
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4275

Clustering the Real Time moving object adjacent Tracking

Bhupeshwar Kumar Sahu1, Dr. Vishnu Mishra2 Dr. Megha Mishra3

1Ph.D (Research Scholar), Department of IT & CS, Dr. C.V. Raman University, Bilaspur, India1

2Professor, CSE, Shri Shankarachary Technical Campus, Bhilai, India2

3Asso. Professor, CSE, Shri Shankarachary Technical Campus, Bhilai, India3

--***--
Abstract— The moving object trajectory is represented by
a polyclone in with respected the time and space each
vertices are the represented as any time stamped
positions acquired by a suitable positioning system.

The Transmitting and storing every moving object in
position an object's trajectory; however, it causes high
arbiter cost and communication costs and generally
consumes too much storage capacity.

The object moving in former particularly applies if the
moving object has adjacent and informed in real-time
movement of any object which require storing in sensed
information database, as required for many applications. .
Many of these systems are based on sensors that are
attached to the moving objects. Tracking the trajectories
of such objects therefore requires communicating the
position data to the moving of data object through over a
wireless network.

 In this paper, we represented the different trajectory
tracking protocols that guided the actual movement of
orbiter data . The family is derived from two basic
protocols named Connection-Preserving Dead Reckoning
(CDR) and sensed information database.

Index Terms— CDR, sensed information database,
clustering.

1. INTRODUCTION

In this paper we investigate the computational power of
sensor networks in the context of a tracking application by
taking a minimalist approach focused on binary sensors.
The binary model assumption is that each sensor network
node has sensors that can detect one bit of information
and Our tracking algorithms have the flavor of particle
filter-ing [1] and make three assumptions. First, the
sensors across a region can sense the target approaching
or moving away. The range of the sensors defines the size
of this region which is where the active computation of the
sensor network takes place (although the sensor network
may extend over a larger area). The second assumption is
that the bit of information from each sensor is available in
a centralized repository for processing[7,8]. This
assumption can be addressed by using a simple broadcast
protocol in which the nodes sensing the target send their
id and data bit to a base station for pro-cessing. Because
the data is a single bit (rather than a complex image taken
by a camera) sending this information to the base station
is feasible. Our proposed approach is most practical for

applications where the target’s velocity is slower than the
data flow in the network, so that each bit can actually be
used in predictions. However, since the accu-racy of our
trajectory computation depends on the number of data
points, the predictions are not affected by the veloc-ity of the
target relative to the speed of communication. The third
assumption is that an additional sensor that supplies
proximity information as a single bit is available[15,16].
Such a sensor may be implemented as an IR sensor with
threshold-ing that depends on the desired proximity range,
and can also be derived from the same basic sensing element
that provides the original direction bit of information. Line
simpli cation refers to a multitude of algorith-mic problems
on approximating a given polyline by a simpli ed one with
fewer vertices. In the terminology of line simpli cation,
trajectory tracking is a min-# prob-lem in R1+d (d = 2 or 3) in
the case of Hausdor dis-tance under the (time-)uniform
distance metric [3,2]. We investigate two realizations of
GRTS with di erent line simpli cation algorithms, namely the
op-timal line simpli cation algorithm introduced in [11] and
a simple but e cient simpli cation heuristic [18].

Fig 1: Real Time Sensor Working

2. RELATED WORK

There exist pairs of trajectories that cannot be
distinguished by any binary sensor. We con-clude that
additional information is needed to disambiguate between
different trajectories and to identify the exact loca-tion of
the object. This can be realized by adding a second binary
sensor capable of providing proximity information (such as

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4276

an IR sensor) to each sensor node in the network. If the
object is detected within some set range of the prox-imity
sensor, that node broadcasts a message to the base station.
The range of the proximity sensor may be different and
much smaller than the range of the movement direction
sensor. It is useful to set the proximity range so that the
sen-sors are non-overlapping (this can be done by
appropriate thresholding) but this is not necessary. The
base station will approximate the location of the object in
the region covered by all the sensors reporting object
detection. For simplicity of presentation we assume for the
rest of the session that the detection range can be
calibrated so that at most one sensor detects the object at
a time.

