
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 323

Secure Android Application Development and Security Assessment

Vandana.H.K1, Dr. H.D. Phaneendra2

1Student, MTech- Information Technology, The National Institute of Engineering, Mysuru-09
 2Professor & Head, Dept. of CS&E, The National Institute of Engineering, Mysuru-09

---***--
Abstract - Nowadays mobile has taken a main part in
everyday life of an individual, all important information are
stored in mobile database and accessible by mobile
applications. Even online transactions are through mobile
applications; hence, mobile security requires the main priority.
Android applications undergo static and dynamic analysis
during security testing. These analysis requires tools like
apktool, adb, BurpSuite, Drozer, dex2jar, JDGui and jadX. This
paper consists of step-wise procedure for an android
application security assessment through which vulnerabilities
can be found and solutions to overcome vulnerabilities.

Key Words: BurpSuite, apktool, Drozer, CORS, Verbose
Server Banner, Root Detection, AndroidManifest.xml.

 1. INTRODUCTION

 Mobile plays an important part in recent years and replaced
personal computer to more extent. Applications are built for
every need including e-commerce, online transactions,
health care, etc. These applications consists of sensitive data
of an individual and needs to be secured. Only securing
android device is not enough one should also look into that
each application is secured or not.

Android application undergo static and dynamic analysis
during security assessment. Generally, static analysis of an
android application consists of source code review, side
channel leakage, reverse engineering etc. Dynamic analysis
consists of review of interception of api between application
and server. Static analysis requires apktool, dex2jar, jadx,
JDGUI tools. Dynamic analysis requires adb, Drozer,
BurpSuite tools.

2. METHODS

2.1 Method-I

Once an android application is given for security assessment,
it will be in .apk form. Apktool is the tool utilized for reverse
engineering of an android application where we can
decompile full source code into .smali form. Even modifying
and recompiling .apk is easy using this tool. Download the
apktool for free from google as it is an open source. Once
installed, using following command in terminal you can
reverse engineer the .apk file.

Fig -1: Result of >apktool; command

Fig-2: Result of >java –jar apktool.jar d –s
application_name.apk; command

2.1.1 Problem A

Consider an example for Dangerous permissions used
vulnerability, as “write_external_storage” permission set as
shown in figure 3. This permission allows the application to
store the application data onto the external storage like
memory card, which is accessible to all other applications.
Anything stored in the external storage is accessible to all
the application irrespective the device is rooted or not.
Confidentiality of the sensitive data is compromised, as the
data is openly accessible.

Fig -3: AndroidManifest.xml where write_external_storage
permission is set.

Solution A

It is recommended to remove this permission and allow only
those permissions, which are needed or required for the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 324

application to work properly. [6] Provide knowledge about
all uses-permission in android.

2.1.2 Problem B

Consider debuggable flag enabled vulnerability as shown in
fig- 4,the debug tag in AndroidManifest.xml defines whether
the application can be debugged or not. If the application can
be debugged then it can provide plenty of information to an
attacker since the local storage of the application is
accessible to attacker and it will also make easy in gaining
intercepted API between application and server. Attacker
needs to have physical access to rooted devices or there
should be a malware app running in background, which can
read through unencrypted sensitive data saved within
sandbox of the app. Proxy can be adjusted and interception
can be done using Burp Suite, this will explained in next
method.

Fig -4: AndroidManifest.xml where debuggable and
allowBackup flags are set to true

Consider allowBackup flag enabled vulnerability as shown in
figure 4, this flag allows anyone to backup your application
data via adb. It allows users who have enabled USB
debugging to copy application data off of the device. Android
backups rely on the Android Debug Bridge (ADB) command
to perform backup and restore. ADB, however, has been
a soft target for attacker and is still not trusted by respected
developers. The idea that someone can inject malicious code
into your backup data is unsettling. Attackers can read its
internal sensitive data like password, tokens etc. and modify
these sensitive data or configurations.

Even though the flag is set to false or flag is only removed,
attacker can modify them and recompile .apk file ,as shown
in following steps

Step 1: Open AndroidManifest.xml file in text editor and add
android:debuggable=”true” inside <application> tag as
shown in fig- 4.

Step 2: Recompile the above modified files using following
command.

>java –jar apktool b modified_folder –o
modified_app_name.apk

Step 3: The new .apk formed should be signed by apk signer
application before installing into mobile.

Solution B

It is recommended that Android applications that are not in
the production state are expected to have this attribute set
to true to assist the testers and developers however before

the actual release of the application this tag should be set
to false. It is also recommended to Set
android:allowBackup=false in Androidmanifes.xml or even
better is to remove that tag.

