
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4417 
 

Development of Uncrackable Software  

Saptarshi Laha1, Surbhi2 

1Student(B.Tech.), Department of Computer Science & Engineering, SRM University, Delhi-NCR, Sonepat, India 
2Professor, Department of Computer Science & Engineering, SRM University, Delhi-NCR, Sonepat, India 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - One of the major challenges faced by the 
industries today is about the development of general-purpose 
software and the proneness of the same being cracked. A 
glimpse at the current implementation methods reveals that 
they serve no good as a permanent solution which leads us to a 
discussion on a variety of viable solutions to completely 
eliminate cracking from the computing world by either 
making it completely infeasible to crack or moving the source 
of operation to a third party provider out of the reach of the 
user and other such simple yet sophisticated mechanisms. 

 
Key Words:  cracking, virtual machine, software 
protection, anti-cracking solutions 
 

1. Introduction 
 
Cracking refers to the changing of routines and/or 
subroutines within a program which allows a user to gain 
unauthorized access to functionalities within a program not 
intended for that user such as bypassing copy protection or 
converting trial software to full version without purchasing 
it. In the recent years, cracking is at its peak with hobbyist 
crackers and other professionals seeking monetary benefits 
from their “illegal” acts investing time and resources into 
breaking the underlying code related to the protection 
system enforced by the piece of software. 

 
Many of the modern-day programs are created in languages 
like Java, which depend on a virtual machine lying 
underneath specifically crafted to run bytecode generated by 
the partial compilation process. The virtual machine 
simulates an original or fictitious CPU depending upon the 
designers of the virtual machine. The problem arises when a 
virtual machine is so commercially successful that one can 
figure out the underlying mechanism of its working and 
hence can exploit the program by modifying the code to 
perform initially unintended actions. The positive side to 
commercially unsuccessful virtual machines is the fact that 
not many people are aware or are interested in learning the 
inner workings of the same and hence are unable to exploit 
programs targeted to such environments to benefit their 
needs. The issue is, deploying to such virtual machines leads 
to equivalently unsuccessful commercial software. 

 
2. General Model of the System 
2.1 Hardware vs Software 
 
We wish to analyze both virtual machines and actual 
hardware to combat the above-mentioned situation. While 

virtual machines decrease the performance of the system by 
manifolds, it ensures the protection of the content running 
on top of it. This is because the hardware manufacturer is 
likely to provide a manual for the functionalities of the 
system. The manual to any system is a double-edged sword, 
it acts as good reference to both developers and crackers. 
While, a developer will think of useful strategies to enforce 
protection of the application, the cracker armed with the 
knowledge of the working of the system will nevertheless 
find a way to crack it. Hence the question boils down to 
“When will the patch to remove a certain protection 
mechanism be released?” and not “Whether the patch to 
remove a certain protection will be released?”. 

 
2.2 Performance Issues  

 
Performance of a virtual machine is an important factor when 
it comes to performance of the applications getting emulated 
by it. To keep the performance close to ideal, the developer 
should focus on keeping the functionalities of every opcode as 
close to simple as possible. This means that every opcode 
should be composed of 3-5 simpler operations. This boosts 
the performance of the emulation system (virtual machine) 
and in turn also boosts the performance of the code running 
on top of it. Apart from this, when the virtual machine is tailor 
made to meet the requirements of a specific application, the 
instruction set is rather limited making the emulation system 
smaller and more efficient, in terms of both memory usage 
and code execution. 

 

3. Encryption Approach 
 
Encryption can be both Symmetric and Asymmetric in 
nature. There are two major areas where encryption can be 
applied: 
 

1. The opcode list supported by the virtual machine. 
2. The byte-code generated by a program. 

 
Each of these areas have their own disadvantages. If the 
opcode list is encrypted, it eventually needs to be decrypted 
to the original form to run the program, or the program byte-
code needs to be encrypted as well to make the encrypted 
versions match, to test for the opcodes in order to run the 
program and vice versa. 

