
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5093

REAL TIME MONITORING OF SERVERS WITH PROMETHEUS AND

GRAFANA FOR HIGH AVAILABILITY

ARUN KUMAR K1, VINUTHA B S2, VINAYADITYA B V3

1Assistant Professor, School of CS & IT, Jain University, Bangalore, Karnataka, India
2,3PG Scholar – School of CS & IT, Jain University, Bangalore, Karnataka, India

---***---

Abstract – Host content on the internet is all about
connecting an interested audience to that content. Subtract
any one element- audience, content or connection- from the
equation and your website fails. Fortunately, even in the
craziest online scenarios, you can ensure that your audience
will always reach your content. It’s called high availability.
Three system admin concepts defined here work in concert
to create a highly availability. Monitoring is determining if
and when a server goes down. Monitoring software, like
the daemon, will actively check to see if a server is reachable
or not. Redundancy is having multiple versions of a server or
component of the server operational. This also means you
need to replicate the server’s data. Without redundancy,
when a server goes down, its content is inaccessible, but
having a second server that can distribute its own replicated
content will ensure anyone can still reach it. Failover is
sending website traffic to an accessible server from an offline
server.

1. INTRODUCTION

The combination of Prometheus and Grafana is becoming a
more and more common monitoring stack used by Devops
teams for storing and visualization time series data.
Prometheus acts as the storage backend and Grafana as the
interface for analysis and visualization. We don’t regularly
monitor our servers and we won’t notice when things go
badly, before they become a problem. The answer to that is
probably “not really, at least, not before it’s too late!”
Admins who think they can just react when things fall
down and go boom, or who feel they can check all their
servers every day the good old fashioned way, by logging
onto them, are either crazy, reckless, insomniacs, or they
don’t have enough servers to actually be considered
system admins. You need to monitor your servers for
resources, performance, and errors, as well as monitoring
the apps they provide. Consider a file server. What
happens when it runs out of space or an email server that
can no longer send emails because there’s a problem with
a connector, or DNS. What about any server running at
100% CPU utilization. How responsive do you think it will
be to your users. There’s more to monitoring though, as
anyone who has had a disk fail can tell you. Most disks
start to throw errors long before they go code brown. If

only you had a way to notice those errors before it was too
late.
Server monitoring is basically a preventative measure to
help you detect any issues before they cause any major
issues that affect your productivity and your customer.
Server monitoring is a process of continuously scanning
servers on a designated network and scans the network for
any failures or any irregularities that are detected by server
monitoring software.

 2. BACK END LANGUAGE

 In this paper we used PHP programming language because,
PHP is a general - purpose scripting language that is
especially suited to server-side web development, in which
case PHP generally runs on a web server. Any PHP code in a
requested file is executed by the PHP runtime, usually to
create dynamic web page content or dynamic images used
on websites.
 i. Version: PHP 7.0
 ii. Java Script with bootstrap
 iii. Backend: Elastic cloud computing (EC2)

 2.1 DEPLOYMENT PLATFORM

For deploying of this application, we used amazon web
Services. Amazon web services provide servers on rent to
deploy application. Amazon web services is the one of the
popular cloud based platform that Provide on-demand cloud
computing platforms to Individuals, companies and
governments, on a paid Subscription basis.

Platform: amazon web services (EC2 instance – Ubuntu
16.4 servers).

 3. EXISTING SYSTEM AND PROBLEM STATEMENT

Before the use of the Prometheus, we were using cloudwatch
to monitoring the servers where it’s basically a metrics
repository. Here are some of limitations of cloudwatch:
Limitation 1: Actions- 5 / alarm. This limit cannot be
changed.
Limitation 2: Alarms- 10 / month. 5000 per region per
account.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5094

Limitation 3: Period: maximum value is one day (86,400
seconds). This limit cannot be changed.

PROBLEM STATEMENT

Before the use of the Prometheus, we were using cloudwatch
to monitoring where exporting alarm alerting data is not
available for further post-processing or analysis and have to
navigate through various screens to get the metrics you want
to add. It does not give you any recommendations, so you
have to know what you’re doing. This causes failure in
monitoring the servers.