To evaluate our approach, we implemented Algorithm 1
in MATLAB and performed extensive simulations on our
implementation. All trajectories are taken inside the [0,
1]× [0, 1] square and thus the error measurements are
relative to this square. Several types of trajectories have
been consid-ered: linear trajectories, trajectories with
random turns and trajectories with “mild” turns (at each
sensor readings the direction of the tracked object can
vary from the previous one with at most π/6). All
trajectories are piecewise lin-ear and the distance traveled
by the object between sensor readings is almost constant.
A typical simulation example for a linear trajectory
(denoted by triangles) can be seen in Fig. 5. The distance
traveled between sensor readings is N(0.12, 0.02), i.e.
drawn from a normal distribution with a sters obtained
from this method may have about 8 times larger radii than
the radii obtained by the mean of 0.12 and a standard
deviation of 0.02.optimal clustering, and the numbers of
clusters are also much larger (at least 15 times) than for
the usual clustering. Further, this proposal does not take
into account I/O efficiency.

The sensed trajectory s(t) generally deviates from a(t)
due to inaccuracies of the positioning sensor and the time-
discrete sensing. The former are generally de-scribed by
stochastic means such as probability density functions or
percentiles, which allow deriving a maxi-mum sensor
inaccuracy that holds with high prob-ability. Inaccuracies
beyond (typically indicated by erratic positions) are
considered as errors. They have to be treated separately,
e.g., by informing the MOD that there will be no valid
trajectory information un-til further notice. Regarding the
time discretization by position sensing, the movement
between two sensing operations is subject to physical
constraints like the maximum speed or acceleration.

3. MOVING-OBJECT SENSOR BESED ALGORITHM

This section first describes the representation of moving
ob - jects, then proposes a scheme to cluster moving
objects, called Moving-Object Clustering (MC for short).

ID OID can be represented by a four-tuple (OID , x¯u, v¯ , tu),
where x¯u is the position of the object at time tu and v¯ is the
velocity of the object at that time.

To facilitate the analysis, we initially assume that no
updates occur to the dataset. This enables us to set the
weights used in M to 1—decreasing weights are used to
make later positions, which may be updated before they are
reached, less important. Also to facilitate the analysis, we
replace the sum of sample positions in with the
corresponding integral, denoted as M ′, from the time when a
clustering is performed and U time units into the future. Note
that M ′ is the boundary case of M that is similar to the
integrals used in R-tree based moving object indexing [21].

The next theorem states that inclusion of an object into
the cluster with a smaller M ′ value leads to a tighter and
thus better clustering during time interval U . moving object
wants to stop reporting its movement, it sends a nal update
message with the most recent sensed position { but without
a new pre-diction { and terminates the algorithm (line 18).

Sensor motion DB Algorithm (0uID1 , O, 0uID2)

Input: Cluster ouID1 and object O1

Result: New cluster with IoD OuID2

4: U U k (last(S))

5: S (last(S))

6: end if

7: U U k (last(S))

8: S (last(S))

9: end if

10: S S k (sR) . Append sR to sensing history.

 11: if LDR causes update then

12:: U U k (last(S)) . Append sR as un.

11: V

compute new predicted velocity . . .

if Dm1 > Dm2 then

insert Or into cluster OuID2

modify the hash table

if Or belongs to cluster OuID1 then

 12 :send update message (jV n Uj; U n V; V) to

13:: S S k (sR) . Append sR to sensing history.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4277

 14: if LDR causes update then

15: U U k (last(S)) . Append sR as un.

16: V compute new predicted velocity . . .

 17:send update message (jV n Uj; U n V; V) to for each
remaining object Or in CID1 do

D1 ← M (Or , move 1)

D2 ← M (Or , move 2)

18: removeOr from cluster OuID1adjust the clustering
feature of cluster OuID1

19: Anysis and computing clustering feature of cluster
OuID2

return CID2

end

Fig. 2. Sensor Motion DB Algorithm

After a DB Clustering , we check whether each cluster C
among the two new clusters can be merged with
preexisting clusters (see Figure 8). To do this, we compute
the M -distances between the center object of cluster C and
the center object of each preexisting cluster. We consider
the k nearest clusters that may accommodate cluster C in
terms of numbers of objects. For each such candidate, we
execute a “virtual merge” that computes the clustering
feature assuming absorption of C. This allows us to
identify clusters where the new average radius is within
threshold ρg .