 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4418 
 

3.1 Applying Symmetric Encryption 
 
Before the development of an application, the opcode list 
generated from an application should be run through a 
symmetric encryption algorithm. The deciphering should be 
an intrinsic property of the virtual machine that runs the 
program. In this manner, one can produce encrypted 
programs that run on a virtual machine which firstly 
deciphers opcodes and then processes it. 
Another way of implementing symmetric encryption would 
be to use the same encryption key and encrypt the opcodes 
that are needed by the virtual machine to run the program 
before running an encrypted program. 
 

3.2 Applying Asymmetric Encryption 
 
A two key pair can be generated and referred to as K1 and K2 
using algorithms such as RSA. The opcodes list generated 
from an application in this case can be encrypted by using K1 
before deployment and decrypted by using K2 before or 
during the execution by the virtual machine. The deciphering 
process should be an intrinsic property of the virtual machine 
in this case as well. 

The other way of implementing this would be using K1 to 
initially encrypt the opcodes supported by a virtual machine, 
and then decrypting the opcode using K2 while running an 
application in it. 
 

4. Problems with Encryption 
 
Problems with encryption can be categorized into 2 
categories:  
1. Underlying opcode remaining the same. 
2. Comparisons being performed in lower level code 
remaining the same.  
 

4.1 Underlying Opcode Remaining the Same 
 
In case of encryption of the opcode list generated by an 
application, the program is encrypted initially, but is 
eventually deciphered by the virtual machine while running 
it. Hence a cracker can use a general-purpose debugger to 
step through the code of the virtual machine and figure out 
the decrypted values of the opcodes of the program running 
on the virtual machine. This gives him an upper hand in 
exploiting the application. The exploitation in this case 
consists of modifying the virtual machine by adding 
functionalities or altering inbuilt functions to break the 
protection mechanism employed by the system. 
 
Apart from this, a person won’t have to invest much time 
understanding the functionality of a custom-built opcode in 
this case as the opcode list remains static and since the 
virtual machine is made in a low-level language, there will be 
a compare statement in the form of: 

 
CMP [XX], [YY] 

 

followed by a jump or call statement leading to a 
location/routine with an intended or unintended outcome. If 
this jump or call statement of the form: 
 
JMP [Label/Location] 
 
CALL [Label/Function_Label] is modified, then the resulting 
output can be modified, and a series of such modifications can 
completely nullify the protection mechanism in place. 
 

4.2 Comparisons Performed in Lower Level Code 
 
Whenever the virtual machine has encrypted values of 
opcodes and a key is used to encrypt the resulting opcodes of 
a program before comparing opcodes to check which 
operation is to be performed, or in cases where the virtual 
machine’s opcodes are decrypted before the comparison 
process, the virtual machine can be stepped through to find 
out the key being used in the encryption process of the 
opcodes in the program or the decryption process of the 
opcodes in the virtual machine and hence the functionalities 
of the virtual machine can be studied. After investing a 
considerable amount of time and resources, one can figure 
out what each opcode is supposed to do and one can easily 
modify either the opcodes generated in the program or 
modify the behavior of the virtual machine by changing the 
operations performed on encountering a particular opcode 
or adding new opcodes to the list to perform different 
functionalities. When these series of changes are made, the 
protection mechanism within a system can be completely 
bypassed. 
 
The issue with all such encryption mechanisms used not only 
increase the overhead cost of execution of the program but 
also slows down the application’s execution time at the cost 
of barely any protection. The real problem boils down to the 
storage of the key in the local user system in case of 
encryption and/or decryption where the user has access to 
the final output being generated by either of the two 
processes and has access to the key. This makes the software 
more vulnerable to cracking because it compromises its 
security during runtime. The main problem of such an 
approach is the need to decrypt encrypted opcodes or 
encrypt unencrypted opcodes with a pre-set or dynamically 
changing key to provide a layer of protection from potential 
crackers. This strategy isn’t successful as the key needs to be 
stored and used in the encryption or decryption process, 
which is visible to the user and thus can be exploited. This 
type of an approach would only provide robust protection if 
there was a mechanism set in place to run encrypted 
opcodes at a hardware level where it couldn’t be analyzed 
and if there was an option to reprogram the instruction set 
of the computer completely or partially to provide additional 
and/or similar functionalities to the current instruction set. 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4419 
 

5. Multiple Virtual Machines 
5.1 Virtual Machine Sandwich Approach 
 

This approach uses more than one virtual machine to run a 

program. This is done by crafting a basic virtual machine in 

low level languages and then crafting more virtual machines 

on top of the initial virtual machine. Sometimes these are 

layered as in a sandwich of virtual machines on which the 

software deployed runs. 

