
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 652

Design and Verification of APB Protocol by using System Verilog and

Universal Verification Methodology

Vaishnavi R.K1, Bindu.S2, Sheik Chandbasha3

1M.Tech, Dept of ECE, B.N.M Institute of Technology, Bangalore, India
2Professor, Dept of ECE, B.N.M Institute of Technology, Bangalore, India

3D &V Engineer, SION Semiconductors, Bangalore, India
---***--
Abstract - The huge progress of VLSI technology enables
the integration of millions of transistor on a single chip
called System on chip (SOC).The SOC (system on chip) uses
AMBA (Advanced Microcontroller Bus Architecture) as on
chip bus protocol. APB (Advanced Peripheral Bus) is one of
components of AMBA bus Architecture. In this paper we
present the total Design and Verification of AMBA-APB
Protocol for SOC Applications. AMBA Bus basically has many
components like AHB, ASB, AXI etc which are high
performance bus used to interface with low performance
bus like APB. APB uses low peripheral bandwidth and is
used to connect with slaves like UART, TIMER, Keypad and
INTERRUPT CONTROLLER etc. The traditional way of
verification is simulation based. As the technology improved
complexity of IC’s has been increased. Hence time spent in
verification also been increased. This paper mainly focuses
on design of APB protocol in Verilog and Verifying in two
languages such as System Verilog and Universal Verification
Methodology (UVM).

Key Words: SOC, AMBA, APB, AXI, ASB

1. INTRODUCTION

In the Earlier stages of microcontroller devices
AMBA bus was used, but now it is extensively used in
many parts of ASIC and FPGA devices, together with in the
applications processors which are used in modern mobile
devices. APB (Advanced peripheral bus) is basically used
to connect with low peripheral devices such as UART,
TIMER, KEYPAD and INTERRUPT CONTROLLER etc. which
requires low bandwidth.APB has unpiplined also it is used
to interface to low bandwidth peripherals which don’t
require for high performance. Every transitions are
associated with the rising edge of clock therefore it is
simple to integrate APB with any other peripherals. AMBA
is an open standard, on-chip interconnect specification for
the purpose of connecting and managing functional blocks
in a System-on-Chip (SOC). It helps in right first time
development of the multiprocessor designs with large
number of controllers and peripherals[1]. Figure 1 shows
the AMBA bus Architecture. Basically it consist of two
components namely Advanced high performance bus
(AHB), or Advanced System bus (ASB) and Advanced
peripheral bus (APB). So the components requiring higher
bandwidth like High Bandwidth on chip RAM, High
performance ARM processor, High Bandwidth Memory

Interface and DMA bus master are connected to the AHB
or ASB. AMBA APB is low bandwidth and low performance
bus. So, the components requiring lower bandwidth like
the peripheral devices such as UART, Keypad, Timer and
PIO (Peripheral Input Output) devices are connected to
the APB[2]. The bridge connects the high performance
AHB or ASB bus to the APB bus. So, for APB the bridge acts
as the master and all the devices connected on the APB
bus acts as the slave. The component on the high
performance bus initiates the transactions and transfer
them to the peripherals connected on the APB. So, at a
time the bridge is used for communication between the
high performance bus and the peripheral devices.

Figure 1: AMBA bus Architecture

I. APB block diagram

1.1.1 APB Bridge/Master

Figure 2: APB Master/Bridge

APB is a component of AMBA Hierarchy Bus and it is used
to connect with the low peripheral devices. AMBA-APB
usually consists of APB Bridge/master and APB slave .and
it can be used to interface with many number of slaves[3].
Figure 2 shows the Block diagram of APB bridge/Master

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 653

and APB slave. APB bridge is just bus master on AMBA
APB. In addition, the APB bridge is also a slave on the high-
level system bus.

APB Master description:

APB Bridge converts the data and address from System
bus transfer to APB and performance the following
functions.

 latch the address and holds it valid throughout the
transfer.

 Decodes the address and generates a peripheral
select, PSELx. just one select signal can be active
during a transfer.

 Drives the data onto the APB for a write transfer.

 Drives the APB data onto the system bus for a read
transfer[3].

1.1.2 APB Slave

APB Slave have a simple, yet flexible interface and
it can be used to interface many slaves. And it
performance the subsequent functions.

Figure 3:APB Slave Diagram

APB Slave description:

 on either rising edge of PCLK, when PSEL is HIGH

 on the rising edge of PENABLE, when PSEL is HIGH.

 The select signal PSELx, the address PADDR and the
write signal PWRITE can be combined to determine
which register should be updated by the write
operation

 For read transfers the data can be driven on to the data
bus when PWRITE is LOW and both PSELx and
PENABLE are HIGH. While PADDR is used to determine
which register should be read[4].

1.2 OPERATING STATUS OF AN APB

The figure 4 shows the operating status of an APB which
represent the activity of peripheral.

Figure 4: Operating status of APB

Operating status of an APB can be described in three
states.

 IDLE: This will be the default state where there is no
transfer of data.

 SETUP: within this state appropriate PSLELx signal is
asserted, bus only remains in the SETUP state for one
clock cycle and will always move to the ENABLE state
on the next rising edge of the clock.

 ENABLE/ACCESS: In the ENABLE state PENABLE
signal is asserted. The address, write and select
signals all remain stable during the transition from
the SETUP to ENABLE state. The ENABLE state also
only lasts for a single clock cycle and after this state
the bus will depart to the IDLE state if no further
transfers are required. Alternatively, if another
transfer be to follow then the bus will move directly
to the SETUP state. It is acceptable for the address,
write and select signals to glitch during a transition
from the ENABLE to SETUP states[5].

 Write cycle:

During the write transfer operation, the PSEL, PWRITE,
PADDR and PWDATA signals are asserted at the T1 clock
edge which is called the SETUP cycle. At the next rising
edge of the clock T2, the PENABLE signal and PREADY
signal are asserted. This is called the ACCESS cycle. At the
clock edge T3, PENABLE signal is disabled and if further
data transfer is required, a high to low transition occurs on
the PREADY signal.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 654

Figure 5: APB write Cycle

Read Cycle:

During the read operation, the PSEL, PENABLE,
PWRITE, PADDR signals are asserted at the clock edge T1
(SETUP cycle). At the clock edge T2, (ACCESS cycle), the
PENABLE, PREADY are asserted and PRDATA is also read
during this phase.

Figure 6: APB Read cycle

2. Verification

Verification is the important part in the VLSI technology.
Because it is used to find out the bugs in the RTL design at
the earliest stage so the overall design should not prove
destructive. So here we are creating an environment in
System Verilog and UVM methodology for the APB design.
The main purpose of creating verification environment is
to generate the stimulus to DUT (design under test), and
check the results to verify that the function is correct. So
that test cases can be modified or added by referring the
coverage report.

Figure 7: position of RTL verification in VLSI design flow

2.1. System Verilog Environment:

Figure 8: System Verilog Environment

System Verilog is a special hardware verification language
to be used in function verification. It provides the high-
level data structures available in object-oriented languages,
such as C++. These data structures enable a higher level of
abstraction and modeling of complex data types. The
System Verilog also provides constructs necessary for
modeling hardware concepts such as cycles, tri-state
values, wires, just like Verilog hardware languages. So
System Verilog can be used to simulate the HDL design and
verify them by high level test cas[6].

The above figure 8 shows System Verilog environment. The
environment includes DUT written in Verilog and System
Verilog test bench which include System Verilog interface,
simulation module and test program. In system Verilog test
bench, the generator is used to create constrained random
test vectors. These vectors are sent to the driver, and then
can simulate the DUT. The monitor generates verification
reports on states, transactions and model messages.
Scoreboard checks the results and with this any changes in
the modification required that can be made. The advantage
of System Verilog is object oriented programming with that
it can greatly enhance the reusability of test bench
components. The interface is used to join the DUT and the
System Verilog test bench which includes the test program.

B.UVM Environment

Figure 9: UVM Environment

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 655

Universal Verification Methodology (UVM) is a standard
verification methodology used to verify the RTL (Register
Transfer Level) design. It consists of base class library
coded in System Verilog. The verification engineer can
create different verification components by extending
these classes. Moreover, UVM provides many other useful
verification features such as use of macros for
implementing complex function, factory for object
creation.

The above figure 9 shows about UVM environment. The
environment includes interface and DUT along with test
bench. The test bench environment includes agent,
sequencer, driver and monitor as sub components.

Sequence item: The transactions are extended from the
uvm_sequence_item. This component randomizes the
address and data. The field automation macros are applied
to the data members of this class.

Sequences: A sequence is a series of transaction. In the
sequence class, the users can create complex stimulus.
These sequences can be randomized, extended to create
another sequence and can be combined.

Sequencer: UVM sequencer coordinates between the
driver and sequence. It passes the transaction to the driver
for execution and obtains the response from the driver. It
also acts as an arbitrator for multiple sequences running
in parallel.

Driver: Driver initiates the request for the next
transaction and drives it to the lower level components. It
is created by extending the uvm_driver.

 Monitor: The Monitor extracts the signal information
from the bus and converts it into the transactions and
passes it through the analysis port to for further
comparing.

Agent: The agent instantiates the verification components
driver, monitor, collector and sequencer. It also connects
these components using TLM connections. The agent can
have one of the operating modes active or passive. In the
active mode of operation, the agent instantiates driver,
sequencer collector and monitor where as in the passive
mode of operation only monitor and collector are
instantiated and configured

 Environment: The Environment class instantiates all the
sub components such as agents, driver, monitor etc. and
configures them.

Testbench: The uvm_test is extended from the
uvm_component. Different test cases can be generated for
the given verification environment.

3. Simulation results

A. The following figure 10 shows about the APB data
transfer from Master/bridge to slave with the different
states

Figure 10: Master to slave data transfer

B.APB Write transfer

Figure 11: Slave write/Read operation

The above figure 11 shows the write operation on the
slave. The data Read from master is same as the data has
been written to slave.

C. System Verilog top module waveform:

Figure 12: System Verilog Test bench environment

In figure 12 the eight bit data which is written to the
memory at the specified address is the same data read by
the slave.

D.UVM top module waveform:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 656

Figure 13: UVM Test bench environment

The above figure 13 shows the UVM test bench waveform
where the data written by the master is same as the data
read by the slave

UVM report summary:

Figure 14: UVM report summary

 UVM report provides the results obtained after simulation
of UVM test bench. Figure 14 shows the report generated
after running all the UVM phases. UVM_INFO in the report
says that there are fifty six information messages. The total
summary explains the design is error free and will not
produce fatal error since UVM_ERROR, UVM_WARNING
and UVM_FATAL is equal to zero.

4. CONCLUSION

 This paper gives an overview of the AMBA bus
architecture and discusses the APB bus in detail. The APB
bus is designed using the Verilog HDL according to the
specification and is verified using in System Verilog and
Universal Verification Methodology. The simulation
results show that the data read from a particular memory
location is same as the data written to the given memory
location. Hence, the design is functionally correct. The
UVM report summary also ensures the functional
correctness of the design.

REFERENCES

[1] Heli Shah, Chinmay Modi “Design & Implementation of
Advance Peripheral Bus Protocol” IJSEAS - Volume-1,
Issue-3, June 201

[2] Shankar, Dipti Girdhar “Design and Verification of
AMBA APB Protocol” International Journal of
Computer Applications (0975 – 8887) Volume 95–
No.21, June 2014.

[3] Chenghai Ma, Zhijun Liu, Xiaoyue Ma, “Design and
Implementation of APB Bridge based AMBA 4.0,IEEE
2013.

[4] ARM “An AMBA Specification Overview V1.0”.

[5] Guoliang Ma and RuRe, “Design and Implementation
of an Advanced DMA Controller an AMBA based SOC,
IEEE 201.

[6] Han Ke, Deng Zhongliang,Shu Qiong “Verification of
AMBA bus Model using System Verilog” The Eighth
International Conference on Electronic Measurement
and Instruments IEEE 2011