Fig 3: Moving Trajectory object

Delete (O)

Input: O is an object to be deleted

1. CID = Hash (O)

// object O belongs to cluster CID

2. delete O from the hash table

3. delete O from cluster CID

4. adjust the clustering feature of cluster CID

5. if cluster CID is in underflow

6. if CanMerge(CID , CID ′)

7. then merge(CID , CID ′)

8. else

9. delete old event of cluster CID from the
event queue

10. insert new event of cluster CID into the
event queue end Delete.

 Fig. 3. Deletion Algorithm

from the hash table and cluster C, and we adjust the
clustering feature. Specifically, we first update the feature to
the curr ent time according to Claim 1 and then modify it
according to Claim 2. If cluster C does not underflow after
the deletion, we further check whether the split event of C
has been affected and adjust the event queue accordingly.
Otherwise, we apply the merge policy to determine whether
this cluster C can be merged with other clusters (denoted as
C I D′). The deletion algorithm is outlined in Figure 3.

3) Split and Merge of Clusters: Two situations exist where
a cluster must be split. The first occurs when the number of
obje cts in the cluster exceeds a user-specified threshold (i.e.,
the maxi-mum cluster capacity). This situation is detected
automatically by the insertion algorithm covered already.
The second occurs when the average radius of the cluster
exceeds a threshold, which means that the cluster is not
compact enough. Here, the threshold (denoted as ρs) can be
defined by the users if they want to limit the cluster size. It
can also be estimated as the average radius of

√

clusters given by the equation ρs = 1
4 Sc. We proceed to

address the operations in the second situation in some
detail.

Recall that the average radius of a cluster is given as a
function of time R(Δt) (cf. Section III-C). Since R(Δt) is a
square root, for simplicity, we consider R2(Δt) in the
following computation. Generally, R2(Δt) is a quadratic
function. It degenerates to a linear function when all the
objects have the same velocities. Moreover, R2(Δt) is either a
parabola opening upwards or an increasing line—the radius
of a cluster will never first incr ease and then decrease when
there are no updates. Figure 4 shows the only two cases
possible for the evolution of the average radius when no
updates occur, where the shaded area corresponds to the
region covered by the cluster as time passes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4278

Our task is to determine the time, if any, in-between the
current time and the maximum update time when the
cluster must be split, i.e., t ranges from 0 to U . Given the
split threshold ρsrelationships between R2(Δt) and ρ2

s are
possible—see Figure 5.

The next step is to identify each of the three situations
by means of function R2(Δt) itself. We first compute R2(0).
If this value exceeds ρ2

s, we are in the second case.
Otherwise, R2(U) is computed. If this value is smaller than
ρ2

s, we are in the first case. If not, we are in the third case,
and we need to solve the equation (A t2 + B t + C)/N = ρ2

s,
where the split time ts is

Fig 4: Sensor object moving tracking adjacent result

At the time of a split, the split starts by identifying the
pair of objects with the largest M value. Then, we use these
objects as seeds, redistributing the remaining objects
among them, again based on their mutual M values.
Objects are thus assigned to the cluster that they are most
similar to. We use this splitting procedure mainly because
it is very fast and running time is an important concern in
moving object environments. The details of following.

Tracking
Stutus

Risk of
movement

Position in
Accuracy

New position

Accuracy <1.0 average yes

No accuracy =0.97 average average

Defective
ness in

accuracy

==0.65 average no

Actual
position in
accuracy

==0.78 High yes

New position
accuracy

>1.0 High Yes

Table 1: Accuracy of Sensor DB of moving Object

4. CONCLUSIONS

In this paper, we presented the Connection-Preserving Dead
Object moving and Trajectory object motion protocols for
find the motion of orbital object tracking the trajectories of
moving objects with embedded positioning sensors at a
remote moving of elemental attributes.

