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Abstract : Due to the budget and the environmental issues, 

achieving energy efficiency gradually receives a lot of 

attentions these days. In our previous research, a prediction 

technique has been developed to improve the monitoring 

statistics. In this research, by adopting the predictive 

monitoring information, our new proposal can per-form the 

optimization to solve the energy issue of cloud computing. 

Actually, the optimization technique, which is convex 

optimization, is coupled with the proposed prediction 

method to produce a near-optimal set of hosting physical 

machines. After that, a corresponding migrating instruction 

can be created eventually. Based on this instruction, the 

cloud orchestrator can suitably relocate virtual machines to a 

designed subset of infrastructure. Subsequently, the idle 

physical servers can be turned off in an appropriate manner 

to save the power as well as maintain the system 

performance. For the purpose of evaluation, an experiment is 

conducted based on 29-day period of Google traces. By 

utilizing this evaluation, the proposed approach shows the 

potential to significantly reduce the power consumption 

without affecting the quality of services. 

 

CCS CONCEPTS 

 

• Computing methodologies → Supervised learning by 

regression; • Computer systems organization → Cloud 

computing; • Mathematics of computing → Stochastic 

processes; 

 

KEYWORDS 

 

IaaS, Cloud Computing, Predictive Analysis, Convex 

Optimization, Energy Efficiency, VMs, Gaussian process 

regression 

 

 

1 INTRODUCTION 

 

In recent years, a number of data centre recognized cloud 

computing as a popular platform to manage most of the 

operations. Naturally, cloud computing improves utilization 

and scalability of underlying physical infrastructure. As a 

substitution for independently allocating the computing 

facilities when being requested, cloud computing is able to 

deliver the ordered resource as a virtual package 

conveniently via internet connection. Besides, it is worth 

noting that cloud computing can be used to enhance the 

utilization of the infrastructure by virtualizing the service 

composition in a higher level. Hence, the capacity of the 

physical facilities can be unified to provide better quality of 

services. Finally, implementing cloud computing can lessen 

the management cost to consequently save the money. 

 

In order to achieve the reduction of power consumption 

in cloud computing, it would be a must to understand the 

sources that consume the energy and how to efficiently 

reduce the corresponding consumption. Obviously, when a 

computing system is online, most of the internal 

components burn the power to do the assigned jobs. 

Because of this reason, any inefficiently running devices, 

which are in the idle state, actually waste the power for very 

limited value. Critically, this kind of facilities should be 

minimized to save the energy. Regularly, the conventional 

approach is to decline the number of working physical 

machines to an optimal quantity. By using the virtualization, 

cloud computing has a chance to implement this approach 

through stacking the virtual machines (VMs). In order to do 

that, the VMs can be migrated to an optimal designated 

physical machines (PMs). Subsequently, the remaining idle 

PMs are turned off to fulfil the requirement of mitigating the 

power burning. In the recent research, we have developed 

an enhanced prediction technique based on Gaussian 

process regression to improve the monitoring statistics. In 

this research, we would like to propose an optimization 

scheme to reduce the power consumption in cloud 

computing. The remaining parts of the paper are organized 

as follows. In section 2, we included some related works of 

energy efficiency in cloud computing area. Section 3 shows 

the description of our proposed architecture. In this section, 

the summary of our preceding research, including the 

prediction, is also briefly intro-duced. Section 4 includes the 

proposal of optimization technique to do the energy 

optimization. Section 5 presents how we conduct the 

performance evaluation to show the usefulness of the 

solution. In the end, section 6 attaches the conclusion of 

paper and outlines our future work. 
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2 RELATED WORKS 

 

Energy efficiency in cloud computing is mostly related to VM 

consolidation philosophy. It means that the problem of 

interest focuses on choosing the suitable placement for VMs 

with regards to the utilization of PMs [3]. Basically, we can 

model the VMs and PMs as a regular object-bin problem. 

Hence, the VM consolidation can be simplified to bin-packing 

problem, which is NP-hard [1]. Consequently, the heuristics-

oriented techniques might be the promising solutions. 