4. SYSTEM ARCHITECTURE

Fig 4.1 Prometheus and grafana workflow of servers
monitoring

Prometheus is an open source monitoring and alerting
toolkit for containers and microservices. It has become the
mainstream, open source monitoring tool of choice for those
that learn heavily on containers and microservices. The
combination of Prometheus and grafana for storing and
visualizing time series data. The data model identifies each
time series not just with a name, but also with an unordered
set of key-value pairs called labels. The PromQL query
language allows aggregation across any of these labels, so
you can analyse not just per process but also per datacenter
and per service or by any other labels that you have
defined. These can be graphed in dashboard systems such as
Grafana.

Prometheus has a main central component
called Prometheus Server. As a monitoring service,
Prometheus servers monitor a particular thing. That thing
could be anything: it could be an entire Linux server, a stand-

alone Apache server, a single process, a database service or
some other system unit that you want to monitor. In
Prometheus terms, we call the main monitoring service
the Prometheus Server and the things that Prometheus
monitors are called Targets. So the Prometheus server
monitors Targets.

4.1 Alerting - Knowing when things are going wrong is

usually the most important thing that you want monitoring

for. You want the monitoring system to call in a human to

take a look.

4.2 Debugging - Now that you have called in a human, they

need to investigate to determine the root cause and

ultimately resolve whatever the issue.

4.3 Trending - Alerting and debugging usually happen on

time scales on the order of minutes to hours. While less

urgent, the ability to see how your systems are being used

and changing over time is also useful. Trending can feed into

design decisions and processes such as capacity planning.

 4.4 Plumbing - At the end of the day all monitoring systems

are data processing pipelines. Sometimes it is more

convenient to appropriate part of your monitoring system

for another purpose, rather than building a bespoke solution.

Each unit of a target such as current CPU status, memory
usage (in case of a Linux server Prometheus Target) or any
other specific unit that you would like to monitor is called a
metric. So Prometheus server collects metrics from targets,
stores them locally or remotely and displays them back in
the Prometheus server. The Prometheus
server scrapes targets at an interval that you define to collect
metrics from specific targets and store them in a time-series
database.

Prometheus provides client-libraries in a number of
languages that you can use to provide health-status of your
application. But Prometheus is not only about application
monitoring, you can use something called Exporters to
monitor third-party systems (Such as a Linux Server, MySQL
daemon). An Exporter is a piece of software that gets
existing metrics from a third-party system and export them
to the metric format that the Prometheus server can
understand.

5. IMPLEMENTATION

The implementation involves:

1. Creating service users –

 For security purposes, we’ll begin creating two new user
accounts, Prometheus and node_exporter. We'll use these

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5095

accounts to isolate the ownership on Prometheus' core files
and directories. Create these two users, and use the --no-
create-home and --shell /bin/false options so that these
users can't log into the server.

- sudo useradd --no-create-home --shell
/bin/false prometheus

- sudo useradd --no-create-home --shell
/bin/false node_exporter

2. Downloading Prometheus - First, downloads and unpacks
the current stable version of Prometheus into your home
directory.

- Cd
- https://github.com/prometheus/prometheus/

releases/download/v2.0.0/prometheus-
2.0.0.linux-amd64.tar.gz

3. Configuring Prometheus – In the etc/ Prometheus
directory, use nano or your favorite text editor to create a
configuration file named prometheus.yml. For now, this file
will contain just enough information to run Prometheus for
the first time.

-Sudo nano /etc/prometheus/prometheus.yml
 - scrape_configs:
 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - Targets: ['localhost: 9090']

4. Running Prometheus – Startup Prometheus as
the Prometheus user, providing the path to both the
configuration file and the data directory.

 -Sudo -u Prometheus /usr/local/bin/prometheus \

 --config.file /etc/prometheus/prometheus.yml \

 --storage.tsdb.path /var/lib/prometheus/ \

 --web.console.templates=/etc/prometheus/consoles\
web.console.libraries=/etc/prometheus/console_libraries.

 [Unit] Description=Prometheus
 Wants=network-online.target
 After=network-online.target
 [Service]
 User=Prometheus
 Group=Prometheus
 Type=simple
 ExecStart=/usr/local/bin/prometheus \
 --config.file /etc/prometheus/prometheus.yml \
 --storage.tsdb.path /var/lib/prometheus/ \
 web.console.templates=/etc/prometheus/consoles \

web.console.libraries=/etc/prometheus/console_libraries
[Install] WantedBy=multi-user.target.

