Automatically Controlled Solar Tunnel Dryer using Arduino for Coriander

Mr. Deepak R. Patil¹, Mr. Sunit S. Kore², Mr. Vinaykumar N. Patil³, Mr. Aniket S. Mane-Deshmukh⁴, Prof. S. B. Mali⁵, Prof. D. P. Durgade⁶

^{1,2,3,4}Student of Department of Agricultural Engineering, Dr. D. Y. Patil College of Agricultural Engineering and Technology, Talsande, India.

⁵Assistant professor of Department of Agricultural Engineering, Dr. D. Y. Patil College of Agricultural Engineering and Technology, Talsande, India.

⁶Assistant professor of Department of Electronics and Telecommunication Engineering, SBGI, Miraj, India.

ABSTRACT:- Sun drying of agricultural products is the traditional method employed in most of the developing countries. Sun drying is used to denote the exposure of a commodity to direct solar radiation and the convective power of the natural wind. Solar drying can be considered as an advancement of natural sun drying and it is a more efficient technique of utilizing solar energy due to its renewable. environmentally friendly technology. Nowadays drying agricultural products have great attention and there are various methods of drying fruits, vegetables such as dehydration, canning etc. due to this the quality of such product is degraded so solar dryer is used to avoid wastage, increase the productivity of agriculture, also the production in terms of quality and quantity. This project describes a controlled environment which is suitable for small scale agricultural products drying process within a closed chamber, using Arduino. To start with, the sun rays are used to internally heat the fruit to remove the water content within the agricultural products. Then to maintain the humidity below a specified level, exhaust the humid air out of the chamber. Arduino is used to control the functions of heating, controlling the speed of exhaust fan and giving time indication & maintain constant temperature throughout the chamber. The graphs of time versus drying process obtained show that the automatic drying unit designed has worked as per the expectation by consuming less time compared to conventional drying process.

Keywords: Arduino, Sensor, Foldable Solar Tunnel Dryer, LCD Display.

INTRODUCTION

Drying is an excellent way to preserve food and solar food drying is an appropriate food preservation technology for a sustainable world. The high moisture content in fresh agricultural product (produce) is the basic cause for spoilage. If water is removed, then the shelf life of produce increases. Traditional open sun drying methods often yield poor quality, since the produce is not protected against dust, rain and wind, or even against insects, birds, rodents and domestic animals while drying. The solution

of all these problems is the use of solar dryer instead of open sun drying.

e-ISSN: 2395-0056

p-ISSN: 2395-0072

Solar dryers are the devices that use free solar energy to dry agro products. The studies indicate that cost of drying with solar energy is only one-third as compared to the cost using a dryer based on conventional fuels. Adequate drying helps to preserve the flavor, texture, and color of the food, which leads to a better quality product.

India is the largest producer of coriander 9.23 lac tones per annum during the year 2017-18 by Ministry of Agriculture of India [1]. Coriander is widely cultivated in Rajasthan, Gujarat, Karnataka, Andhra Pradesh, Maharashtra and Tamil Nadu. It is perishable vegetable with moisture content of 80-90% which can be reduced down to 5-10% by drying in order to increase the shelf life. Mostly used methods for drying agricultural products like Coriander are microwave drying, oven drying, vacuum drying etc., due to this the quality of such product is degraded so solar dryer is used to avoid wastage, increase the productivity of agriculture, also the production in terms of quality and quantity. Different food types require different temperature for drying conditions in order to maintain their quality. In solar tunnel dryer we cannot control various drying parameters temperature, relative humidity etc., due to that quality and quantity of product degraded. To overcome this problem we can use automatically controlled solar tunnel dryer. The temperature inside the solar tunnel dryer can be controlled by using microcontrollers like 8051, PIC, ARM, Arduino etc These solar dryers allow for controlled drying by managing the drying parameters such as moisture content, air temperature, humidity, and air flow rate.

