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Abstract— The moving object trajectory is represented by 
a polyclone in with respected the time and space each 
vertices are the represented as any time stamped 
positions acquired by a suitable positioning system. 

The Transmitting and storing every moving object in 
position an object's trajectory; however, it causes high 
arbiter cost and communication costs and generally 
consumes too much storage capacity.  

The object moving in former particularly applies if the 
moving object has adjacent and   informed in real-time 
movement of any object which require storing in sensed 
information database, as required for many applications. . 
Many of these systems are based on sensors that are 
attached to the moving objects. Tracking the trajectories 
of such objects therefore requires communicating the 
position data to the moving of data object through over a 
wireless network. 

 In this paper, we represented the different trajectory 
tracking protocols that guided the actual movement of 
orbiter data . The family is derived from two basic 
protocols named Connection-Preserving Dead Reckoning 
(CDR) and sensed information database. 

Index Terms— CDR, sensed information database, 
clustering. 

1. INTRODUCTION 

In this paper we investigate the computational power of 
sensor networks in the context of a tracking application by 
taking a minimalist approach focused on binary sensors. 
The binary model assumption is that each sensor network 
node has sensors that can detect one bit of information 
and Our tracking algorithms have the flavor of particle 
filter-ing [1] and make three assumptions. First, the 
sensors across a region can sense the target approaching 
or moving away. The range of the sensors defines the size 
of this region which is where the active computation of the 
sensor network takes place (although the sensor network 
may extend over a larger area). The second assumption is 
that the bit of information from each sensor is available in 
a centralized repository for processing[7,8]. This 
assumption can be addressed by using a simple broadcast 
protocol in which the nodes sensing the target send their 
id and data bit to a base station for pro-cessing. Because 
the data is a  single bit (rather than a complex image taken 
by a camera) sending this information to the base station 
is feasible. Our proposed approach is most practical for 

applications where the target’s velocity is slower than the 
data flow in the network, so that each bit can actually be 
used in predictions. However, since the accu-racy of our 
trajectory computation depends on the number of data 
points, the predictions are not affected by the veloc-ity of the 
target relative to the speed of communication. The third 
assumption is that an additional sensor that supplies 
proximity information as a single bit is available[15,16]. 
Such a sensor may be implemented as an IR sensor with 
threshold-ing that depends on the desired proximity range, 
and can also be derived from the same basic sensing element 
that provides the original direction bit of information. Line 
simpli cation refers to a multitude of algorith-mic problems 
on approximating a given polyline by a simpli ed one with 
fewer vertices. In the terminology of line simpli cation, 
trajectory tracking is a min-# prob-lem in R1+d (d = 2 or 3) in 
the case of Hausdor dis-tance under the (time-)uniform 
distance metric [3,2]. We investigate two realizations of 
GRTS with di erent line simpli cation algorithms, namely the 
op-timal line simpli cation algorithm introduced in [11] and 
a simple but e cient simpli cation heuristic [18]. 

 

Fig 1:  Real Time Sensor Working 

2. RELATED WORK 

There exist pairs of trajectories that cannot be 
distinguished by any binary sensor. We con-clude that 
additional information is needed to disambiguate between 
different trajectories and to identify the exact loca-tion of 
the object. This can be realized by adding a second binary 
sensor capable of providing proximity information (such as 
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an IR sensor) to each sensor node in the network. If the 
object is detected within some set range of the prox-imity 
sensor, that node broadcasts a message to the base station. 
The range of the proximity sensor may be different and 
much smaller than the range of the movement direction 
sensor. It is useful to set the proximity range so that the 
sen-sors are non-overlapping (this can be done by 
appropriate thresholding) but this is not necessary. The 
base station will approximate the location of the object in 
the region covered by all the sensors reporting object 
detection. For simplicity of presentation we assume for the 
rest of the session that the detection range can be 
calibrated so that at most one sensor detects the object at 
a time. 

To evaluate our approach, we implemented Algorithm 1 
in MATLAB and performed extensive simulations on our 
implementation. All trajectories are taken inside the [0, 
1]× [0, 1] square and thus the error measurements are 
relative to this square. Several types of trajectories have 
been consid-ered: linear trajectories, trajectories with 
random turns and trajectories with “mild” turns (at each 
sensor readings the direction of the tracked object can 
vary from the previous one with at most π/6). All 
trajectories are piecewise lin-ear and the distance traveled 
by the object between sensor readings is almost constant. 
A typical simulation example for a linear trajectory 
(denoted by triangles) can be seen in Fig. 5. The distance 
traveled between sensor readings is N(0.12, 0.02), i.e. 
drawn from a normal distribution with a sters obtained 
from this method may have about 8 times larger radii than 
the radii obtained by the mean of 0.12 and a standard 
deviation of 0.02.optimal clustering, and the numbers of 
clusters are also much larger (at least 15 times) than for 
the usual clustering. Further, this proposal does not take 
into account I/O efficiency. 

The sensed trajectory s(t) generally deviates from a(t) 
due to inaccuracies of the positioning sensor and the time-
discrete sensing. The former are generally de-scribed by 
stochastic means such as probability density functions or 
percentiles, which allow deriving a maxi-mum sensor 
inaccuracy that holds with high prob-ability. Inaccuracies 
beyond (typically indicated by erratic positions) are 
considered as errors. They have to be treated separately, 
e.g., by informing the MOD that there will be no valid 
trajectory information un-til further notice. Regarding the 
time discretization by position sensing, the movement 
between two sensing operations is subject to physical 
constraints like the maximum speed or acceleration. 

3. MOVING-OBJECT SENSOR BESED ALGORITHM 

This section first describes the representation of moving 
ob - jects, then proposes a scheme to cluster moving 
objects, called Moving-Object Clustering (MC for short). 

 

ID OID can be represented by a four-tuple (OID , x¯u, v¯ , tu), 
where x¯u is the position of the object at time tu and v¯ is the 
velocity of the object at that time. 

To facilitate the analysis, we initially assume that no 
updates occur to the dataset. This enables us to set the 
weights used in M to 1—decreasing weights are used to 
make later positions, which may be updated before they are 
reached, less important. Also to facilitate the analysis, we 
replace the sum of sample positions in with the 
corresponding integral, denoted as M ′, from the time when a 
clustering is performed and U time units into the future. Note 
that M ′ is the boundary case of M that is similar to the 
integrals used in R-tree based moving object indexing [21]. 

The next theorem states that inclusion of an object into 
the cluster with a smaller M ′ value leads to a tighter and 
thus better clustering during time interval U . moving object 
wants to stop reporting its movement, it sends a nal update 
message with the most recent sensed position { but without 
a new pre-diction { and terminates the algorithm (line 18). 

Sensor motion DB Algorithm  (0uID1 , O, 0uID2 ) 

Input: Cluster ouID1  and object O1 

Result: New cluster with IoD OuID2 

4: U   U k (last(S)) 

5: S   (last(S)) 

6: end if 

7: U   U k (last(S)) 

8: S   (last(S)) 

9: end if 

10: S S k (sR) . Append sR to sensing history. 

  11:  if LDR causes update then 

  
12:: U U k (last(S)) . Append sR as un. 

11: V 

compute new predicted velocity . . . 

if Dm1 > Dm2  then 

insert Or  into cluster OuID2 

modify the hash table 

if Or  belongs to cluster OuID1  then 

  12 :send update message (jV n Uj; U n V;  V) to 

13:: S S k (sR) . Append sR to sensing history. 
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  14:  if LDR causes update then 

15: U U k (last(S)) . Append sR as un. 

16: V compute new predicted velocity . . . 

  17:send update message (jV n Uj; U n V;  V) to for each    
remaining object Or  in CID1 do 

D1 ← M (Or , move 1) 

D2 ← M (Or , move 2) 

18: removeOr  from cluster OuID1adjust the clustering  
feature of cluster OuID1 

19: Anysis and computing  clustering feature of cluster 
OuID2 

return CID2 

end  

Fig. 2. Sensor Motion DB Algorithm 

After a DB Clustering , we check whether each cluster C 
among the two new clusters can be merged with 
preexisting clusters (see Figure 8). To do this, we compute 
the M -distances between the center object of cluster C and 
the center object of each preexisting cluster. We consider 
the k nearest clusters that may accommodate cluster C in 
terms of numbers of objects. For each such candidate, we 
execute a “virtual merge” that computes the clustering 
feature assuming absorption of C. This allows us to 
identify clusters where the new average radius is within 
threshold ρg . 