Whereby, some well-known approaches popularly adopt this 

methodology, namely best fit decreasing [1] and first fit 

decreasing [5]. By engaging these techniques, the cloud 

orchestrator has a tendency to assign VMs to minimize the 

number of hosting PMs. Due to this attractive feature, the 

mentioned bin-packing model is widely used to generate the 

solution to deal with the energy efficiency. However, 

heuristics approaches have a critical drawback when 

implementing in action. In order to produce good solution, 

this family requires the fixed number of objects and bins at 

the beginning of time. In other words, the quantity of VMs 

and PMs must be recognized in advance. Apparently, this 

requirement is unfeasible since it breaks the principles that 

make cloud computing, which are the elasticity and the 

multi-tenancy. In addition, the rapid changes in 

infrastructure’s utilization clearly degrade bin-packing 

approaches in term of accuracy. Because of that, this issue 

eventually casts bad effects on system performance. 

 

In order to breakthrough the mentioned obstacle, other 

approaches utilize the prediction techniques as a 

preprocessing step to enhance the input data. By predicting 

the infrastructure’s workload, the cloud orchestrator can 

produce more reasonable decision to lessen only unexpected 

effect of utilization fluctuation. There would be a number of 

research take into account this method to their proposals. 

The candidates for prediction algorithms are various from 

hidden Markov model [8] to polynomial fitting [16]. 

Unfortunately, these authors do not pay enough attention to 

the designed philosophy of versatile resource provision in 

cloud computing. Therefore, these techniques, might not 

provide good prospect of underlying system to the 

orchestrator. Besides, there is another research trying to 

utilize the Wiener filter [7] to predict the workload. 

However, to the best of our knowledge, Wiener filter 

performs properly only with the stationary signal and noise 

spectrum. Bringing signal processing technique to the cloud 

computing domain without a rigorous analysis might not be a 

good idea. Due to this reason, Wiener filter might be 

inapplicable for prediction purpose in the domain of interest. 

 

Furthermore, one different kind of approaches that 

should be included is the modified specific schedulers in 

[6], [14] and [2]. These schedulers are the efforts to solve 

other aspects of energy efficiency in network traffic, 

resource reconfiguration and communication rates. By 

proposing these schedulers, the authors claim that they can 

optimize the network throughput as well as balance the 

resource utilization, eventually save the energy. However, 

these research do not consider the importance of system 

performance preservation. Therefore, the referred 

schedulers are unable to implemented in service providing 

systems. 

 

By investigating the research area, a conclusion can be 

made that even though the energy efficiency is a hot topic 

in computer engineering these days, not enough research 

has comprehensively been successful in equating the 

energy savings with an acceptable performance, especially 

in a predictive and optimized manner. Be-cause of that, we 

would like to propose a solution which engages our 

previous prediction method [4] and convex optimization 

tech-nique to reduce the energy consumption in cloud 

computing. The rest of the proposal is described in the 

next sections. 

 

3 PROPOSED ARCHITECTURE 3.1 

System description 

Assume that the infrastructure of interest is homogeneous 

system. That means all the physical computing facilities are 

identical. This assumption is only to make the equation 

derivatives more convenient. In fact, this configuration does 

not degrade the generality because the heterogeneous 

system can be transformed to homogeneous system just by 

adding some weighted arguments. As stated previously, the 

target of the research is to reduce the power consumption in 

cloud computing. In order to do that, we follow the VMs 

stacking philosophy. In the other words, VMs consolidation 

is chosen to compact the size of running PMs. This choice 

relies on the fact that an idle PM actually burns an amount 

of power up to 60% [9][11][10] of the peak power, which is 

used to maintain the same PM in peak performance. It is 

worth mentioning that booting up a PM just burns 23.9% 

[13] of the same power. Furthermore, reducing the number 

of running PMs delivers additional reduction of the extra 

power for maintaining the cooling system as well as the 

networking devices. Due to these reasons, stopping idle PMs 

can help to save more power than leaving them serving no 

specific purpose, even an extra expense is needed to re-

activate the offline computing facilities subsequently. 

Relying on this reasoning, we design an architecture, namely 

the energy efficiency management (E2M) system shown in 
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Figure 1. The main target of this architecture is to optimally 

create VMs consolidation strategy and send it to the 

orchestrator periodically. Finally, the idle PMs are 

temporarily deactivated to reduce power consumption. 