6. FRONT END SCREEN

Fig 6.1 – WEB Application front page

 This fig 6.1 consists of information about web
application TheGirlzKorner.com where it provides the all
information about the beauty problems.

Fig 6.2 – Prometheus metrics to monitor server

 This fig 6.2 shows how Prometheus collects metrics
from monitored targets by scraping metrics endpoints on
these targets. To edit the prometheus.yml file, use this
command - > vi prometheus.yml.

Fig 6.3 – Prometheus installation for monitoring servers

 This fig 6.3 shows the all the information about the
Prometheus agent and files which is installed in the Ubuntu

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5096

server machine. To start the Prometheus this command from
the Prometheus directory.

 >./Prometheus –config.file=prometheus.yml

Fig 6.4 – Monitoring using Prometheus and grafana

 This fig 6.4 shows the real time server monitoring using
Prometheus and grafana for high availability.

7. CONCLUSION AND FUTURE ENHANCEMENT

 Here we designed a real time monitoring of servers using
the combination of Prometheus and grafana. Prometheus
works well for recording any purely numeric time series. In a
world of microservices, its support for multi-dimensional
data collection and querying is a particular strength. It is
designed for reliability, each Prometheus server is
standalone, not depending on any network storage or other
remote services. Grafana or other API (Application program
interface)consumers can be used to visualize the collected
data.

FUTURE ENHANCEMENT

 we suggests to raise the awareness of Prometheus server
importance at all layers of container cluster infrastructure,
and work toward establishing best practices and standards
for monitoring and metrics formats which improves the real
time monitoring of servers for high availability.

REFERENCES

1. Cloud Computing: Concepts, Technology and
Architecture (The Prentice Hall Service Technology
Series from Thomas Erl) 1st Edition, Kindle Edition.

2. DeepQ Research Engineering Blog, Build a
Monitoring Dashboard by Prometheus + Grafana.

3. Ikram Hawramani, Cloud computing for complete
beginners: Building and scaling high performance
web servers on the amazon cloud.

4. P. Mell and T. Grance, The NIST Definition of Cloud
Computing: Recommendations of the National
Institute of Standards and Technology, NIST Special
Publication 800-145, 2011.

5. Andreas witting and Michael witting, Amazon web
services in actions, ISBN- 1617292885,
17/10/2015.

6. James Turnbull, Monitoring with Prometheus, ISBN-
9780988820289, June 2018.

7. Slawek Ligus, Effective monitoring and alerting: For
web operations 1st edition.

8. Dave Avery, How to visualize your data with
Grafana [Q+A], Big Data Zone, Sep-19.

9. G. Suciu, V. Suciu, R. Gheorghe, C. Dobre, F. Pop, and
A. Castiglione. “Analysis of Network Management
and Monoitoring Using Cloud Computing”,
Computational Intelligence and Intelligent Systems,
Springer, pp. 343-352, 2016.

10. M. Kim, Y. Kang, and Y. Yu, “Develop Total IT Service
Monitoring System of Agentless Method for Total
Management of based on Cloud Service Demand”,
International Journal of Software Engineering and
Its Applications Vol. 10, No. 1, pp. 1-14, 2016.

11. J. Swarna, C. S. Raja, D. Ravichandran, “Cloud

Monitoring Based on SNMP”, Journal of Theoretical
and Applied Information Technology, Vol. 40, No. 2,
pp. 188-193, 2012.

12. M. Madan and M. Mathur, “Cloud Network

Management Model – A Novel Approach to Manage
Cloud Traffic”, International Journal on Cloud
Computing: Services and Architecture (IJCCSA), Vol.
4, No. 5, pp. 9-20, 2014.

13. A. Anwar, A. Sailer, A. Kochut, C. O. Schulz, A. Segal

and A. R. Butt, "Cost-Aware Cloud Metering with
Scalable Service Management Infrastructure," 2015
IEEE 8th International Conference on Cloud
Computing, New York City, NY, 2015, pp. 285-292.

14. A. Kaushik, “Use of Open Source Technologies for

Enterprise Server Monitoring Using SNMP”, IJCSE,
Vol. 2, No. 7, pp. 2246-2252, 2010.

