
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3529

OBFUSCATION: MAZE OF CODE

Brijesh Patel1, Vishal Patil2, Karan Lohar3, Yogita Mane4

1,2,3Student, Dept. Of I.T Engineering, Universal College of Engineering, Maharashtra, India

4Professor, Dept. Of I.T Engineering, Universal College of Engineering, Maharashtra, India

--***---

Abstract - Software Reverse Engineering scenario would

involve software that has been worked upon for years and

carries several modules of a business in its lines of code.

Unfortunately, the source code of the application or software

cannot be recovered easily; what remains is “native” or

“binary” code. Traditional obfuscators work on binary code,

but they are tedious and do not provide us with a specific

obfuscation depending upon the code. We provide a way in

which the code can be obfuscated depending upon lines of code

and variables. We propose the application of this data confers

additional information developers need for better

understanding or knowing, maintaining and developing

software in large team settings. This solution is proposed in

order to discourage software piracy and impede malware

analysis. This book introduces Code-a- Maze, reveals the

results of our evaluation and proposes directions for future

research in this area. Code-a-Maze will increase size of code

and compilation time is also satisfactory.

Key Words: obfuscation, reverse engineering, de-
compilers, allocation and deallocation, dummy calls,
bogus code, trampolines, byte code.

1. INTRODUCTION

Reverse engineering commonly called as back engineering is
a way of obtaining knowledge regarding a code or an
algorithm (in case of a particular computer program). The
reasons to obtain such information may either be good or
bad depending upon a particular situation. People belie
saying reverse engineering process in itself is not concerned
with creating a copy or changing the artifact in some way; it
is only an analysis in order to deduce design features from
products with little or no additional knowledge about the
procedures involved in their original production. There are
three types of Reverse Engineering software, hardware and
producing 3-D images. In this book, our focal point is on
software reverse engineering.

The actual purpose of software reverse engineering is done
to retrieve the source code of a program because of various
reasons which are the source code was lost, to study how the
program performs certain operations or tasks, to enhance
the performance of a program, to fix a issues or bugs (correct
an error in the program when the source code is not
available), to identify malicious content in a program such as

malware or virus. Summarizing, the main aspect of software
reverse engineering is to see how code functions to enhance
or protect it from harm. To retrieve source code (java file)
when lost or to enhance the functionality we use de-
compilers to convert the .class file to java code and make
improvements. The normal Java compilers considering JVM,
does not particularly obfuscate the code while making a
.class file. Hence, it becomes easy for the intruder to add
malicious content or copy the source code by using de-
compilers. Although clearly stated Reverse engineering for
the purpose of copying or duplicating programs may
constitute a copyright violation, but people still back track
the code for various social benefits.

In order to prevent these various obfuscators where created
to ensure security of various software’s. These obfuscators
generally confuse the intruder about the main functionality
of the code and do not provide the initial source code which
is optimal. The obfuscators increase a lot of overhead, but
they are still used to protect the integrity of the code.
However, these obfuscators change the code flow and some
of those changes make it impossible for the JVM to efficiently
optimize the code. In effect it will actually degrade the
performance of your application. And hence our approach is
to work on the efficiency by providing a MAZE in which only
the required obfuscation occurs depending on various
factors of code.

Intermediate-level obfuscation, which obfuscates a program
at intermediate representation (IR) level, which is typically
used for interpretation-based language such as Java is the one
which we are trying to focus on. This book covers the
software reverse engineering problem scope, our approach to
raising awareness about various faults in the exciting systems
and finally the approach to tackle Software Reverse
Engineering in java codes in a simple way.

1.1 Aim and Scope

Reverse Engineering explains the process or ways of
determining the inner workings or set of rules followed by
an engineered piece of kit (hardware or software) in the
absence of design plans.

Sometimes, reverse engineering is essential or unavoidable.
For example, when the working or data about a certain
product has been lost, reverse engineering could be done so
as to recover the lost data so that product maintenance may
continue and proceed further. Another example of reverse
engineering is used in spying, espionage and scientific

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3530

research related to warfare that is military purpose;
countries or parties involved in a war (or potentially
involved in a war) typically wish to understand or gain
information about the inner workings of the enemy's
weapons or communication methods to improve defenses or
prepare efficient means of attack.