Following is the functionality of each component in the 

architecture: 

 

• Ganglia: this component collects most of operation 

statistics for both PMs and VMs. The collected 

information is actually used as the input for the 

prediction step in the next stage. Note that Ganglia is 

known to be trusted platform for years for monitoring 

purposes. This component is light-weight but powerful 

and versatile enough to integrate to any solution. 

• Predictor: this component is the data sink for Ganglia’s 

statistics. After receiving the aforementioned data, the 

enhanced Gaussian process regression is activated to 

do the prediction step. The output of this step is the 

predictive monitoring statistics. In other words, the 

predictor provides the futuristic perspective of the 

working status of infrastructure. This kind of 

anticipated system utilization is more valuable for the 

optimization step than the original data. 

 

• Energy optimizer: the predictive monitoring statistics, 

that are retrieved from the predictor, can be engaged as 

the precious input for creating near-optimal 

consolidating instruction. The strategy, if possible, has 

to save as much power as possible without 

deteriorating the quality of services. In fact, the 

responsibility of this component is to decide the mini-

mum but feasible set of PMs to normally host the 

increasing 
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Figure 1: Architecture of energy efficiency management (E2M) system. 

 
VMs. Finally, the complete package of VM consolidation is 

delivered to the cloud orchestrator for implementation. 
 
3.2 Prediction model  
As mentioned above, the migrating instruction would be created in the 

energy optimizer component. Before the optimization procedure can be 

issued, it is mandatory to enhance the monitoring data in advance. The 

reason for the need of this enhancement is twofold. Firstly, it is known to be 

true that the monitoring statistics is always the delayed information. It 

means that the data we has received at the time t actually reflects the 

system status at the time t − τ , in which, τ is the monitoring window that 

triggers the data collecting process. Any decision making based on this 

obsolete data might not be reasonable at the time the reaction is executed. 

Considering this fact, there is obviously a requirement for data prediction. 

The second reason is that sometimes it is better to apply proactive reaction 

rather than reactive model. In that case, there would be higher chance for 

the orchestrator to reduce the violation to quality of services in advance. 

Regularly, the target of the predictor is to provide the futuristic utilization 

of resources to the optimizer. In order to do that, the Bayesian learning and 

the Gaussian process regression are chosen to make the regression. The 

guidance on how to build this prediction model is provided in detail in our 

preceding research [4]. 

 
4 ENERGY OPTIMIZATION  
Coming to this step, we assume that the energy optimizer receives enough 

information from the predictor, it is right time to conduct the optimization 

for power consumption. As said previously, a minimum-but-feasible 

number of PMs is required as the output of this stage. Note that the output 

is subsequently used to con-struct the instruction for VM migration. 

Primarily, there are two sub-components in the energy optimizer, namely 

power manage-ment and cluster optimizer. The power management 

observes the 

 

 
resource pool and incorporates the energy decision that has been 

made from the cluster optimizer. The final decision can be 

referred to as the instruction for VM migration. This instruction is 

sent to the cloud orchestrator to actuate. 
 
4.1 Performance modeling  
Since CPU is one of the most sensitive parameters, this factor should be 

chosen to model the performance. Denote the global utilization as Umfi ∈ 

R+ and the individual utilization as Imfi ∈ R+ regarding the resource fi (For 

instance, fc stands for CPU). The number of active PMs, which is denoted by 

am at the monitoring window m, are the target to calculate. It is crucial to 

mention that consolidating the VMs into a number am of PMs might result 

the infrastructure to its peak performance. Hence, this procedure needs to 

be controlled. Otherwise, the whole sys-tem might suffer very high latency 

[15] and violate the quality of services, which is described in the service 

level agreement (SLA) document. Therefore, the utilization of CPU resource 

should be formulated as follows: 

Im = max{Imfc } = max{ 
 U fc  

 

 m  
}. (1) 

 

amC 
fc 

 

fc fc    
 

Observing (1), Im is known to be a decreasing function of am . In other 
words, decreasing the number of PMs might cast high latency to entire 

system. Denote the average latency of task processing in CPUs as lm . This 

parameter can be computed by engaging the expectation waiting time E(fc 
) of the exhausted CPU: 

l I = f 
c 
) = λm 1/µ2   , (2) 