METHODOLOGY

The design used for agro products drying chamber needs the temperature to be controlled throughout the drying process by using solar energy. Variable temperature conditions during drying are harmful for agro products. Over drying causes discoloration and reduction in quality. On the other hand, under drying causes fungal

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

infection and bacterial action. Thus main objectives are to design the solar tunnel dryer and to design a controlling circuit to control various drying parameters inside it.

Solar Tunnel Dryer:

The material used for construction of folding type small size passive solar tunnel dryer is given in the following table 1:

Table 1: Material required for solar tunnel dryer

Sr. No.	Item	Specification/ Quantity
1.	GI Bar	8.92 m
2.	GI Sheet	26 gauge
3.	PVC pipe	5.49 m
4.	UV stabilized polythene sheet, thickness 200 microns	5 × 5 m ²
5.	Insulation(Plywood)	2
6.	Binder Clips	28

The schematic design of solar tunnel dryer is shown in fig

All dimensions in mm

Fig. 1: Schematic diagram of solar tunnel dryer

2) **Solar Tunnel Dryer with controlling circuit:**

The above solar tunnel dryers parameters are tested and controlled using arduino as shown below

BLOCK DIAGRAM

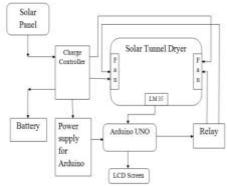


Fig. 2: Block diagram of solar tunnel dryer

CIRCUITRY

1. Arduino Uno

Table 2: Specifications of Arduino Uno

Operating Voltage	5V	
Input Voltage	7-12V	
Digital I/O	Pins 14	
Analog Input	6 Pins	
Length	68.6 mm	
Width	53.4 mm	
Weight	25 g	

2. Temperature Sensor LM 35

Table 3: Specifications of temperature sensor LM 35

Supply Voltage	+35 V to -0.2 V	
Output Voltage	+6 V to -1 V	
Temperature Range	-55 °C to 150 °C	

3. Relay

Table 4. Specifications of relay

Operating Voltage	5 V DC
Nominal current	70 mA
Quantity	2

Liquid Crystal Display

Table 5: Specifications of liquid crystal display

rable 5. Speemeations of fiquia crystal display			
Operating Voltage 5 V DC			
Module	60 mm x 36 mm x 15		
Dimension	mm		
Viewing Area Size 64.5 mm x 16 mm			
Displays	2 lines x 16 characters		

5. Exhaust Fan

Table 6: Specifications of exhaust fan

Operating Voltage	5 V
Dimension	100mm × 100 mm × 10
Difficusion	mm

6. Solar Panel

Table 7: Specifications of solar panel

Table / Specifications of Solar panel			
Rated power	10 Watt		
Open circuit voltage (Voc)	21.5 Volt		
Short circuit current (Isc)	0.65 Ampere		
Voltage at maximum power (Vmp)	17.7 Volt		
Current at maximum power (Imp)	0.57 Ampere		
Maximum system voltage	600 lt		

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

7. Battery

Table 8: Specifications of battery

Voltage	12 Volt
Capacity	7 Ah
Туре	Sealed Lead Acid Battery
Rechargeable	Yes

Charge Controller

Table 9: Specifications of charge controller

Voltage	12 Volt
Max. PV charging Current	5 Ampere
Max. load	5 Ampere

Fig. 3: Actual view of circuit diagram

The measurements of the parameters were taken after every half hour.

Table: 10 Parameters measured and instruments used

Parameter	Instrument	
Tomporaturo	Digital	
Temperature	Thermometer	
Relative Humidity	Hygrometer	
Air Velocity	Digital Anemometer	
Solar Radiations	Pyranometer	

Flow chart of coriander drying is given below:

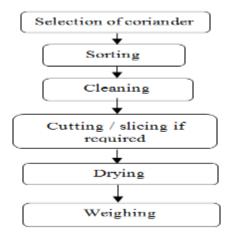


Fig. 4: Process of drying coriander

Flow chart of controlling solar tunnel dryer is given below:

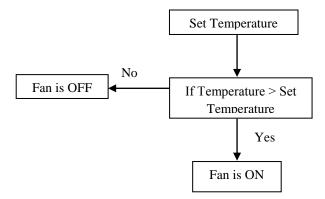


Fig. 5: Process of controlling solar tunnel dryer

The effect of drying air temperature that is 50°C on drying kinetics of Coriander was investigated using solar tunnel dryer.

