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Abstract - In most of the digital signal processors, multiplier 
is used as a key component. So, the performance of the system 
depends on the throughput of the multiplier. Now a days, relia-
bility is an important design concern in advanced technology 
nodes. Performance of the system is significantly affected by 
the aging of transistor and the system may fail due to delay 
problems in long term. The impact of aging getting higher 
with the scaling of transistor. One of the main cause for aging 
in transistor is  Bias Temperature Instability (BTI). Due to this 
effect threshold voltage of the transistor increases over time 
and it reduces the multiplier speed. Over-design approaches 
can be used to reduce the aging effect, but these may cause 
power and area inefficiency. Fixed latency designs have high 
chance of timing violations. So, a multiplier with variable 
latency is used for reliable operation under BTI effects. An 
Adaptive Hold Logic (AHL) is used for the proper se- lection of 
cycle period and an Error Detection Correction Pulsed Latch 
(ECPL) is used for the detection of timing errors. In modular 
arithmetic computation, Montgomery multiplication 
algorithm is used to perform faster modular multiplication 
which was introduced by Peter L Montgomery In 1985. 
  
Key Words: Bias Temperature Instability, Razor Flipflop, 
Error Detection and Correction Pulsed Latch, Adaptive Hold 
Logic, Montgomery Multiplication Algorithm.  

1. INTRODUCTION 

Digital multipliers square measure among the foremost 
vital arithmetic practical units 
in several applications, like the 
Fourier remodel, distinct trigonometric function 
transforms, and digital filtering. The turnout of those 
applications depends on multipliers, and if the 
multipliers square measure too slow, the performance of 
entire circuits are reduced moreover, negative bias 
temperature instability (NBTI) happens once a pMOS 
semiconductor is beneath negative bias (Vgs = -Vdd), 
during this state of affairs, the interaction between 
inversion layer holes and hydrogen-passivated Si atoms 
breaks the Si–H bond generated throughout the chemical 

reaction method, generating H or H2 molecules. 
Once these molecules diffuse away, interface traps square 
measure left. The accumulated interface traps between  
semiconducting material and therefore the gate chemical 

compound interface lead to multiplied threshold voltage 
(Vth), reducing the circuit shift speed. Once the biased 
voltage is removed, the reverse reaction happens, 
reducing the NBTI impact.  

However, the reverse reaction doesn't eliminate all the 
interface traps generated throughout the strain section, 
and Vth is multiplied within the future. Hence, it's vital to 
style a reliable superior number. The corresponding 
impact on associate nMOS semi-conductor is Positive Bias 
Temperature Instability(PBTI) that happens once 
associate nMOS semi -conductor is beneath positive bias. 
Compared with the NBTI impact, the PBTI impact is 
way smaller on oxide/polygate transistors, and thus is 
sometimes un-heeded unheeded. However, for high-
k/metal-gate nMOS transistors with important charge 
housing, the PBTI impact will not be unheeded. In fact, 
it's been shown that the PBTI impact is additional 
important than the NBTI impact on32-nm high-k/metal-
gate processes. A traditional method to mitigate the aging 
effect is overdesign including such things as guard-
banding and gate oversizing; however, this approach can 
be very pessimistic and area and power inefficient. To 
avoid this drawback, several NBTI-aware methodologies 
are planned. An NBTI-aware technology mapping 
technique was proposed in to guarantee the performance 
of the circuit during its life time. In, an NBTI-aware sleep 
transistor was designed to reduce the aging effects on 
pMOS sleep-transistors, and the lifetime stability of the 
power-gated circuits under consideration was improved. 
Wu and Marculescu planned a joint logic restructuring 
andpin rearrangement technique,that relies on detection
useful symmetries and semiconductor device stacking  
effects.They additionally planned AN NBTI improvement 
technique that thought of path sensitization. In and, 
dynamic voltage scaling and body-basing techniques 
were proposed to reduce power or extend circuit life.  
These techniques, however, need circuit modification 
or don't offer improvement of specific circuits. 
Traditional circuits use crucial path delay because 
the overall circuit clock cycle so as to perform properly. 
However, the chance that the crucial ways are activated is 
low. 

In most cases, the trail delay is shorter than the crucial 
path. For these noncritical paths, using the critical path 
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delay as the overall cycle period will result in significant 
timing waste. Hence, the variable latency style was 
planned to cut back the temporal order waste of ancient 
circuits the variable-latency style divides the circuit 
into 2 parts: 1) shorter ways and 2) longer ways. Shorter 
ways will execute properly in one cycle, whereas longer 
paths need two cycles to execute. When shorter ways 
are activated oft, the average latency of variable-latency 
designs is better than that of traditional designs.  For 
example, many variable-latency adders were planned 
mistreatment  the speculation technique with error 
detection and recovery. For modular arithmetic 
computation, Montgomery modular multiplication is 
performed for faster modular multiplication. 
 