 

 m ( m )  E(  

2(1 − 
Λ 1 µ   

 

       m / )  
  

in which, λm is the arrival rate of the tasks, µ is the service rate of 

homogeneous CPU. By comparing lm to the threshold l (which is depicted 
in the SLA document), the quality of services can be estimated to be 
violated or not. If the violation occurs, the penalty 
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cost Cmp needs to be calculated as follows:  

Cmp = wmsp (lm (Im ) − l)+, (3) 

in which, wm and sp stand for the weight factor that reflects the 

magnitude of violation, and the fine that needs to be paid for the 

penalty, respectively. The weight factor wm is also supposed to 

extinguish the trend of the average latency increment. In other words, 
this parameter flexibly allows a controlled number of under-
performance PMs as a preventive method for reducing system 
overhead. Essentially, this weight plays the role of preserving the SLA 
execution. 
 
4.2 Energy modeling  
As we all know that the power consumption in running clusters can be 

broken down to two periods: the period of processing the assigned 

tasks and the period of maintaining the idle state. This fact can be 

modeled by using following equation: 

em 
=

 Pidl e 
+

 Pr unninд . (4) 
Assume that sm stands for the fine of electricity at monitoring 

window m, the power expense, denoted by Cme , is represented as 
follows: 

Cme (am ) = smamem = smam (Pidl e + Pr unninд ). (5) 
In (5), the energy, which is used for processing the tasks, is un-

touchable. As a result, the represented parameter Pr unninд should 
not be considered in the optimization procedure. So on, (5) is re-duced 
to:  

Cme (am ) = smam Pidl e . (6)  
4.3 Cluster optimizer  
The heart of energy optimizer is represented in this section. As a brief 
recapitulation, our objective is to reduce the power consump-tion but still 
preserve the quality of services. This objective can be achieved via 

minimizing the number am of active PMs. Mathe-matically, the variable am 

needs to be found optimally. Firstly, we model the problem by engaging 
convex optimization as follows:  

0 min   (wmsp (lm (Imz ) − l)+ + smam Pidl e ). (7) 
 ≤am ≤Pm  

As stated before, the function lm (Im ) is a decreasing function of am . 

Therefore, the condition of am can be depicted as below: 

     a  δm .       (8)  
              

     m ≤ l−1  l        
 

In case a 
   

and 
 m ( )       

+ = 0, 
 

≥ δm  lm−1 l lm Iz    l ) = lm δm  am ) − l 
 

m / (  )   (   (  m  )  −  (   ( / )   

then any reduction of a to δm  lm−1 l 
) 

can also reduce the burning 
 

    m  /  (          
 

power. Due to this reason, (7) can be re-formulated as shown below: 

min δm  
(

wmsp 
(

lm 
(

Im
z 

) −
 l
)+ 

+
 smam Pidl e 

)
. (9) 

0≤am ≤ l −1 l  

 m ( )   
The Lagrangian function of this problem can be expressed as 

below: 
L(am , γ ) = wmsp (lm (δm ) − l)++  

am 
(10) 

δm 
s

m
a

m 
P

idl e 
+

 
γ

 
(a

m 
−

 lm−1(l) 
)

 
+

 
α

 
(0

 
−

 
a

m 
).  

 
 

 
Table 1: Summary of Google Traces’ Characteristics 

 

Time span # of PMs #VM requests # of users 
    

29 days 12583 >25M 925 
    

 
This function can be solved by applying Karush−Kuhn−Tucker (KKT) 

conditions to find the near-optimal value am . 
 
5 PERFORMANCE EVALUATION 5.1 

Experiment design 
The testbed is a cluster of 16 homogeneous servers. For the detail 

configuration, an Intel Xeon E7-2870 2.4Ghz and 12GB of RAM are geared 

towards the purposed of hosting upto 8 VMs in each serves. With these 

equipments, the infrastructure can host up to 128 VMs at maximum to 

conduct the experiment. For the dataset, we use Google traces as a 

simulation for the workload. Announced by Google, these traces actually 

comprise the monitoring data from more than 12,500 machines over a 

duration of 29 days. However, only a set of 6732 machines is chosen to 

satisfy the assumption of homogeneous system. In this set, we also extract 

randomly 2.26 GB from 39 GB of compressed data for the experiment. The 

chosen dataset consists of many parts. Each part represents a period of 24-

hour of traces. For the convenience of presentation, we scale the maximum 

length of measurement to 60 seconds. This length is also adopted as the 

monitoring window. Moreover, the summary of Google traces’ 

characteristics is described in Table 1. 
 