Determination of Moisture Content:

Moisture content % (wb) =
$$\frac{W_2 - W_3}{W_2 - W_1}$$
 X 100

Where,

 W_1 = Weight of empty box, g.

W₂=Weight of sample before drying, g.

W₃=weight of sample after drying, g.

RESULT AND DISCUSSION

Evaluation of Solar Tunnel Dryer for No load condition

Evaluation and testing of the solar tunnel dryer was carried out under no load conditions.

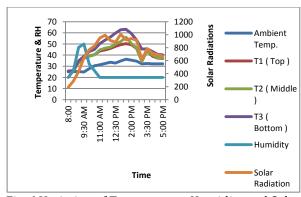


Fig. 6 Variation of Temperature, Humidity and Solar Radiation with Time at No load condition

It was observed that the minimum inside temperature was 25.7°C at 8:00 am and also observed that the minimum and maximum drver humidity was 20 % and 32% from 08:00 am to 5:00 pm respectively. The minimum and maximum base temperature is 25.7°C at 08:00 am and 63.2°C at 1:30 pm respectively. The minimum solar radiation was observed at 08:00 am and

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 06 Issue: 06 | June 2019

www.irjet.net

maximum at 1:00 pm were 189 and 1008 \mbox{W}/\mbox{m}^2 respectively.

Fig. 6 shows that minimum and maximum temperature of dryer, ambient temp, humidity, solar radiation. It was observed that the minimum and maximum ambient temperature of air was observed at 8:00 am and 01:30 pm that is 25.0° C and 36.2° C respectively.

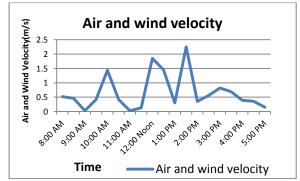


Fig. 7 Variation of Air Flow Velocity with Time at No load condition

Fig. 7 shows that the variation of air flow velocity of wind velocity with respect to time. The minimum & maximum air flow velocity was observed at 09:00 am and 01:30 pm, 0.03 m/s and 2.25 m/s respectively.

Evaluation of Solar Tunnel Dryer for Coriander

Evaluation and testing of the Solar Tunnel Dryer was carried out under load conditions for drying of coriander.

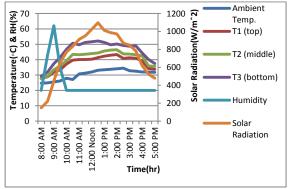


Fig. 8 Variation of Temperature, Humidity and Solar Radiation with Time

On the day of drying it was observed that the minimum inside temperature was 27.80C at 8:00 am and also observed that the minimum and maximum dryer humidity was 20% and 62% from 08:00 am to 5:00 pm. The minimum and maximum base temperature is 29.260C at 08:00 am and $52.15^{\circ}C$ at 12:30 pm respectively. The

minimum solar radiation was observed at 08:00 am and maximum at 12:30 pm were 149 and 1097 W/m² respectively.

e-ISSN: 2395-0056

p-ISSN: 2395-0072

Figure 8 shows that minimum and maximum temperature of dryer, ambient temp, humidity, solar radiation. It was observed that the minimum and maximum ambient temp of air was observed at 8:00 am and 02:30 pm that is 24.7° C and 34.5° C respectively.