Fig -5: AndroidManifest.xml where debuggable and
allowBackup flags are set to false

2.1.3 Problem C

Consider Improper export of android application
components vulnerability as shown in figure 5, The Android
application exports a component for use by other
applications, but does not properly restrict which
applications can launch the component or access the data it
contains. Intents can be used to launch an activity, to send it
to any interested broadcast receiver components, and to
communicate with a background service. Intents messages
should be reviewed to ensure that they does not contain any
sensitive information that could be intercepted. If access to
an exported Activity is not restricted, any application will be
able to launch the activity. This may allow a malicious
application to gain access to sensitive information, modify
the internal state of the application, or trick a user into
interacting with the victim application while believing they
are still interacting with the malicious application.If access to
an exported Service is not restricted, any application may
start and bind to the Service. Depending on the exposed
functionality, this may allow a malicious application to
perform unauthorized actions, gain access to sensitive
information, or corrupt the internal state of the application.

Fig -6: Drozer utility used to list activities exported in the
target application.

MWR Labs developed a framework called Drozer, which is
one of the best Android security assessment tools available
for security assessments. To perform a security assessment
using Drozer, the users will run the commands on console of
their workstation and it is sent to an agent who execute the
task.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 325

com.isi.testapp.MainActivity is the home screen which in
order to be launched, it should be exported. Here,
com.isi.testapp.Welcome is the name of the activity which
is triggered after the login screen. Using Drozer, launch that
activity.

Fig -7: Drozer utility used to exploit vulnerabilities

This command provides an appropriate intent in the
background in order to launch the activity, which is to
bypass authentication during logging in to an application.

Solution C

It is recommended to make android:exported=false for
unwanted functionalities in AndroidManifest.xml.

Fig -8: AndroidManifest.xml where exported flag set to
false

2.2 Method-II

After all static analysis, let’s see how BurpSuite will be used
for security assessment. Download the BurpSuite-
Community Edition for free from google as it is an open
source. Set every settings required to intercept the traffic,
exchanged between application and server. Proxy settings is
similar to what we set during web application pentesting ,
but the change is instead of localhost we choose all interface
option. In mobile device, we have to set proxy according to
machine IP address, which has burpsuite running on it.

Here we discuss some basic vulnerabilities, which are found
during this assessment.

2.2.1 Problem D

Consider, Cross Origin Resource Sharing(CORS) vulnerability
where CORS defines whether resources on other domains
can interact with this server. An attacker can place malicious
JavaScript on his domain that can exploit the unrestrictive
CORS policy to access sensitive data on this server or
perform sensitive operations without the user’s knowledge.
Additionally, an attacker could exploit security
vulnerabilities on other domains to compromise services on
this server. The CORS policy relaxes the Same Origin Policy,
an important security control that isolates potentially
malicious resources to its respective domain name.
 If a script attempts to violate the Same Origin Policy by
interacting with another domain, modern browsers will
check a server’s CORS policy by issuing a “pre-flight request”.
The browser allows the interaction only if the server
responds with an Access-Control-Allow-Origin header that

lists the script’s domain or a wildcard match (*). A wildcard
match allows interaction from any other domain, which
allows any malicious content to retrieve content from this
server or perform user actions.

An unrestricted CORS policy allows an attacker to access
sensitive data or perform unauthorized user actions without
user knowledge. Malicious JavaScript can perform these
actions even if the server uses Cross Site Request Forgery
tokens. Hence, an attacker can access sensitive data of victim.
This vulnerability comes under category M3-Insecure
Communication.

Fig -9: Access-Control-Allow-Origin header in response
reflecting injected Origin in request

Solution D

The Access-Control-Allow-Origin header should not be set to
a wildcard match. In most cases, this header can be safely
removed. However, if the application requires a relaxation of
the Same Origin Policy, the Access-Control-Allow-Origin
header should whitelist only domains that are trusted by this
server.

Fig -10: Whitelisting trusted domains for server

Fig -11: Access-Control-Allow-Origin header in response
reflecting only trusted domains.

2.2.2 Problem E

Consider, Verbose Server Banner vulnerability where the
server information is sent in the HTTP responses from the
server. The information is commonly included in the server
response headers and can disclose information like server
name, type, and version number. By knowing version, type of
webserver, how each type of web server responds to specific
commands and keeping this information in a web server
fingerprint database, an attacker can send these commands

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 326

to the web server, analyze the response, and compare it to
the database of known signatures. By knowing the
information about the server, an attacker can plan attacks in
future, with the information obtained. There may be
publically known exploits and vulnerabilities associated with
the server hosted, whose information gets disclosed in the
banner. Verbose server banners provide additional
information that allows an attacker to perform targeted
attacks to the specific technology stack in use by the
application and underlying infrastructure. This vulnerability
comes under category W6 – Security Misconfiguration.