 

Fig 3:  Moving Trajectory object 

Delete (O) 

Input: O is an object to be deleted 

1. CID = Hash (O) 

// object O belongs to cluster CID 

2. delete O from the hash table 

3. delete O from cluster CID 

4. adjust the clustering feature of cluster CID 

5. if cluster CID is in underflow 

6. if CanMerge(CID , CID ′ ) 

7. then merge(CID , CID ′ ) 

8. else 

9. delete old event of cluster CID from the 
event queue 

10. insert new event of cluster CID into the 
event queue end Delete. 

   Fig. 3. Deletion Algorithm 

from the hash table and cluster C, and we adjust the 
clustering feature. Specifically, we first update the feature to 
the curr ent time according to Claim 1 and then modify it 
according to Claim 2. If cluster C does not underflow after 
the deletion, we further check whether the split event of C 
has been affected and adjust the event queue accordingly. 
Otherwise, we apply the merge policy to determine whether 
this cluster C can be merged with other clusters (denoted as 
C I D′). The deletion algorithm is outlined in Figure 3. 

3) Split and Merge of Clusters: Two situations exist where 
a cluster must be split. The first occurs when the number of 
obje cts in the cluster exceeds a user-specified threshold (i.e., 
the maxi-mum cluster capacity). This situation is detected 
automatically by the insertion algorithm covered already. 
The second occurs when the average radius of the cluster 
exceeds a threshold, which means that the cluster is not 
compact enough. Here, the threshold (denoted as ρs) can be 
defined by the users if they want to limit the cluster size. It 
can also be estimated as the average radius of 

√ 

 

clusters given by the equation ρs = 1
4 Sc. We proceed to 

address the operations in the second situation in some 
detail. 

Recall that the average radius of a cluster is given as a 
function of time R(Δt) (cf. Section III-C). Since R(Δt) is a 
square root, for simplicity, we consider R2(Δt) in the 
following computation. Generally, R2(Δt) is a quadratic 
function. It degenerates to a linear function when all the 
objects have the same velocities. Moreover, R2(Δt) is either a 
parabola opening upwards or an increasing line—the radius 
of a cluster will never first incr ease and then decrease when 
there are no updates. Figure 4 shows the only two cases 
possible for the evolution of the average radius when no 
updates occur, where the shaded area corresponds to the 
region covered by the cluster as time passes. 
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Our task is to determine the time, if any, in-between the 
current time and the maximum update time when the 
cluster must be split, i.e., t ranges from 0 to U . Given the 
split threshold ρsrelationships between R2(Δt) and ρ2

s are 
possible—see Figure 5. 

The next step is to identify each of the three situations 
by means of function R2(Δt) itself. We first compute R2(0). 
If this value exceeds ρ2

s, we are in the second case. 
Otherwise, R2(U ) is computed. If this value is smaller than 
ρ2

s, we are in the first  case. If not, we are in the third case, 
and we need to solve the equation (A t2 + B t + C)/N = ρ2

s, 
where the split time ts is 

 

 

Fig 4: Sensor object moving tracking adjacent result 

At the time of a split, the split starts by identifying the 
pair of objects with the largest M value. Then, we use these 
objects as seeds, redistributing the remaining objects 
among them, again based on their mutual M values. 
Objects are thus assigned to the cluster that they are most 
similar to. We use this splitting procedure mainly because 
it is very fast and running time is an important concern in 
moving object environments. The details of  following. 

Tracking 
Stutus 

Risk  of 
movement 

Position in 
Accuracy 

New position 

Accuracy <1.0 average yes 

No accuracy =0.97 average average 

Defective 
ness in 

accuracy 

==0.65 average no 

Actual 
position in 
accuracy 

==0.78 High yes 

New position 
accuracy 

>1.0 High Yes 

 
Table 1:  Accuracy of Sensor DB of moving Object 

4.  CONCLUSIONS 

In this paper, we presented the Connection-Preserving Dead 
Object moving and Trajectory object motion protocols for 
find the motion of orbital object tracking the trajectories of 
moving objects with embedded positioning sensors at a 
remote moving of elemental attributes. 

For fulfilling such aim, the moving can sense  by objects 
can  sense their positions periodically but report only a 
subset of the positions to the MOD so that the resulting 
simpli ed trajectory approximates the actual movement 
according to a pre-de ned accuracy bound. To inform the 
MOD about the current position, CDR and GRTS use dead 
reckoning. 

CDR is solely based on dead reckoning whereas GRTS 
separates the tracking of the current position from the 
simply caption of the past trajectory. Therefore, GRTS 
outperforms CDR by more than a factor  
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