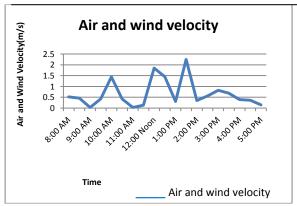


Fig. 9 Variation of Air Flow Velocity with Time

Fig. 9 shows that the variation of air flow velocity of wind velocity with respect to time. The minimum & maximum air flow velocity was observed at 08:00 am and 12.00 noon, 0.04 m/s and 2.15 m/s respectively

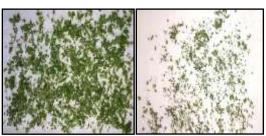


Fig.10: Coriander before drying

Fig. 11: Coriander after drying

Determination of Moisture Content

Table 11: Initial moisture content

Weight of empty box (W ₁) g	Weight of empty box + Weight of sample before oven drying (W ₂) g	Weight of empty box + Weight of sample after oven drying (W ₃)	Moistur e content % (wet basis)
59.3	63.21	59.761	88.43

© 2019. IRIET

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 RIET Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

Table 12: Moisture content after drying

	Weight of	Weight of	
Weight	empty box	empty	
of	+ Weight	box +	Moisture
empty	of sample	Weight of	content %
box	before	sample	(wet basis)
$(W_1)g$	oven	after oven	(wet basis)
(VV1)g	drying	drying	
	$(W_2) g$	(W_3) g	
59.3	62.14	61.94	6.91

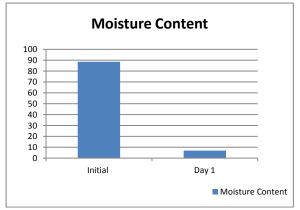


Fig. 12: Removal of moisture from coriander per day

From the fig. 12 it is observed that coriander require 1 day for drying. The drying rate is high. It is found that the initial moisture content of coriander was 88.43% which was reduced to 6.91% in 1 day.

CONCLUSIONS

Using the concept of basic solar conduction dryer implementing the automation and enhancement, quality of agro products has been increased. By utilizing large amount of solar heat to maintain the quality of the food products is also achieved. From the experiment performed, the dryer accomplishes the temperature control at desired temperature.

The overall reading observed that the maximum inside temperature was 52°C. Corresponding average ambient temperature was 32.52°C. It was also observed that the average solar radiation was 787.52 W/m², average humidity was 20 % and average the air flow velocity was 0.89 m/s. The initial moisture content of Coriander was 88.43% which was reduced to 6.91% in one day.

REFERENCES

1. Bagh, S., Shrivastava, A., Singh, A. V., Shrivastava, A. C., Gupta L., 2015. Review on Design of temperature controlled solar dryer. International

- Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(11):8731-8740.
- 2. Dangi, N., 2017. Review Monitoring on environmental parameters: humidity and temperature using Arduino based microcontroller and sensors.
- 3. Hegde, V. N., Hosur, V. S., Rathod, S. K., Harsoor, P. A. and Badari, N., 2015. Review on Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society Journal.
- Louis, L. 2016. Review on Working principle of Arduino and using it as a tool for study and research, International Journal of Control, Automation, Communication and System (IJCACS), 1(2):21-29.
- 5. Moloney, C., 2016. India's major agricultural produce losses. [Online]. Available: https://www.firstpost.com/business/indiasmajor-agricultural-produce-losses-es timated-atrs-92000-cr-2949002.html [Accessed on 30-July-2018]
- 6. Silva, A. S., Almeida, A. C., Lima E. E., Silva, F. L. H., Gomes, J. P., 2009. Drying Kinetics of Coriander Leaf and Stem, Cienciay Technologia Alimentaria 6(1): 13-19.
- 7. Singh, D., Meena, M. L., Chaudhary, M., Dayal, H. and Dudi, A., K., 2004. Review on Local Solar Tunnel Dryer for Small Scale, Entrepreneurship in Rural India, Central Arid, Zone Research Institute, Pali, Rajasthan, India.: 10-21.
- 8. Vardini, P. S., Hegade, V. N., Panvare, N. L., 2016. Design and Performance Evaluation of Solar Tunnel Dryer 9(3):955-967.