 

Multiple virtual machines add to the overall code that is 

present in the software system which acts as a great way to 

prevent reverse engineering of such software as one line of 

code in a high level language can translate to multiple lines 

of opcodes, but it consumes resources exponentially per 

layer of virtual machine that is incorporated in running a 

piece of software, thereby increasing the overhead cost of 

running a program on top of the layers of virtual machines 

while providing close to zero security in terms of software 

protection because it can easily be cracked by any 

knowledgeable cracker. 

 

5.2 Sandwiched Virtual Machines using Encryption 

 

In this technique, multiple virtual machines can be layered 

one over another as in the previous case, but also adding 

encryption to each of the virtual machines. Some of these 

approaches are used in industrial level protection of 

software, such as many triple A titles use VMProtect and 

Denuvo(which is an application that provides encryption on 

top of the virtual machine that it runs on) which is an 

enormous virtual machine on its own, to run games. Not only 

does this affect the performance of the game by slowing it 

down from its actual speed, but also doesn’t suffice to 

provide enough protection as most of these are cracked 

eventually by knowledgeable crackers. 

 

Although, such layered architectures cannot be cracked by a 

beginner, but a knowledgeable cracker with enough time to 

invest into such applications can eventually crack it. 

 

The process of going about cracking such applications is 

cracking one layer of virtual machine at a time. Whenever 

needed, the cracker is free to exploit the issues in simple 

encryption approach to crack the encrypted opcodes. 

Hence, not only does all the extra layering and deciphering 

adds to the overheads at the cost of reasonable protection, 

but ultimately it leaves the user of such software extremely 

dissatisfied as the amount of system resources used will 

skyrocket with each layering needed apart from the 

deciphering process in each layer of encryption. 

Fig -1: Virtual Machine Sandwich 

 

6. Server Checks 

6.1 The Need for Server Checks 

 

So far, all the protection mechanisms barely solve the issue 

of crafting uncrackable software while adding to the time 

complexity of the application. The next logical approach is to 

present a server check for the application each time it is 

started. This means that the server confirms if the user is 

registered and can use the functionalities that s/he is using. 

In case of a failure, the software notifies the user about the 

software being unregistered and quits. 

 

How this combats the situation of the previously mentioned 

condition is by not using the local system for checks, but 

rather confirming the validity of the application from an 

external server which is fed with legitimate data by the 

software developer. This implementation is present in a lot 

of applications designed for multiple operating systems. 

 

Some applications apart from having a server check also 

checks for hash values of the application and digital 

watermarks placed within the program or virtual machine. 

 

6.2 Why Server Checks Fail 

While server checks are powerful, one cannot deny the fact 

that the software runs on the local machine where the user 

of that machine has complete control on the behavior of the 

application. What this means is that the user can simply 

change the comparison, jump and call statements like earlier 

to completely bypass the software protection mechanism. 

In case of more complicated checks, one can simply simulate 

a counterfeit server and create fake packets to trick the 

application into behaving normally as it would in case it 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4420 
 

received a positive response from the server regarding the 

validation of the software. 

 

7. Digital Watermarking 

 

Digital watermarking refers to hiding of validation specific 

data within a program. The server or a local system such as 

the virtual machine checks for the watermark in the file and 

responds accordingly to the validation of the program. 

 

These watermarks are strategically placed within the 

program so the cracker cannot easily locate the validation 

mechanism. Sometimes, even multiple watermarks are 

placed in the application to prevent crackers from easily 

cracking it. All of this depends on the size of the organization 

crafting the program or the amount of security an individual 

or organization wants to incorporate into the product. 

 

Digital watermarking is one of the most efficient methods of 

validation of a program. This not only doesn’t affect the 

execution time as the server checks for a hash value or a set 

of bits within the program which barely consume any system 

resources, but also provides effective protection against easy 

cracking of the piece of software. 

