
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 540

Switch Case Statements in C

Naren Khatwani

Student, Department of Computer Engineering, Vivekanand Education Society’s Institute of Technology,
Maharashtra, India

--***--
Abstract: C programs are very versatile in nature. These

programs handle the dynamic operations through a number

of instructions and syntax. One such operation performed is

the use of switch cases with appropriate break statements.

However, it has been observed that the code repeats itself

majority of times during the switch case statement execution

which is a major drawback. This paper thus focusses on the

mechanism to avoid repetition of code through the concept

of fall through and expresses the methodology to achieve fall

through using appropriate break statements and required

syntax.

1. INTRODUCTION

Languages used in any computer system has a set of

instructions to execute. These languages though

interpreted by the systems are in binary, assembly and

higher level languages form the crux for any human being

to operate the system. These high level languages have a

group of instructions written to form the code that needs

executions

It has been observed that though switch case operation is

very versatile operation it has a number of drawbacks

namely: repetition of code, increased execution time,

reduced usability. Though it is widely accepted the

drawbacks tend to decease the effectiveness of the

language. One solution to resolve the conflicts created by

switch case is using the mechanism of Fall through. Fall

through in switch statement means jumping of statements

during absence of break statement after each case.

1.1 SWITCH STATEMENT

The basic syntax of the switch case is as follows

switch (variable to be used) {

case name1 : statements;

break;

case name2 : statements;

break;

case name2 : statements;

break;

default : statements;

}

Where case indicates,

Break is used to come out of the switch case condition. It

can be said that break is used after each switch case

condition

Thus it can be said that switch case is used when there

exist different conditions for one single expression. The

syntax of switch statement above clearly shows the usage

of break statement. We can see that break statement

causes an immediate exit from the switch.

However as explained below fall through has the syntax

switch (variable to be used)

{

 case name1 :

 case name2 :

 case name3 : statements;

 break;

 case name4 :

 case name5 : statements;

 break;

 default : statements;

}

This indicates that fall through can be used when there

exist some common conditions for a single expression

while break statement is used only in the common

statement condition for multiple switch cases and In fall

through it can be clearly seen that a common statement

can be written as a condition for multiple cases in order to

provide reusability to the code.

Thus the difference in operations of both is as expressed in

figure 1.Mode of Operation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 541

A break is observed in figure 1 b at the end of all the

statements. This break is necessary to be added after the

last switch case because this will not cause an extra case to

be executed by a mistake.

Figure 1(a):Switch Statement

Figure 1(b):Switch Statement (using Fallthrough)

#include<stdio.h>

int main()

 {

int n,t;

printf("ENTER THE NUMBER OF MONTH WHOSE

NUMBER OF DAYS YOU WANT TO KNOW");

scanf("%d",&n);

switch(n)

{

case 1:printf("31 days");

break;

case 2:printf("ENTER YEAR");

scanf("%d",&t);

if(((t%4==0)||(t%400==0))&&(t%100!=0))

printf("29 DAYS");

else

printf("28 DAYS");

break;

No of days in a month without

fallthrough

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 542

case 3:printf("31 days");

break;

case 4:printf("30 days");

break;

case 5:printf("31 days");

break

case 6:printf("30 days");…….contd

#include<stdi

o.h>

 int main()

 {

 int n,t;

printf("ENTER THE NUMBER OF MONTH WHOSE

NUMBER OF DAYS YOU WANT TO KNOW");

 scanf("%d",&n);

 switch(n)

{

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:printf("31 days");

break;

case 2:printf("ENTER YEAR");

scanf("%d",&t);

if(((t%4==0)||(t%400==0))&&(t%100!=0))

{

printf("29

DAYS");

}

else

{…….contd

1.2 Applications of Fallthrough

Duff’s Device:

In the C programming language, Duff's device is a way of

manually implementing loop unrolling by interleaving two

syntactic constructs of C: the do-while loop and a switch

statement.

Loop Unrolling:

Loop unrolling, also known as loop unwinding, is a loop

transformation technique that attempts to optimize a

program's execution speed at the expense of

its binary size, which is an approach known as space–time

tradeoff. The transformation can be undertaken manually

by the programmer or by an optimizing compiler.

The following example explains the usage of Loop

Unrolling:

Consider a normal for Loop that starts from the value

j=5000 and decrements until the value of j is not equal to 0

and the statement inside the for loop adds a value s to the

array element j with each iteration.

for(j=5000;j!=0;j--)

{

b[j]=b[j]+s;

}

Now in order for loop unrolling to occur we need to do

some changes in the for loop

for(j=5000;j!=0;j=j-2)

{

b[j]=b[j]+s;

b[j-1]=b[j-1]+s;

}

Here we have added one more statement in the for loop

which will do the same operation of adding a value ‘s’ with

each iteration to the (j)th element as well as for the (j-1)th

element

Also we need to change the decrement condition to

compensate the variable ‘s’ we added for loop unrolling to

occur.