For fulfilling such aim, the moving can sense by objects
can sense their positions periodically but report only a
subset of the positions to the MOD so that the resulting
simpli ed trajectory approximates the actual movement
according to a pre-de ned accuracy bound. To inform the
MOD about the current position, CDR and GRTS use dead
reckoning.

CDR is solely based on dead reckoning whereas GRTS
separates the tracking of the current position from the
simply caption of the past trajectory. Therefore, GRTS
outperforms CDR by more than a factor

REFERENCES

[1] M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei.
Streaming Algorithms for Line Simpli cation. In Proc. of 23rd
Symp. on Computational Geometry (SCG), pages 175{183,
Gyeongju, South Korea, 2007.

[2] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y.
Wang. Near-Linear Time Approximation Algorithms for
Curve Simpli cation. Algorithmica, 42(3{4):203{219, 2005.

[3] D. Crisan and A. Doucet. A survey of convergence result
on particle filtering for practitioners, 2002.

[4] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal
data reduction with deterministic error bounds. VLDB
Journal, 15(3):211{228, 2006.

[5] W. S. Chan and F. Chin. Approximation of Polygonal
Curves with Minimum Number of Line Segments. In Proc. of
3rd Int'l Symp. on Algorithms and Computation (ISAAC),
pages 378{387, Nagoya, Japan, 1992.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4279

[6] R. R. Brooks, P. Ramanathan, and A. Sayeed,
DistributedTarget Tracking and Classification in
SensorNetworks, Proceedings of the IEEE, September
2002.

[7} R. H. G•uting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, San Francisco, CA, 2005.

[8} J. Hershberger and J. Snoeyink. An O(n log n)
Implemen-tation of the Douglas-Peucker Algorithm for
Line Sim-pli cation. In Proc. of 10th Symp. on
Computational Geometry, pages 383{384, Stony Brook,
NY, 1994.

[9] B. Krishnamachari, Energy-Quality Tradeoffs for Target
Tracking in Wireless Sensor Networks, IPSN 2003, 32-46.

[10] D. Salmond, N. Gordon and A. Smith. Novel approach
to nonlinear/non-gaussian bayesian state estimation. In
IEE Proc.F, Radar and signal processing, 140(2):107–113,
April 1993.

[11] R. Lange, F. D•urr, and K. Rothermel. Online
Trajectory Data Reduction using Connection-preserving
Dead Reck-oning. In Proc. of 5th Int'l Conf. on Mobile and
Ubiqui-tous Systems (MobiQuitous), Dublin, Ireland, 2008.

[12] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee.
Using adaptive tracking to classify and monitor activities
in a site. In Proc. of IEEE Int’l Conf. on Computer Vision and
Pattern Recognition, 22–29, 1998.

[13] Lynne E. Parker. Cooperative motion control for
multi-target observation. In Proc. of IEEE International
Conf. on Intelligent Robots and Systems, pages 1591–7,
Grenoble, Sept. 1997.

[14] P. Misra and P. Enge. Global Positioning System: Sig-
nals, Measurements and Performance. Ganga-Jumuna
Press, 2001.

[15] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-
Temporal Access Methods. IEEE Data Engineering Bul-
letin, 26(2):40{49, 2003.

[16] M. Potamias, K. Patroumpas, and T. Sellis. Amnesic
On-line Synopses for Moving Objects. In Proc. of 15th ACM
Int'l Conf. on Information and Knowledge Management
(CIKM), pages 784{785, Arlington, VA, 2006.

[17] J. Rankin. GPS and Di erential GPS: An Error Model
for Sensor Simulation. In Position Location and Naviga-
tion Symp., pages 260{266, 1994.

[18] D. Tiesyte and C. S. Jensen. Recovery of Vehicle Tra-
jectories from Tracking Data for Analysis Purposes. In
Proc. of 6th European Congress and Exhibition on In-
telligent Transport Systems and Services, Aalborg,
Denmark, 2007.

[19] U.S. Dept. of Defense. Global Positioning System Stan-
dard Positioning Service Performance Standard, 2001.