 

8. Cracking Epidemic & Viable Approaches to the 

Problem 

8.1 Why Cracking Is Difficult to Defeat? 

 

The answer to this question lies in the simplicity of the 

system that lies underneath all the abstraction presented to 

the user. Every application can be translated to a sequence of 

assembly programs where the assembly generated is vendor 

specific depending on the CPU that’s running underneath. 

These CPUs’ functionalities are extremely well documented 

so that the programmers can program them to accomplish 

multiple tasks at hand. This also means that if a user has 

enough knowledge, s/he can modify any program to 

accomplish any task that s/he wants by bypassing the 

protections in place. The opcodes are one to one conversion 

to assembly programs which the CPU understands and hence 

all the programs run in hexadecimal form which in turn are 

crammed representations of 1’s and 0’s. Generally, the 

programmers try to incorporate into their product 

protection mechanisms with the help of abstraction layers 

present on top of the base hardware. These techniques fail as 

all the layers of abstraction can be eventually broken down 

into assembly and the protection mechanism eliminated 

from the final program. 

8.2 Simple Approach to Combat Cracking 

 

An easy approach to combat cracking is to manufacture CPUs 

with the presence of a special purpose reprogrammable 

instruction set chip with a unique hardware identifier 

number which is essential to the system to function 

normally. This chip should provide the unique hardware 

identifier number when a special instruction is encountered 

which takes care of the validation of the system. Such anti-

cracking methods have already been used in the past, such as 

in the Sega Saturn where the wobble of the curly carved CD-

Disk was used to verify the legitimacy of the inserted CD. 

This was a revolutionary approach at the time of its creation. 

In general, such hardware checks are very difficult to bypass, 

if not impossible. This when added to the implementation of 

the above-mentioned methods, the benefits of presence of a 

reprogrammable instruction set and using the unique 

hardware identifier number for verification, creates 

completely impenetrable software that runs on it. Our goal is 

to create the same but, in an environment, leaning more 

towards changes in software than changing a lot of hardware 

components since such hardware dependent checks and 

flexibility at the CPU level are impossible to incorporate in 

every system that’s functional currently. If there is such a 

need by the software, unless it is extremely useful or 

irreplaceable or serves a very special purpose, it will be 

commercially unsuccessful in today’s market. 

 

9. Safe Methods for Software Deployment 

9.1 VM & Software Coupling 

 

The software should be released with the underlying virtual 

machine instead of releasing them as separate packages. This 

ensures that the virtual machine doesn’t become general 

purpose and hence cannot be easily cracked or analyzed in 

depth. 

 

9.2 Unique VM For Each User 

 

Each virtual machine’s opcode list should be encrypted using 

a key specific to that user. Asymmetric encryption 

techniques should also be used to decrypt the opcodes 

within the program. This protects the application from 

leakages as an individual can be tracked back using the 

details of the virtual machine as every key generated will be 

unique and bound to the user. 

 

 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4421 
 

9.3 Couple Checking Apart from Server Checking 

 

The virtual machine should incorporate methods to check 

the program running for changes in its hash value or 

watermark locations, as should the program to the virtual 

machine. This in turn should be reported to the server to 

update the values. This value should be updated every time 

the program ends its execution. 

 

9.4 Multiple Digital Watermarks Stored In Random 
 

Digital Watermarks should be stored in the application and 

extra ones should also be stored in directories dictated by 

the server on startup. These watermarks should be modified, 

directories deleted, and new ones stored upon the next 

startup. 

 

10. Multiple Foolproof Methods 

10.1 Using Internet’s  Resources to Run an 

Application 
 

With the rise of internet speeds, it’s very much viable to be 

able to download an application more than once if needed or 

equally much viable to have an online virtual machine 

serving multiple clients connected to it. The clients so 

connected should have an encrypted copy of the program 

which can only be decrypted by the server which holds the 

virtual machine. Since the decryption process of the 

application using the user specific key occurs first, the server 

can quickly run the opcode check for the program before 

launching it. After this process, the server can then launch 

the application. The problem here is that it will be referred 

to as a web-based application instead of a real one using the 

computation power of the system. After its initial usage, the 

server should then provide a new copy of the application to 

the client with newly encrypted opcodes and should update 

its own database for its key entry to be used next when the 

application is supposed to launch again. This is extremely 

efficient for general purpose computing but cannot be used 

to perform operating system specific actions. Apart from 

this, since servers are powerful computational systems and 

can serve multiple clients at once and with the current rate 

of decreasing server buying and economical leasing prices, it 

serves as an effective solution to the problem. 