Today, however, reverse engineering is most commonly
associated or understood as the cause of theft of intellectual
property, hacking. Someone might purchase an engineered
kit (Software or Hardware) from the original manufacturer,
take it apart and analyzing it or understanding its working to
re-build clones or copies of the original device without
investing into development and research. Hence Reverse
engineering has its own pros and cons and it could be both
beneficial or hazardous as it could have quiet an effect on a
company’s growth as well as its downfall, hence this cons
must have some countermeasures and one of it is in form of
code obfuscation.

1.2 Software Reverse Engineering (SRE)

Having many of its advantages can be exploited for injecting
malicious code, viruses, malware e.g. Code Red worm. Now
to mitigate security problems and software privacy saved by
SRE, we will devise a technique to deter control flow by
making information flow obscure. This is achieved through
flipping conditional branches, obfuscating control transfer
and inserting bogus code. The code injection will be done
using branched functions, data pointers and structures,
pointer allocation- deallocation, dummy calls, trampolines
and start-up routines. This can be achieved at intermediate
level. To achieve the above goal, we intend to design a
UNIVERSAL Code-a-Maze which will be suited for multiple
languages and dynamically generated. The maze will have
multiple entry-points and the entry to the code will be
transferred to a different point after a specified time. The
design of the maze will have modest compilation time and
maximum efficiency. We will do a detailed analysis of
performance of our system.

2. Existing System

The one feature that distinguishes Java from other high-level
programming languages is its platform independence. This
characteristic is possible because of Java Virtual Machine
(JVM). The Java compiler coverts the human-readable java
code to an intermediary byte code. This byte-code is then
read by JVM to generate machine specific codes. The
intermediary byte-code, generated by the javac compiler, is
stored in a .class file. However, if any attacker gets hold of the
.class file, he/she can use ready-made de-compilers and
directly get access to the source code, hence compromising
security. This is where obfuscators come into the picture.
Following are the commonly used obfuscators available in the
market:

2.1 ProGuard [8]

ProGuard is one of the few open source obfuscators which is
also integrated in Android SDK. Along with obfuscation it
also provides other options like shrinking, optimizing and
pre-verifying your Java class file. It is basically a java
obfuscator and can also be used for Android applications.
ProGuard includes identifier obfuscation for packages,
classes, methods, and fields. Without proper naming of
classes and methods it is much harder to reverse engineer an
application, because in most cases the identifier enables an
attacker to directly guess the purpose of the particular part.
It is being used by developers at companies and
organizations like IBM, HP, Siemens, Nokia, Google, Intel, and
NATO. Although it is used so widely, ProGuard can only be
described as a modest deterrent. The obfuscation techniques
used by ProGuard are not enough to stop attackers, but
enough just to give them another hurdle to cross. The
program code itself will not be changed heavily, so the
obfuscation by this tool is very limited. Hence the overall
level of security provided by ProGuard is deficient.

2.2 Allatori [6]

Allatori is a commercial obfuscator from Smartdec. Besides
the same obfuscation techniques like ProGuard, it also
provides methods to modify the program code. In order to
thwart reverse engineering, loop constructs are segregated
and merged, thereby achieving obfuscation. The less
readable code and incremented length further augment
complexity. Additionally, strings are obfuscated and decoded
at runtime. This includes messages and names that are
normally human readable and would give good suggestions
to attackers. The obfuscation methods used in Allatori are a
superset of ProGuard’s so it is more powerful but does not
prevent an attacker from disassembling an application.
However, with increase in complexity of the code, the cost of
the application also increases considerably. Also, its potency
score mediocre compared to other obfuscators after code
transformation.

2.3 GuardIT [7]

GuardIT is a proprietary obfuscator by Arxan which not only
performs code obfuscation, name obfuscation and string
encryption but also goes above and beyond to wrap the
application code into an active protection system capable of
detecting tampering in real-time. These advanced techniques
operate on bytecode thus making it for Java non-
interoperable with AOT compilers. Sophisticated code
obfuscation transformations move, split, insert, and create
functionally equivalent code sequences which thwart de-
compilation and reverse engineering of the underlying byte
code itself.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3531

3. Proposed System

Our approach for obfuscation is not to alter the class file
(byte code) but to provide an obfuscated code before
compilation. We are mainly focusing on Java code using JVM
for compilation. In the below figure 4.1 we show how our
obfuscation method would be suitable. In this approach:

1. First, we generate or retrieve a java file considered
as source code which we pass it through MAZE
obfuscator.

2. The output of the obfuscator is an obfuscated code
which is our new source file and it can be in .txt
format, .java format or any other format which can
be later converted to .java file.