Fig -12: Server banner disclosure (not secured)

Fig -13: Server Apache has above configurations in it’s
httpd.conf file

Fig -14: PHP has above configurations in its php.ini file

Solution E

Verbose server information should be removed from all
HTTP responses. This can be performed by modifying the
server's configuration files .It is recommended to use generic
error message response from server, so that server banner is
not disclosed in the error message response from the server.

Fig -15: Changing configurations of Server Apache in its
httpd.conf file

Fig -16: Changing configurations of PHP in its php.ini file

Fig -17: Server banner after changing configurations of
servers.

2.2.3 Problem F

Consider, Improper Cookie Configuration vulnerability
where the session cookie is set without including the
HttpOnly and Secure flags. The HttpOnly flag helps mitigate
(but doesn't completely prevent) the risk of client side
scripting accessing the cookie value (assuming the browser
supports the flag setting). This helps prevent cross-site
scripting from accessing the cookie from the DOM, leading to
potential session hijacking. The secure flag ensures that the
cookie is not transmitted in an http request, forcing the
cookie to be transmitted only when using HTTPS. This helps
prevent disclosure of the session cookie if a request is
submitted using HTTP instead of HTTPS. Cookie value will be
transmitted unencrypted over http which leads malicious or
unintentional disclosure of the session cookie value. Attacker
can use this vulnerability to perform cross site scripting and
session hijacking.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 327

Fig -18: Cookie with no httponly or secure flags

Solution F

The secure flag and Http only flag should be set on all
cookies that are used for transmitting sensitive data when
accessing content over HTTPS.

Fig -19: Updating setcookie with httponly or secure flags
in code

Fig -20: Cookie with httponly or secure flags.

2.2.4 Problem G

Consider, lack of root detection vulnerability where the
application will not detect rooted android device. Android
implements containerization so that each app is restricted to
its own sandbox. A regular app cannot access files outside its
dedicated data directories, and access to system APIs is
restricted via app privileges. As a result, an app’s sensitive
data as well as the integrity of the OS is guaranteed under
normal conditions. However, when an adversary gains root
access to the mobile operating system, the default
protections can be bypassed completely. Attacker should
have physical access on the device, however rooted device
remotely accessible in case user root SSH not protected.
Applications on a rooted device run as root outside of the
android sandbox. This can allow applications to access
sensitive data contained in other apps or install malicious
software negating sandboxing functionality. The risk of
malicious code running as root is higher on rooted devices,
as many of the default integrity checks are disabled.

Solution G

Developers of apps that handle highly sensitive data should
therefore consider implementing checks that either prevent
the app from running under these conditions, or at least
warn the user about the increased risks.

3. CONCLUSIONS

This paper provides basic vulnerabilities found during
security assessment and solutions for developers to
overcome them. The main aim of this paper is to provide
basic improvements that can be done during an android
application development so that during security
assessments, tester can concentrate on major vulnerabilities
rather than spending time on testing these basic
vulnerabilities.

ACKNOWLEDGEMENT

I would like to thank Dr. H.D. Phaneendra, Professor & Head,
Dept. of CS&E at NIE, Mysore for his guidance and support in
doing case study of the above paper.

REFERENCES

 Karthick S, Dr. Sumitra Binu- “Android Security Issues and
Solutions”- International Conference on Innovative
Mechanisms for Industry Applications (ICIMIA 2017).

[1] Igor Khokhlov, Leon Reznik -“Android System Security
Evaluation”- 2018 15th IEEE Annual Consumer
Communications & Networking Conference (CCNC).

[2] Sebastian Lekies, Martin Johns and Walter Tighzert –
“The State of the Cross-domain Nation”- 2011 IEEE
Security.

[3] https://www.medianova.com/en-blog/2019/02/20/a-
technical-introduction-to-cors-cross-origin-resource-
sharing. [Online]

[4] https://technumero.com/disable-server-signature-by-
editing-htaccess-apache/. [Online].

[5] Cheng-Liang Kuo , Chung-Huang Yang-“Security Design
for Configuration Management of Android Devices”-
 2015 IEEE 39th Annual Computer Software and
Applications Conference.

https://www.medianova.com/en-blog/2019/02/20/a-technical-introduction-to-cors-cross-origin-resource-sharing
https://www.medianova.com/en-blog/2019/02/20/a-technical-introduction-to-cors-cross-origin-resource-sharing
https://www.medianova.com/en-blog/2019/02/20/a-technical-introduction-to-cors-cross-origin-resource-sharing
https://technumero.com/disable-server-signature-by-editing-htaccess-apache/
https://technumero.com/disable-server-signature-by-editing-htaccess-apache/
https://ieeexplore.ieee.org/author/37085693626
https://ieeexplore.ieee.org/author/37597793300
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7271781
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7271781