 

 

 

 

10.2 Using MOV To Decrease Overall Cost & Making 

Technically Uncrackable Applications 

 

The seminal paper released by Stephan Dolan outlines the 

Turing Completeness of the MOV instruction in any of the 

systems currently in use[1]. This is implemented by Chris 

Domas in his movfuscator[2] which aims at compiling any C 

program into a bunch of MOV instructions instead of the 

general assembly. In case this is implemented in the CPU 

systems that are upcoming in the future, it will not only 

reduce the cost of building the circuitry by manifolds but will 

also make it technically impossible to make any sense of the 

compiled program whatsoever. The absolute frustration of a 

reverse engineer assigned to a duty of deciphering the 

meaning of a couple million MOV instructions is 

unimaginable. This when coupled with 1- or 2-layer virtual 

machine and encryption-based program protection literally 

makes it uncrackable under any circumstance. Apart from 

this, the ingenious IDA-Pro hack released by Chris Domas, 

called REpsych[3], makes static analysis of any program an 

absolute nightmare if using IDA-Pro, which is one of the most 

commercially used tools specifically designed for reverse 

engineering. 

 

A general GCC output of a program is understandable by 

someone who is aware of assembly programming in 8086. 

The output also logically makes sense as each instruction is 

different and refers to certain operations taking place within 

the system, however the movfuscator’s output and control 

flow graph make close to zero sense under ideal situations. 

This when further obfuscated produces illogical and 

unreadable output. The control flow graph generated by the 

movfuscator is nothing but a straight line without any 

branching unlike the GCC control flow graph as analyzed by 

the static analyzer IDA-Pro. 

 

10.3 Implementing Rootkit & Virus Technology for 

The Good 

 

A rootkit is a piece of software that is intended to gain access 

to a system without the knowledge of the user to perform 

monitoring of data or similar actions. In this case, the rootkit 

designed should be of special purpose and should only 

oversee the program and virtual machine that the program 

runs on (Such an incident took place when Sony installed 

their own version of a rootkit in systems to monitor the 

misuse of data and were sued for the same). It should report 

back to the server regarding any tampering of the 

application, in which the server automatically cancels the 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4422 
 

license of the user while the virus technology implemented 

can delete the files from the system. Performing this illegally 

is a huge task but it can easily be implemented in the form of 

a driver in case of Windows, responsible for monitoring the 

applications in question and performing ring 0 level 

operations if needed to sanitize the program and the virtual 

machine. The rootkit should then delete itself from the 

system to avoid getting analyzed. This rootkit should be 

updated regularly to avoid being detected by anti-malwares 

or by other users interested to analyze the program who are 

aware of the presence of the rootkit as well. 

 

To implement this in an illegal manner would mean 

exploiting operating system specific routines which in itself 

is a reverse engineering challenge but is possible as 

discussed in the previous sections as the operating system is 

just a piece of software running on the CPU which can be 

analyzed in parts and the underlying meaning extracted and 

evaluated together. 

 

Some of the common steps of creating a rootkit includes, but 

is not limited to infecting the bootloader, altering the system 

call table, modifying the kernel. These acts are however 

illegal and hence one should stick to legitimate driver signing 

techniques whenever required to gain ring 0 access to a 

windows machine. 