5.2 Implementation  
The experiment is conducted under four schemes for comparison 

as follows:  
• The default schemes: all of the PMs are activated all the time. 

No power savings is acquired at all.  
• The greedy first fit decreasing (FFD) scheme [12]: the VMs are 

sorted into queue by descending order in term of internal CPU 

utilization. This queue is subsequently submit to the first host that 

matches the resource requirement. Basically, the bin-packing 

approach is used to relocate VMs.  
• The proposed approach (E2M) scheme: the proposed method is 

implemented to create near-optimal energy consumption and 
preserve the quality of services. 

• The optimal energy-aware scheme: an optimal solution is pre-

calculated to achieve minimum energy consumption. In this scheme, 
the quality of services is not taken into ac-count. In order words, the 

quality of services is sacrificed to significantly save the energy. 
 
5.3 Results  
The Google traces is actually a set of synthesized data. Therefore, in order 

to measure the energy consumption, an external equiva-lent energy 

calculation [13] is applied to compute the result. The description of 

calculation and related parameters is depicted in the original paper and 

summarized in Table 2. As shown in Fig-ure 2 and 3, because of activating 

the PMs all the time, the default scheme consumes egregious amount of 

power. Meanwhile, in the 
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  Table 2: Energy Estimation Parameters 

 

  Parameter Value  Unit  
 

  E
sleep  107  Watt  

 

  E
idle  300.81  Watt  

 

  E
peak  600  Watt  

 

  E
active→sleep 1.530556 Watt-hour  

 

  E
sleep→active 1.183333 Watt-hour  

 

  E
active→off 1.544444 Watt-hour  

 

  E
off→active 11.95 Watt-hour  
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Figure 2: Percentage of active physical servers in Google 

traces experiment. 

 
FFD scheme, even the power utilization is less than the default scheme, a 

remarkable amount of power is wasted since many idle PMs are kept alive 

when the workload fluctuates. The reason for this issue is that, without the 

capability of prediction, the FFD is unable to appropriately perform the bin-

packing algorithm in ma-jority of times. Another reason is the obsolete 

status information of underlying computing facilities. Oppositely, the 

proposed ap-proach, namely E2M, can save much better energy by 

equipping with the prediction on resource utilization and the optimization 

on the pool of active PMs. There is also another additional aspect of this 

achievement, which is the gap between E2M and the optimal scheme. 

Apparently, the optimal scheme has better energy savings regardless the 

system performance. Because the quality of service is totally not considered 

in this scheme, this optimal solution brings to the infrastructure too much 

overhead and tends to frequently violate the SLA.  
For more detail on quantitatively measuring the energy savings, our 

proposal can obtain the reduction of power consumption up to 
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Figure 3: Power consumption evaluation of the proposed 

method in Google traces experiment (lower is better). 
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Figure 4: Power consumption vs average latency in Google 

traces experiment. 
 
 

 
34.89% compared with the default scheme. The detail evaluation can be 

found in Figure 4. This achievement can be taken into account as a 

significant improvement. As a side note, the optimal scheme can only 

achieve up to 37.08%. It means that the proposed method can be seen as 

a near-optimal solution. Also in Figure 4, our method suffers around 

54.72% less than the optimal solution in term of average latency of 

system scheduling. Therefore, the quality of services can be preserved in 

an acceptable level. 
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6 CONCLUSION  
In this research, a near-optimal energy efficient solution is proposed based 

on the utilization prediction of infrastructure and the power consumption 

optimization. By engaging the mentioned techniques, our proposal can 

create suitable VM migration strategy. Based on this migration scheme, the 

cloud orchestrator can issue more rea-sonable VMs consolidation and 

condense near-optimal the pool of active PMs. As a result, a significant 

reduction in energy con-sumption can be achieved while still preserving the 

SLA. In future, we plan to integrate the heuristics algorithm to build a 

knowledge base that might help to reduce the overhead when performing 

the prediction. This integration might boost up the prediction part to even 

more quickly create the VM migrating instruction. 
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