3. The obfuscated code passes through JAVA VIRTUAL
MACHINE (JVM) along with the previous source
code. On compiling, we receive .class files of both
the source code and obfuscated code as the output.

Fig -1: Flowchart Obfuscator

4. When the intruder or a person who wants to

retrieve the functionality of code and manages to
get access over the compiled file, he can use a De-
compiler.

5. The De-compiler provides the source .java file
which helps the intruder to know the functionality
and working of code.

6. However, in our case the intruder receives the
obfuscated code which is also difficult to
understand and traps the user eventually.

7. In this way we can stymie understanding of our
code even if the intruder has access to .class file.

Further, we are explaining the functioning of MAZE
obfuscator.

3.1 System Architecture

Fig -2: Maze of Code

In order to hinder analysis of the source code and enhance
obfuscation, we have designed a Code-a-Maze that can be
integrated with the source code available and thus the
complete structure is metamorphosed. The working of the
MAZE is as follows:

1. First, we evaluate the given source code based on
parameters like thousand lines of code (KLOC),
number of methods and variables, etc. If it
surpasses the minimum threshold, then it enters the
MAZE depending upon the condition satisfied and
proceeds further in the MAZE.

2. Next it is subjected to various transformations
explained below, which modifies the code
depending upon the entry of the path analogous to a
maze.

3. After the application of the proposed variations and
modifications, the flow of the code proceeds further,
ultimately reaching the final state or goal state.

Thus, the aim of the MAZE is to complicate the code, thereby
preventing its analysis without obstructing the natural flow
of the source code. The various transformations or
modifications for different paths in the MAZE are as follows:

1. Path 1: In this path, the code is subjected to
pointless allocation and deallocation. In this method,
the memory allocated for various classes and
variables in the code is changed. This is done
dynamically where the stack changes using copy
constructors, assignment operators and destructors.
(Refer to the below reference).

2. Path 2: In this path, the code is subjected to dummy
calls. Dummy calling involves unnecessary use of
class definitions in a method. It simply calls
functions and methods defined in the main class,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3532

whose function is analogous to a round-about,
wherein no new changes are made, just shifts the
control to a temporary state and returns back to
normal state.

Fig -3: Dummy calls

3. Path 3: Through this path, the code is subjected to
startup routines. We can write our own startup
routine codes, which makes it difficult for
debuggers to bind. The sole purpose of startup
routines is to transfer control flow form one
function to another, making it difficult for any
intruder to understand flow of data.

Fig – 4: Startup routines

4. Path 4: This path is a combination of two
techniques namely, bogus code and trampoline.
Some specious lines of code are added having no
significance, wherein the condition is always
satisfied. It is intentional distortion of code through
fabrication of program statements. Secondly, the
trampoline function makes the control jump to
different temporary state and returns.

if (x*x >= 0)

{s1;

}

else {

s2;//bogus code

}

5. Path 5: This path describes about the flipping
conditional branches. In this approach certain pre-
defined conditions are executed, and it results in
shift of program control. The net effect is that the
code executes certain extraneous conditions to get
the same result as the natural flow of the code.

6. Path 6: As mentioned earlier, this path introduces a
trampoline, where the function control is jumped to
a higher state and brought back acting like a
trampoline. Once the given condition is satisfied, the
code shift takes place and ultimately is brought back
to the same initial state with little or no
modifications.

Fig – 5: Trampolines

7. Path 7: It is the final or goal state of the MAZE.
Every transformation ultimately desires to reach
this state through various paths depending upon the
conditions and parameters. Once the control is in
this state, it output is same as the output of the
source code.

Thus the designed Code-a-Maze achieves the aim of
obfuscating the given source code, applying various
transformations and modifications to hinder easy
analysis of code and in turn prevent SRE.

3.2 Module wise algorithm / Pseudo code

I) Switch on NetBeans and Run Java program
II) Accept the Input File.
III) Check for the 2 conditions<lines of code, number of
methods>.
III) Retrieve all function names from the code.
IV) Generate random string for each function name
while forming Key-Value Pair.
V) Replace all function names and function calls with
corresponding random strings.
VI) If numbers of functions are more than 50:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3533

A. Select one from dummy calls and
start-up routines at random and
make the function call.

B. Insert the string returned from the
function at appropriate position in
the code.

C. Call the trampoline function.
D. Insert the string returned from the

function at appropriate position in
the code.