 

11. A Unique Approach to Solve the Problem 
 

Let PRs denote the server’s private key and PUs denote the 

server’s public key for client C. Let K denote the key of the 

hardware dongle which is essential for this approach. Let 

O(X) denote the application of obfuscation operation on X 

and ox1....oxn denote the unique obfuscated outputs resulting 

from such an operation where ox is obfuscated version of the 

software X. Let S denote the software and let V denote the 

virtual machine that the software runs on. Let l1...ln be the 

lines of code of the software S in opcode format. Let O(V) 

produce p outputs in the form of ov1...ovp. Let YV denote the 

number of obfuscations per operation executed in the 

software. If p>n then we set YV = ⌊p/n⌋, else we set YV = 1. Let 

V be initially in the form of ovd where d ≥ 1 and d ≤ p and ovd is 

the longest possible code length of V amongst its p 

obfuscated forms that are possible/present. 

 

Constraints: The user U will have to own a copy of the dongle 

in order to run the software S. Initially, the server’s database 

contains PRs, PUs, K, V and S. The user initially doesn’t have S, 

V and PUs, however he has the dongle in which key K is 

stored. 

The following steps are performed in order to execute the 

program securely and to prevent it from being cracked: 

 

1. C sends K(HWIDdongle) to the server to match it with 
the server’s entry of HWID where HWID refers to 
the unique hardware identifier number and 
K(HWIDdongle) denotes encryption of the unique 
hardware identifier number of the dongle with 
dongle key K. 

2. The program continues execution if the HWID 
matches with the server’s entry of HWID. Otherwise 
the program execution stops and the license for C is 
cancelled. 

3. C receives V in the form of PRs(K(V)) where K(V) 
represents the encryption of V’s opcodes using 
dongle key K and PRs(K(V)) represents the 
encryption of K(V) by private key of the server PRs. 

4. C receives the PUs in the form of K(PUs) where 
K(PUs) represents encryption of PUs using dongle 
key K. 

5. C forwards the K(PUs) to the dongle where the 
operation K-1(K(PUs)) occurs and results in PUs 
which is then stored by C for the next few 
operations. 

6. C receives l1 from the server in the form of 
PRs(K(l1)). 

7. C decrypts it using PUs to acquire K(l1). 
8. C decrypts PRs(K(V)) using PUs to acquire K(V) 

where K(V) is V in the obfuscated form ovd and check 
for opcodes are encrypted in the form of K(Opcode). 

9. The opcode for which K(V) matches with K(l1) is 
executed and if there is any reply R for the server 
for the same execution, it is encrypted with PUs(R) 
and sent to the server where it is decrypted and the 
next line of code l2 is evaluated based on R. 

10. C sends K(HWIDdongle) to the server to match it with 
the server’s entry of HWID where if it matches, the 
program execution continues further, else the C’s 
license is cancelled and program execution ends. 

11. The server sends the new dongle key K1 in the form 
of PRs(K(K1)). 

12. This is decrypted by C to K(K1) and is forwarded to 
the dongle where K-1(K(K1)) occurs and K’s 
definition is updated using the rule K = K1.  

13. Dongle sends a key successfully set message to C 
which is then forwarded to the server. 

14. The server then updates PRs, PUs and K to PRs1, PUs1 
and K1 respectively. 

15. The server then performs O(V) XV times and sends 
new V definitions in the form of PRs1(K1(V)). 

16. C updates the definitions of V by using a technique 
called Self-modification of Code as explained in the 
next section. 

17. C receives new PUs1 from the server in the form of 
K1(PUs1). 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4423 
 

18. C forwards the K1(PUs1) to the dongle where K1
-

1(K1(PUs1)) occurs and results in PUs1 which is then 
stored by C for the next few operations. 

19. The execution then proceeds as normal from Step 6 
until the end of code is reached.  

20. If the end of code is reached, then the server 
generates a new set of keys in the form of PUi, PRi, 
and Ki where Ki is sent to C in the form of PRi-1(Ki-

1(Ki)). C then decrypts the same using PUi-1 and 
forwards Ki-1(Ki) to the dongle where the operation 
Ki-1

-1(Ki-1(Ki)) occurs and K’s definition is updated to 
Ki in the form of K = Ki. 

21. The server then does O(V) XV times and keeps a 
version of V ready in the form of ovm for the next 
time the application is launched by C. 
 