FALL TRHOUGH OCCURS HERE WHEN THE USER

ENTERS THE VALUE 1,3,5,7,8,10

NO OF DAYS IN A MONTH WITH FALL THROUGH

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Loop_unrolling
https://en.wikipedia.org/wiki/Switch_statement
https://en.wikipedia.org/wiki/Switch_statement
https://en.wikipedia.org/wiki/Loop_transformation
https://en.wikipedia.org/wiki/Loop_transformation
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Optimizing_compiler

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 543

As we can see above loop unrolling will cause the

iterations to turn near to half the no of iterations that

happened .

Working of Duffs Device:

First pass:

int count ; // Set to 20

{

 int m = (count + 7) / 8; // n is now 3. (The "while" is
going to be run three times.)

 switch (count % 8) { // The remainder is 4 (20
modulo 8) so jump to the case 4

case 0: // [skipped]

do { // [skipped]

*to = *from++; // [skipped]

case 7:*to = *from++; // [skipped]

case 6:*to = *from++; // [skipped]

case 5:*to = *from++; // [skipped]

case 4:*to = *from++; // Start here. Copy 1 byte
(total 1)

case 3:*to = *from++; // Copy 1 byte (total 2)

case 2:*to = *from++; // Copy 1 byte (total 3)

case 1:*to = *from++; // Copy 1 byte (total 4)

} while (--m > 0); // M = 3 Reduce M by 1, then jump up

//to the "do" if it's still

} // greater than 0 (and it is)

}

Second Pass:

int count;

{

 int m = (count + 7) / 8;

 switch (count % 8) {

 case 0:

 do { // The while jumps to here.

 *to = *from++; // Copy 1 byte (total 5)

 case 7:*to = *from++; // Copy 1 byte (total 6)

 case 6: *to = *from++; // Copy 1 byte (total 7)

 case 5:*to = *from++; // Copy 1 byte (total 8)

 case 4:*to = *from++; // Copy 1 byte (total 9)

 case 3:*to = *from++; // Copy 1 byte (total 10)

 case 2:*to = *from++; // Copy 1 byte (total 11)

 case 1:*to = *from++; // Copy 1 byte (total 12)

 } while (--m > 0); // M = 2 Reduce M by 1, then jump
up to the "do" if it's still

 } // greater than 0 (and it is)

}

Third Pass:

int count;

{

 int m = (count + 7) / 8;

 switch (count % 8) {

 case 0:

 do { // The while jumps to here.

 *to = *from++; // Copy 1 byte (total 13)

 case 7:*to = *from++; // Copy 1 byte (total 14)

 case 6:*to = *from++; // Copy 1 byte (total 15)

 case 5:*to = *from++; // Copy 1 byte (total 16)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 544

 case 4:*to = *from++; // Copy 1 byte (total 17)

 case 3:*to = *from++; // Copy 1 byte (total 18)

 case 2:*to = *from++; // Copy 1 byte (total 19)

 case 1:*to = *from++; // Copy 1 byte (total 20)

 } while (--m > 0); // M = 1 Reduce M by 1, then jump up
to the "do" if it's still

 } // greater than 0 (and it's not, so bail)

} // continue here...

Conclusions:

C programs are considered very versatile. However in

order to avoid repetition of code two mechanisms namely

switch statement and break can be employed. Fallthrough

as a concept can enable repetition of code through

expressions.

References:

[1]. Holly, Ralf. "A reusable Duff device." Dr. Dobb's

Journal 30.8 (2005): 73-74.

[2]. The C Programming Language-Book by Brian

Kernighan and Dennis Ritchie

 [3]. The C programming Language By Brian W. Kernighan
and Dennis M. Ritchie. Published by Prentice-Hall in 1988
ISBN 0-13-110362-8 (paperback) ISBN 0-13-110370-9

 [4]. Expert C Programming: Deep C Secrets Book by Peter

van der Linden

[5].https://en.wikipedia.org/wiki/Duff%27s_device

[6]. https://en.wikipedia.org/wiki/Loop_unrolling

[7]. LET US C SOLUTIONS -15TH EDITION Book by

Yashavant Kanetkar

[8].21st Century C: C Tips from the New School Book by

Ben Klemens

[9]. Head First C-Book by David Griffiths and Dawn

Griffiths

