

from module import SomeClass

with patch(‘othermodule.BigClass’) as MockClass:

 Obj = SomeClass()

 Arg = sentinel.arg

 Obj.method(arg)

 instance = MockClass.return_value

 assert obj.thing is instance

 MockClass.assert_called_once_with(arg)

5 AWS AND GOOGLE STORAGE FUNCTION’S TEST

5.1 AWS Functions

5.1.1 Functions(utils.py)

def get_env_name():

 env = os.environ.get('ENV')

 if env is None:

 env = os.environ.get('AWS_DEFAULT_PROFILE')

 if env is not None:

 env = env.replace('core-', '')

 else:

 raise Exception('get_env_name: unable to get ENV '

+

 'or AWS_DEFAULT_PROFILE')

 return env

def get_aws_region():

 aws_region = os.environ.get('AWS_DEFAULT_REGION')

 if aws_region is None:

 aws_region = os.environ.get('AWS_REGION')

 if aws_region is None:

 raise Exception('get_aws_region: unable to get

AWS_DEFAULT_REGION')

 return aws_region

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 927

def get_aws_account_id():

 aws_account_id = os.environ.get('AWS_ACCOUNT_ID')

 if aws_account_id is None:

 raise Exception('get_aws_account_id: unable to get

AWS_ACCOUNT_ID')

 return aws_account_id

def to_bool(value):

 if not value:

 return False

 elif isinstance(value, bool):

 return value

 elif isinstance(value, basestring):

 return bool(strtobool(value.lower()))

 else:

 return bool(value)

def bytes_size(b):

 if b == 0:

 return "0B"

 size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB",

"ZB", "YB")

 i = int(math.floor(math.log(b, 1024)))

 p = math.pow(1024, i)

 s = round(b / p, 2)

 return "%s %s" % (s, size_name[i])

def fatal(msg):

 logging.critical(msg)

 if flask.has_request_context():

 abort(500)

 else:

 sys.exit(1)

5.1.2 Tests

import utils

import os

import pytest

import sys

import time

ENV = 'unittest'

BUCKET = ‘test-%s' % ENV

os.environ['ENV'] = ENV

def test_get_env_name():

 for x in ['AWS_DEFAULT_PROFILE', 'ENV']:

 os.environ.pop(x, None)

 with pytest.raises(Exception) as e:

 utils.get_env_name()

 assert 'unable to get ENV' in e.value.message

 os.environ['AWS_DEFAULT_PROFILE'] = 'core-' + ENV

 assert utils.get_env_name() == ENV

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 928

 os.environ.pop('AWS_DEFAULT_PROFILE', None)

 os.environ['ENV'] = ENV

 assert utils.get_env_name() == ENV

def test_get_aws_region():

 for x in ['AWS_DEFAULT_REGION', 'AWS_REGION']:

 os.environ.pop(x, None)

 with pytest.raises(Exception) as e:

 utils.get_aws_region()

 assert 'unable to get AWS_DEFAULT_REGION' in

e.value.message

 os.environ['AWS_REGION'] = 'us-east-1'

 assert utils.get_aws_region() == 'us-east-1'

def test_get_aws_account_id():

 os.environ['AWS_ACCOUNT_ID'] = 'TEST ID'

 assert utils.get_aws_account_id() == 'TEST ID'

 os.environ.pop('AWS_ACCOUNT_ID', None)

 with pytest.raises(Exception) as e:

 utils.get_aws_account_id()

 assert 'unable to get AWS_ACCOUNT_ID' in

e.value.message

def test_to_bool():

 assert utils.to_bool(None) is False

 assert utils.to_bool(True) is True

 assert utils.to_bool('False') is False

 assert utils.to_bool(1) is True

def test_bytes_size():

 assert utils.bytes_size(0) == '0B'

 assert utils.bytes_size(1024) == '1.0 KB'

def test_fatal():

 with pytest.raises(SystemExit) as e:

 utils.fatal('foo')

 assert e.type == SystemExit

 assert e.value.code == 1

5.2 For GOOGLE STORAGE Cloud Functions

Unit tests for uploading file to google storage using python:

class TestDate(unittest.TestCase):

 def test_upload_to_Google_Storage(self):

 from google.cloud import storage

 blob_mock = Mock(spec=storage.Blob)

 bucket_mock = Mock(spec=storage.Bucket)

 bucket_mock.blob.return_value = blob_mock

 storage_client_mock = Mock(spec=storage.Client)

 storage_client_mock.get_bucket.return_value =
bucket_mock

 blob_mock.upload_from_filename = Mock()

 os.path.isfile = Mock()

 os.remove = Mock()

 # mockobject is passed as file name

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 929

 response =
upload_to_google_storage.upload_to_GS('test-bucket',
Mock(),

 blob_mock,

 storage_client_mock)

 self.assertTrue(blob_mock.exists())

 self.assertIsNotNone(response)

class TestBlob(unittest.TestCase):

 def test_list_blobs(self):

 from google.cloud import storage

 storage_client_mock =
MagicMock(spec=storage.Client)

 bucket_mock = MagicMock(spec=storage.Bucket)

 storage_client_mock.get_bucket.return_value =
bucket_mock

 iterator = blob.list_blobs(storage_client_mock, 'test-
bucket')

 blobs = list(iterator)

 self.assertEqual(blobs, [])

if __name__ == '__main__':

 unittest.main()

6 CONCLUSION

Mocks are objects that register calls they receive. In the test
assertion, we can verify on Mocks that all expected actions
were performed. We use mocks when we don’t want to
invoke production code or when there is no easy way to
verify, that intended code was executed. There is no return
value and no easy way to check system state change. An
example can be a functionality that calls e-mail sending
service. We don’t want to send e-mails each time we run a
test. Moreover, it is not easy to verify in tests that a right
email was sent. The only thing we can do is to verify the
outputs of the functionality that is exercised in our test. In
other words, verify that e-mail sending service was called. In

addition to this, moto which is a library, allows your tests to
easily mock out AWS Services. It creates a full, blank
environment. Moto also comes with a stand-alone server
allowing you to mock out an AWS HTTP endpoint. Moto
provides some internal APIs to view and change the state of
the backends, This API resets the state of all of the backend.
Moto can be used in any language such as Ruby, Java,
Javascript, Python.

REFERENCES

[1] https://docs.python.org/3/library/unittest.mock.html
[2] https://docs.aws.amazon.com/AmazonS3/latest/dev/

Welcome.html
[3] https://blog.pragmatists.com/test-doubles-fakes-

mocks-and-stubs-1a7491dfa3da
[4] https://medium.com/adobetech/effectively-testing-

our-aws-s3-utilization-using-the-s3mock-f139ebf81572

BIOGRAPHIES
I am having total 3 years of
experience with Accenture. I opted
for Electronics and Electrical
engineering as my undergraduate
specialization. I am also a food
blogger as well as solo traveler. I
was All India finalist for beauty
pageant.

https://docs.python.org/3/library/unittest.mock.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://medium.com/adobetech/effectively-testing-our-aws-s3-utilization-using-the-s3mock-f139ebf81572
https://medium.com/adobetech/effectively-testing-our-aws-s3-utilization-using-the-s3mock-f139ebf81572