12. Self-Modification of Code 

 

Self-modification of code in this context refers to the 

modification of the code segment of the program using an 

assembly program of the form: 

 

programSegment segment read write execute 
 
virtualMachineProgram proc 
 
mov rax, rcx 
;Optional 
;Used to move the opcode to be processed from rcx to rax 
vmLabel: 
;Steps to decipher the opcode here 
nop 
nextRoundLabel: 
jmp getNextLabel 
;Other code here 
getNextLabel: 
call getOpcodeList 
mov dword ptr vmLabel, [opcode_list[0]] 
… 
mov dword ptr vmLabel+n, [opcode_list[n]] 
ret 
 
getOpcodeList: 
;Get data from the internet and store it in [opcode_list] 
ret 
 
virtualMachineProgram endp 
 
programSegment ends 
 
This code firstly reads an opcode which it then moves to the 

EAX register for use. Then it performs various checks to see 

which opcode matches with the opcode specified. On finding 

a match, it executes the operations underneath and jumps to 

getNextLabel, where it calls getOpcodeList function, which 

gets the opcodes from the internet and stores them in a list 

called the opcode list. Then the execution continues with the 

program rewriting its vmLabel section with the new virtual 

machine definitions which are retrieved from the opcode list. 

 

13. Result & Advantages of the Method 

 

After discussing almost all the currently implemented 

methods that are currently in use and discussing some of the 

potentially foolproof ones, we decided to introduce our own 

algorithm. This algorithm not only takes care of secure 

software delivery as each line of opcode to be processed is 

provided individually after a certain number of checks are 

performed to detect tampering or absence of hardware, but 

also ensures that the application is be technically 

uncrackable because of the following conditions: 

 

1. Assuming the number of obfuscations possible for a 

virtual machine containing n lines of code is x. This 

means that each time the virtual machine’s 

definition is updated, each opcode will perform one 

of x possible underlying operations assigned to that 

opcode at any given time. 

2. The opcode list of the virtual machine is encrypted 

each time by a dynamically changing key which only 

makes reverse engineering of such an application 

harder as not only does the opcode list of the 

underlying operation change in the form of 

PRsp(Kp(lp)) which translates to line p encrypted by 

dongle key Kp and further encrypted by private key 

of server PRsp, but also this when decrypted by the 

client C results in encrypted opcode which matches 

with the then definition of virtual machine and no 

other definition of any other virtual machine. This 

when added to the everchanging definition of the 

virtual machine makes it technically impossible to 

figure out for what opcode a certain operation is 

performed. 

3. A server-based approach to software delivery is 

always beneficial as the product can be updated on 

the fly without relying on users to manually update 

applications which takes care of patching further 

loopholes and bugs in the software itself rather than 

its implementation method. 

 

This approach tackles the problem of cracking using a lot of 

mechanisms including hardware-based authentication, 

encryption of opcodes, usage of virtual machines to run 

software and most importantly server-based software 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4424 
 

delivery which is essential for maintaining the security of the 

software. As the opcodes of the software are fed line by line 

by the server to the client, the client cannot analyze the 

complete program flow at once which is possible in case the 

software is delivered directly to the client machine. Extra 

mechanisms such as deletion of code after execution can be 

incorporated to further tighten the security factor of the 

software being deployed. 

 

14. Limitation of the Method 

 

Any such computationally intensive algorithm comes with its 

fair share of limitations. In this case specifically, we do have 

a few as well which are as follows: 

 

1. Internet speeds need to be higher than what they 

currently are in industries, households or the 

market that the software author is targeting in 

order to get realistic execution times. 

2. The need for such a software should be high enough 

for the user to pay a premium to own a copy of the 

dongle to run the software which is unrealistic 

currently due to companies taking to digital-

distribution of software and not relying on 

hardware for software distribution. 

3. One of the major limitations that arises in the 

implementation of this method is when the number 

of lines of code of the virtual machine being 

deployed has very few lines of code. In this case the 

number of possible obfuscations will be very low 

and ultimately the working of such a virtual 

machine can be guessed by comparing multiple 

definition updates of the virtual machine. This 

however can be combatted using the movfuscator 

designed by Chris Domas to compile the virtual 

machine. In such a case the number of the lines of 

code of the virtual machine will increase and as a 

result the number of possible obfuscations to code 

will increase as well. 