VII) If lines of code are more than 1000:

A. Select one from pointless alloc-
dealloc and start-up routines at
random and make the function
call.

B. Insert the string returned from the
function at appropriate position in
the code.

C. Call the bogus code function.
D. Insert the string returned from the

function at appropriate position in
the code.

VIII) If numbers of functions are less than 50 and lines of
code are less than 1000:

A. Select one from pointless alloc-
dealloc and dummy calls at
random and make the function
call.

B. Insert the string returned from the
function at appropriate position in
the code.

C. Call the trampoline function.
D. Insert the string returned from the

function at appropriate position in
the code.

4. Benefits of the Proposed System

1. Platform Independence- the transformations performed on
the code are independent of the nature of application and are
applied on high-level code.

2. Diversity- because of wide range of techniques available
for obfuscation, different instances of the same original code
can be created thereby making it difficult for attackers to
intrude.

3. Protection- obfuscation provides protection against static
and dynamic attacks, in turn raising the bar for the attacker,
as the attacker requires extra time and resources to crack
the obfuscated code.
4. Low cost- with the automation of various transformations
and compatibility with the existing systems, the obfuscated
code involves low maintenance cost and efficient use of
resources.

5. Simple- the obfuscation techniques are comparatively easy
to apply and achieve security of confidential code.

4.1 Future Scope

 Extending the idea to dynamically generate the
maze:
The algorithm that we have developed can be further
used to generate the maze dynamically based on the
level of complexity required by the code.

 Using the Maze to obfuscate any kind of
application/code:
With our proposed approach we intend to convolute any
kind of web and/or android application and even made
it compatible across multiple platforms.

 Developing software for Digital Rights Management
(DRM):
Since the algorithm can be extended to implement
access control by integrating various encryption
techniques, our Maze can prevent piracy and be used in
DRM. Thus, trying to control the usage, doing any
modification, and distributing the copyrighted works
(such as software and multimedia content), and also
systems within devices that enforce such policies.

 Extending the idea to be used in Intellectual
Property (IP):
It is prominent that the protection of intellectual
properties is a critical issue for the vendors while
capturing customers with new technologies, with new
software is the aim of every software vendors, but to
protect their new ideas they need copyright or patent.

5. CONCLUSION

Our project successfully used the maze of code technique to
implement obfuscation and hinder code analysis. Our
proposed system processes any kind of java executable code
within the constraints convoluting it with considerable
increment in compile time. Thus, our maze reduces the
computational time making it cost and time efficient for it to
be implemented in wide range of sectors, by any
organization.

REFERENCES

[1] Patrick Schulz – Code Protection in Android. University

of Bonn, Germany. 2012

[2] Marius Popa - Techniques of Program Code Obfuscation
for Secure Software. Journal of Mobile, Embedded and
Distributed Systems, vol. III, no. 4, 2011.

[3] Matthew Karnik, Jefferey MacBride, Sean McGinnis, Ying
Tang, Ravi Ramachandran – A Qualitative analysis of
Java Obfuscation. Proceedings of the 10th IASTED
International Conference Software Engineering and
Applications, Dallas, Texas, USA, November 13-15, 2006.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3534

[4] Kirti Mathur, Saroj Hiranwal - A Survey on Techniques
in Detection and Analyzing Malware Executables -
http://www.ijarscsse.com/docs/papers/Volume_3/4_A
pril2013/V3I4-0288.pdf

[5] Jan Cappaert-Code Obfuscation Techniques for Software
Protection -
www.cosic.esat.kuleuven.be/publications/thesis-
199.pdf

[6] Douglas Low – Java Control Flow Obfuscation
http://www.cs.auckland.ac.nz/cthombor/Pubs/dlowthe
sis.pdf

[7] Arxan obfuscator system -
https://www.arxan.com/resources/technology/app-
code-obfuscation

[8] Proguard Obfuscator system -
https://www.guardsquare.com/en/products/proguar
d

[9] Allatori Obfuscator system -

http://www.ijarscsse.com/docs/papers/Volume_3/4_April2013/V3I4-0288.pdf
http://www.ijarscsse.com/docs/papers/Volume_3/4_April2013/V3I4-0288.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf
http://www.cs.auckland.ac.nz/cthombor/Pubs/dlowthesis.pdf
http://www.cs.auckland.ac.nz/cthombor/Pubs/dlowthesis.pdf
https://www.arxan.com/resources/technology/app-code-obfuscation
https://www.arxan.com/resources/technology/app-code-obfuscation
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard

