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Abstract - In this paper, a new numerical method for one-
dimensional (1D) nonlinear consolidation analysis of 
saturated soil is proposed on the basis of the lattice 
Boltzmann method. At first, the lattice Bhatnagar-Gross-
Krook (LBGK) model is used for 1D nonlinear consolidation 
problem of saturated soil subjected to time-dependent 
loading under different types of boundary conditions. In 
addition, the multiscale Chapman-Enskog expansion is 
applied to recover mesoscopic lattice Boltzmann equation to 
macroscopic nonlinear consolidation equation. As a result of 
the numerical simulation for verification, the numerical 
results are proved to be in good agreement with the 
analytical solutions available in previous literature. Finally, 
the numerical simulation is performed to investigate the 
consolidation behavior of saturated soil subjected to two 
different types of time-dependent loading. 
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1.INTRODUCTION 
 

It is very important in predicting settlement of ground 
composed of soft soil to analyze one-dimensional (1D) 
consolidation by taking nonlinear behavior of the ground 
into account. Since the study on 1D nonlinear consolidation 
theory was started in the 1960s, many researchers have 
suggested different kinds of 1D nonlinear consolidation 
theory. Davis and Raymond [1] developed a nonlinear 
consolidation theroy and derived an analytical solution for 
a constant loading case, assuming that the decrease in 
permeability is proportional to the decrease in 
compressibility during the consolidation process and that 
the distribution of initial effective stress is constant with 
depth. Based on the relationship between the void ratio 
and the logarithm of effective stress and permeability (i.e. 
e-log   and e-log

wk ), many scholars have solved the 

similar problem using finite difference method [2-4]. 
Gibson et al. [5, 6] proposed the general theories of 1D 
finite nonlinear consolidation of thin and thick 
homogeneous layers for a constant loading condition. Xie et 
al. [7] developed analytical solution for 1D consolidation of 
soft soil subjected to time-dependent loading on the basis 
of the nonlinear consolidation theory proposed by Davis 
and Raymond. Chen et al. [8] and Zheng et al. [9] carried 
out numerical analysis for 1D nonlinear consolidation of 
saturated soil by differential quadrature method. Cheng et 

al. [10] developed the finite analytic method to simulate 1D 
nonlinear consolidation under different time-dependent 
loading and initial conditions.  

It is worth to note that the nonlinear consolidation of 
soil is governed by partial differential equation which is 
difficult to obtain analytical solution, except for specifec 
conditions, and thus numerical methods are still the most 
important means for analyzing the nonlinear consolidation 
problem. Recently, unlike conventional numerical methods 
based on macroscopic equation, the lattice Boltzmann 
method (LBM) which is based on mesoscopic equation has 
emerged as an alternative powerful method for solving 
fluid dynamics problems and achieved much success in 
studying nonlinear equations of complex systems [11,12]. 
Compared to traditional numerical methods, due to the 
advantages such as the simplicity of programming and the 
numerical efficiency, the LBM has been widely applied not 
only to fluid dynamics but also to many other areas, such as 
advection-diffusion problem [13], soil dynamics [14] and 
so on. More recently, Kim et al. [15] employed the LBM to 
analyze 1D linear consolidation of saturated clay. Previous 
studies show that LBM can be used in various engineering 
disciplines. Nevertheless, the LBM has hardly ever been 
used for nonlinear consolidation analysis of soil. Thus, the 
goal of the present study is to extend the LBM into 1D 
nonlinear consolidation analysis of saturated soil. 

In this paper, a new numerical method for 1D nonlinear 
consolidation analysis of saturated soil is proposed on the 
basis of the lattice Boltzmann method. The lattice 
Bhatnagar-Gross-Krook (LBGK) model is employed for 1D 
nonlinear consolidation of saturated soil subjected to time-
dependent loading under various boundary conditions. In 
order to recover mesoscopic lattice Boltzmann equation to 
macroscopic nonlinear consolidation equation, the 
multiscale Chapman-Enskog expansion is applied. As a 
result of the numerical simulation for verification, the 
numerical results are proved to be in good agreement with 
the analytical solutions available in previous literature. The 
numerical simulation is performed to investigate the 
consolidation behavior of saturated soil subjected to two 
different types of time-dependent loading. 

This paper is organized as follows. In Section 2, 1D 
nonlinear consolidation equation of saturated soil 
subjected to time-dependent loading is presented and in 
Section 3, the lattice Boltzmann method for 1D nonlinear 
consolidation of saturated soil is proposed. In Section 4, the 
numerical results are compared with the analytical 
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solutions available in the literature in order to verify the 
proposed method, and also the numerical simulation is 
performed to investigate the consolidation behavior of 
saturated soil subjected to two different time-dependent 
loading. Finally, Section 5 gives conclusions. 

 

2. MATHEMATICAL MODEL 
 

A saturated soil layer of thickness tH  ( 2tH H  for 

double drainage condition; tH H  for single drainage 

condition) subjected to time-dependent loading is 
considered as shown in Fig. 1. Assuming the validity of the 
nonlinear consolidation theory proposed by Davis and 
Raymond [1], except for the assumption of a constant 
loading, the governing equation of 1D nonlinear 
consolidation of saturated soil subjected to time-
dependent loading is as follows: 

22

2

1 d

d
v

u u u q
c

t z tz 

    
         

                      (1) 

where vu, q, c  and σ   are excess pore water pressure, 

time-dependent loading, the coefficient of consolidatioin 
and the effective stress, respectively; t and z are the 
variables of time and space respectively. 

According to the assumption that the coefficient of 
consolidation is constant while the decrease in 
permeability is propotional to the decrease in 
compressibility,  

0

0

=const.w
v

w v

k
c

m
                                  (2) 

where 0wk  is the initial coefficient of permeability; w  is 

the unit weight of water; 0vm  is the initial coeffiecient of 

compressibility defined as 0 0 00.434 / (1 )v cm C e     in 

which cC  is the compression index, 0e  is the initial void 

ratio and 0  is the initial effective stress. 

According to Terzaghi’s principle of effective stress, 
σ  can be expressed as: 

0q u                              (3) 

By defining a new parameter  , 
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Eq. (1) can be simplified to the following form: 
2

2
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t z
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                      (5) 
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Fig. 1: A saturated soil layer subjected to time-dependent 

loading. 
 
Initial and boundary conditions are considered as 

follows: 
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(for single drainage condition)     (9) 

 

3. LATTICE BOLTZMANN METHOD 
 
3.1 Lattice Boltzmann Equation  
 

In the present study, 1D consolidation analysis is 
carried out using lattice Bhatnagar-Gross-Krook (LBGK) 
D1Q3 model which is the most popular one in the 1D 
lattice Boltzmann models. The distribution function  

( , )if z t  is first defined on the basis of the general 

principles of lattice Boltzmann model as follows: 

( , ) ( , ) 0, 1, 2eq
i i

i i

f z t f z t ,  i                    (10) 

where if  and eq
if  are the distribution function and the 

equilibrium distribution function along direction i .  

Based on the LBGK model, the lattice Boltzmann 
equation for Eq. (10) is given by He and Luo [16]: 

1
( , ) ( , ) ( , ) ( , )eq

i i i i i if z e t t t f z t f z t f z t tF

        
 

 (11) 

where ie  and t  are the discrete velocity and the discrete 

time step respectively;   is the dimensionless relaxation 

time; iF  is the force term calculated by:  

i iF w S  

where iw  is the weight factor with 0 2 / 3w   and 

1 2 1/ 6w w  ; S  is the rate of loading. 

The LBKG model given by Eq. (11) is performed by two 
procedures, a collision and a streaming expressed as: 

Collision:  
1

( , ) ( , ) ( , ) ( , )eq
i i i i if z t t f z t f z t f z t tw S


      
 

   (12) 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 3613 
 

Streaming: 
( , ) ( , )i if z z t t f z t t                       (13) 

In the D1Q3 model, the discrete velocities ( 0,1,2)ie i   

are defined as follows: 

0, 0

, 1

, 2

i

i

e c i
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 
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                               (14) 

z
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where c  is the lattice speed. 

The equilibrium distribution function is given by: 

         ( 0,1,2)eq
i if w , i                              (15) 

Boundary conditions for Eqs. (8) and (9) is given by: 

1( , ) ( , )0, 0i i N f z t f z t     (for double drainage)      (16) 

1 1( , ) ( , ) ( ,0, )i i N i Nf z t f z f z t t   (for single drainage) (17) 
where 1( , )if z t , ( , )i Nf z t  and 1( , )i Nf z t  are the 

distribution functions for the first lattice node 1z , the last 

lattice node Nz  and the N-1th lattice node 1Nz  , 

respectively. 

 
3.2 Recovery of 1D nonlinear consolidation 
equation 
 

The multiscale Chapman-Enskog expansion is used to 
recover the macroscopic 1D nonlinear consolidation 
equation of saturated soil. The 1D nonlinear consolidation 
equation can be scaled spatially as, z is set to 

1 /z  , t is set 

to 2

1 /t   where   is a small parameter.  

For D1Q3 model,   can be expressed by Eqs. (10) and 

(15) as follows: 

0 1 2( , ) ( , ) ( , ) ( , )i

i

f z t f z t f z t f z t                    (18) 

0 1 2( , ) ( , ) ( , ) ( , )eq
i

i

f z t w z t w z t w z t              (19) 

The distribution function and the source term can be 
expressed in terms of a small parameter   as: 

(1) 2 (2)eq
i i i if f f f                             (20) 

2 (2)
i iF F                                    (21) 

where ( )k
if  and (2)

iF  are the non-equilibrium distribution 

functions and non-equilibrium force term defined by: 
(2) (2)

i

i

F F                              (22) 

Since 

    (1) 2 (2)eq
i i i i

i i

f f f f      
                  (23) 

and eq
i

i

f  , hence other expanded term in the above 

equation should be zero, i.e., 

( ) 0, ( 1)k
i

i

f  k                           (24) 

Applying the Taylor series, the updated distribution 
function is expanded: 
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Introducing scaling for the above equation, i.e., 1 z   is 

replaced by 
1z   , 1 t   is replaced by 2

1/ t  : 
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Substituting Eqs. (20) and (26) into Eq. (11) and 

retaining terms up to order of 2 , yields: 
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Comparing the two sides of Eq. (27) and treating terms 

in order of   and 2 , yields: 

Terms order of  :   
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Terms order of 2 :  
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Applying Eq. (28) to the right side of Eq. (29), yields: 
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  For recovering the 1D nonlinear consolidation 
equation Eq. (5), Eq. (30) is summed over all states, i.e.,  
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 . Then, both terms of the right side of 

the above equation are written as, respectively: 
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Meanwhile, the source term F  is taken as: 

( )i i

i i

F F w S R t                             (34) 

Hence, Eq. (31) can be simplified and the 1D nonlinear 
consolidation equation can be recovered as: 

2
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By comparing Eq. (5) with Eq. (35), the relationship 
between the coefficient of consolidation vc  and the 

dimensionless relaxation time   can be obtained. 

2 1
( )

2
vc c t                                   (36) 

 

4. RESULTS AND DISCUSSION 
 
4.1 Verification 
 

In order to verify the proposed LBGK model for 1D 
nonlinear consolidation analysis, the numerical simulation 
is performed for two cases in terms of instantaneous and 
ramp loading. And the numerical results are compared 
with the analytical solutions available in previous 
literature. For the numerical simulation, the domain is 
discretized into 100 nodes; the dimensionless relaxation 
time, the discrete lattice spacing and the time step are set 
as 1.  

 
4.1.1 Verification under instantaneous loading 
 

In order to verify the proposed LBGK model for 1D 
nonlinear consolidation analysis under instantaneous 
loading, analytical solutions derived by Davis and 
Raymond [1] is used for reference. Figs. 2 and 3 show the 
excess pore water pressure isochrones and the average 
degree of consolidation with time factor defined by 

2/v vT c t H  for double drainage condition. It can be seen 

that the numerical results are in good agreement with 
analytical solution. 
 
4.1.2 Verification under time-dependent loading 
 

For time-dependent loading, analytical solutions for 
ramp loading given by Xie et al. [7] is selected for 
reference. The ramp loading as shown in Fig. 4 can be 
expressed as follows: 

,
( )

,

u
c

c

u c

q
t      t t

tq t

q          t t


 

 
 

                            (37) 

where uq  is the ultimate loading; ct  is the time of 

application of any load (i.e. construction time). 

 
Fig. 2: The excess pore water pressure isochrones. 

 

 

Fig. 3: The average degree of consolidation with time 

factor. 

 
Fig. 4:  Ramp loading 

 
Fig. 5 presents the normalized excess pore water 

pressure with time factor  vT  at half the depth for double 

drainage condition and different construction time factors. 

The construction time factor is defined by 2/vc v cT c t H . 
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It is found that two solutions are in excellent agreement. 
Fig. 6 shows the average degree of consolidation under the 
different construction time factors. It is also shown that 
the LBM results are agree well with the analytical 
solutions at all construction time factors.  

 

 
Fig. 5: Variation of the excess pore water pressure under 

different construction time factors. 
 

 
Fig. 6: The average degree of consolidation under different 

construction time factors 
 

4.2 Example and discussion 
 

Two different types of time-dependent loadings shown 
in Fig. 7, i.e., exponential and haversine cyclic loadings are 
considered and the loading functions are expressed as 
follows. 

The exponential loading is expressed as 

( ) (1 )bt
uq t q e                                  (38) 

where b is the loading parameter controlling the rate of 
exponential loading. 

The haversine cyclic loading is expressed as 

2

0

( ) sinu

t
q t q

t


                                  (39) 

where 0t  is the loading parameter which is period of 

haversine cyclic loading. 
 

 
(a): Exponential loading 

 
(b): Haversine cyclic loading 

 
Fig. 7: Example loading type. 

 
Furthermore, based on the proposed method, the 

numerical simulation is carried out to investigate the 
influence of the ratio of ultimate loading intensity to initial 
effective stress and the loading parameters on 1D 
nonlinear consolidation of saturated soil under double 
drainage condition. 
 
4.2.1 Consolidation under different values of the ratio 
of ultimate loading intensity to initial effective stress  
 

Fig. 8 shows the variation of average degree of 
consolidation with time factor under different ratio of 
ultimate loading intensity to initial effective stress for the 
exponential loading with the dimensionless loading 

parameter 1.04 1b E , which is defined by 2 / vb H b c . 

Figs. 8(a) and 8(b) present the changes of average degree 
of consolidation defined by settlement and effective stress 
with time factor, respectively. It can be seen that the 
average degree of consolidation Us defined by settlement 
increases with the increase of the ratio 0/uq  , but the 

average degree of consolidation Up defined by effective 
stress decreases with the increase of the ratio 0/uq  .  

Fig. 9 shows the results at the different ratio 0/uq   

under the haversine cyclic loading with the dimensionless 
loading parameter 0 0.05T  , which is defined by 

2
0 0 /vT c t H . Similar to the results from the exponential 
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loading, it can be found that the average degree of 
consolidation Us increases with the increase of the ratio 

0/uq  , but the average degree of consolidation Up 

decreases. 
 

 
(a): Us-Tv curves 

 

 
(b): Up-Tv curves 

 
Fig. 8: Variation of average degree of consolidation with 
time factor under different ratio 0/uq   for exponential 

loading. 
 
4.2.2. Consolidation under different loading 
parameters 
 

Fig. 10 shows the variation of average degree of 
consolidation with time factor at different dimensionless 

loading parameter b  under exponential loading with the 
ratio 0/ 1.5uq = . It can be found that the dimensionless 

loading parameter b  has significant effects on the rate of 

settlement and the rate of dissipation of excess pore water 
pressure, and a bigger dimensionless loading parameter 

b  leads to a faster rate of settlement and dissipation of 

excess pore water pressure. Moreover, both the settlement 

and the dissipation of excess pore water pressure tend to 
proceed more quickly at the early stage of consolidation as 

the demensionless loading parameter b  increases. 

 
Fig. 11 shows the results at different dimensionless 

loading parameter 0T  under the harversine cyclic loading 

with the ratio 0/ 1.5uq = . It can be seen that a smaller 

value of the parameter 0T  induces more cycles of 

oscillation, while a bigger value of the parameter 0T  

results in a larger oscillation in the settlement and the 
dissipation of excess pore water pressure. 
 

 
(a): Us-Tv curves 

 

 
(b): Up-Tv curves 

 
Fig. 9. Variation of average degree of consolidation with 

time factor under different ratio 0/uq   for haversine 

cyclic loading. 

 
5. CONCLUSION 
 

In this paper, a new numerical method for 1D nonlinear 
consolidation analysis of saturated soil is proposed on the 
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basis of the lattice Boltzmann method. The lattice 
Bhatnagar-Gross-Krook (LBGK) model is employed for 1D 
nonlinear consolidation analysis of saturated soil 
subjected to time-dependent loading under different types 
of boundary conditions. In addition, the multiscale 
Chapman-Enskog expansion is applied to recover 
mesoscopic lattice Boltzmann equation to macroscopic 
consolidation equation. As a result of the numerical 
simulation for verification, the numerical results are 
proved to be in good agreement with the analytical 
solutions available in previous literature.  

 
The consolidation behavior of saturated soil subjected 

to exponential loading and haversine cyclic loading is 
investigated through the numerical simulation. The 
following conclusions can be drawn: 

 

 
(a): Us-Tv curves 

 

 
(b): Up-Tv curves 

 
Fig. 10. Variation of average degree of consolidation with 

time factor under different loading parameter for 
exponential loading. 

 

(1) As the ratio 0/uq   increases, the rate of settlement 

increases but the rate of dissipation of excess pore 
water pressure decreases. 

(2) A bigger dimensionless loading parameter b  induces 

a faster rate of the settlement and the dissipation of 
excess pore water pressure. Moreover, both the 
settlement and the dissipation of excess pore water 
pressure tend to proceed more quickly at the early 
stage of consolidation as the demensionless loading 

parameter b  increases. 

(3) A smaller value of the dimensionless loading 
parameter 0T  induces more cycles of oscillation, while 

a bigger value of the parameter 0T  results in a larger 

oscillation in the settlement and the dissipation of 
excess pore water pressure. 

 

 
(a): Us-Tv curves 

 

 
(b): Up-Tv curves 

 
Fig. 11. Variation of average degree of consolidation with 

time factor under different loading parameter for 
haversine cyclic loading. 
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