4. One can argue that all the data packets can be 

captured which results in the definition files of the 

virtual machine and encrypted lines  of the opcodes 

being stored by the user. This can later be analyzed, 

and the software can hence be cracked using all the 

data that’s present to the user. This is possible but is 

highly unrealistic. General-purpose software 

generally span thousands of lines of code and the 

virtual machine responsible to run such a software 

should at least have ten thousand lines of code. In 

such a case thousand different encrypted versions 

of opcodes need to be stored and analyzed against n 

× 10000 different definitions of the virtual machine 

running the software where n is the number of 

possible obfuscations of the opcode generated by 

the virtual machine. This when added to the 

complexity of following obfuscated code where 

labels aren’t constant and operations dynamically 

changing in each execution, it is technically 

infeasible if the  lines of code of the virtual machine 

is decently sized. This when added to the 

complexity of code that the movfuscator produces(if 

used) and the need to reverse engineer the dongle 

and create a counterfeit hardware simulator and 

counterfeit server for distribution of software 

packets, makes it technically impossible to crack 

such an application. Hence the only time when such 

an approach is possible is when the number of 

obfuscations of the virtual machine definitions are 

low in number and no other obfuscation toolkit has 

been used to increase the lines of code generated by 

the virtual machine. 

 

 

While this approach to the software delivery and 

development provides unparalleled protection standards, it 

can further be strengthened using other techniques such as 

code obfuscation using movfuscator to generate the 

underlying machine level opcodes for the virtual machine 

and the use of multiple layers of virtual machine, each of 

which incorporates this strategy for code execution to run 

the software on top of it, digital watermarking of the 

products at various locations for additional checks to be 

performed to continue execution of the program, all at the 

cost of system resources being used increasing exponentially 

with each layer of addition of virtual machines. 

 

Although this implementation is more of an abstract idea 

rather than a useable alternative currently, but with the ever 

increasing speeds of the internet and the increase of 

computational power with faster and more efficient 

computational chips being developed every year, it 

technically won’t take very long to actually convert the same 

into reality and implement such a strategy to enforce robust 

software protection. 

 

Apart from this, with the emerging trends of quantum 

computers, quantum computing and better cryptographic 

algorithms being developed for both general purpose 

computers and quantum computers, better encryption 

15. Conclusions 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 04 | Apr 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 4425 
 

algorithms can be applied to this algorithm to make the 

protection of the software even more robust and 

impenetrable at no cost of execution time of the software 

being affected whatsoever if such a strategy is implemented 

on a quantum computer. 

 

ACKNOWLEDGEMENT 

 

Thanks to my father, Mr. Soumya Laha, my mother, Mrs. 

Sima Laha and my uncle, Mr. Soumya Mitra for introducing 

me to the fascinating world of computers and providing all 

the necessary support throughout my journey towards my 

inquisitiveness and thirst for knowledge and curiosity 

towards computers and computing. 

 

I would especially like to thank my mentor Ms. Surbhi for her 

continuous support and guidance without which this paper 

would never have been complete. 

 

I would also love to thank my friends from SRM University, 

Haryana including but not restricted to Shubham Mishra, 

Akash James, Anubhav Chauhan, Rupesh Anand, Ishan Roy 

Choudhury, Amrit Shukla and Archirekh Majumder for 

providing me with unending love and support while I was 

away from home. 

 

I would also like to thank each of my teachers and professors 

for their encouragement and guidance which really helped 

me in diving deep into the various aspects of computing at a 

much granular level than I initially knew of understood. 

 

REFERENCES 

 

[1] Stephen Dolan (2013) mov is Turing Complete. 

https://www.cl.cam.ac.uk/~sd601/papers/mov.pdf. 

Accessed 20 February 2019. 

[2] Chris Domas (2015) movfuscator. 

https://github.com/xoreaxeaxeax/movfuscator. 

Accessed 18 April 2019. 

[3] Chris Domas (2015) REpsych. 

https://github.com/xoreaxeaxeax/REpsych. Accessed 18 

April 2019. 

 

 

 