2. PRELIMINARIES 

2.1 Column-Bypass Multiplier 
 
A column-bypassing multiplier factor is Associate in 
Nursing improvement on the conventional array 
multiplier factor (AM).Fig 1shows a 4×4 column-
bypassing multiplier. Supposing the inputs are10102 * 
11112, it can be seen that for the FAs in the first and 
third diagonals, two of the three input bits are 0: the 
carry bit from its higher right solfa syllable and therefore 
the partial product aibi. Therefore, the output of the 
adders in each diagonals is zero, and the output sum bit is 
simply equal to the third bit, which is the sum output of  
its higher solfa syllable. Hence, the solfa syllable is 
changed to feature 2 tri state gates and one electronic 
device. 
 
The multiplicand bit ai can be used as the selector of the 
multiplexer to decide the output of the FA, and ai can also 
be used as the selector of the tri state gate to turn off the 
input path of the FA. If ai is 0, the inputs of FA are disabled, 
and the sum bit of the current FA is equal to the submit from 
its upper FA, thus reducing the power consumption of the 
multiplier. If ai is 1, the normal sum result is selected. 
 

 
 

Fig-1: Column Bypass Multiplier 

 

 
2.2 Row-Bypassing Multiplier:  
 
A low-power row-bypassing number is additionally 
projected to scale back the activity power of the AM. 
The operation of the low-power row-bypassing number is 
comparable to it of the low-power column-bypassing 
number, however the selector of the multiplexers and 
also the tri state gates use the multiplicator. Fig.2 is a 4 × 
4 row-bypassing multiplier. Each input is connected 
to AN solfa syllable through a tri state gate.  
 
When the inputs are 11112*10012, the two inputs in the 
first and second rows are 0 for FAs. Because b1 is 0, the 
multiplexers in the first row select aib0 as the sum bit 
and select 0 as the carry bit.  
 
The inputs square measure bypassed to FAs within 
the second rows and the tristate gates shut down the 
input ways to the FAs. Therefore, no switch activities 
occur within the first-row FAs; in return power consump  
-tion is reduced. Similarly, because b2 is 0, no switching 
activities will occur in the second-row FAs. However, the 
FAs must be active in the third row because the b3 is not 
zero 

 

Fig-2: Row Bypass Multiplier 
 

2.3 Variable Latency Design 

Variable Latency Unit 

Average Case Computation 

Average-case computation, as the name suggests, refers to 
those computations that occur more frequently than others, 
and also get completed within average delays, considering 
the delay required by all the computations the circuit 
performs. Within the synchronous paradigm, two classes of 
techniques have been proposed for exploiting the average-
case computations: variable-latency units, and error 
detection-correction units. Our work in this chapter focuses 
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on the design of BTI-resilient circuits using variable latency 
units (VLUs). 
Unlike conventional combinational circuits that complete 
operations within one clock cycle, VLUs allow the 
computation of the combinational circuit to be completed in 
a variable, integer, number of clock cycles. By allowing high-
probability operations to complete in a single cycle, but 
allowing rarer events to use multiple (typically two) cycles, 
the average cycle time may be shorter than that of the 
conventional implementation, implying that the circuit 
throughput for a VLU may be significantly larger. For 
example, Fig.4 is associate 8-bit variable-latency ripple 
carry adder (RCA). 
 
A8–A1, B8–B1 are 8-bit inputs, and S8–S1 are Fig. 4. 8-bit 
RCA with a hold logic circuit. Fig.5 Path delay distribution  
of AM, column, and row-bypassing multipliers for 65 536 
input patterns. The outputs. Supposing the delay for each 
FA is one, and the maximum delay for the adder is 8.  
Through simulation, it can be determined that the 
possibility of the carry propagation delay being longer 
than 5 is low.  
 
Hence, the cycle amount is about to five, and hold logic 
is other to inform the system whether or not the 
adder will complete the operation at intervals a cycle 
amount. Fig.3 additionally shows the hold logic  
that's utilized in this circuit. 
 
The operate of the hold logic is (A4 XOR B4)(A5 XOR 
B5).If the output of the hold logic is zero, i.e., A4 = B4 or 
A5 = B5, either the fourth or the fifth adder will not  
produce a carryout. Hence, the utmost delay are going to 
be but one cycle amount. 
 
When the hold logic output is one, this suggests that the 
input can activate methods longer than five, that the hold 
logic notifies the system that this operation needs 2  
cycles to finish. 
 
Two cycles are sufficient for the longest path to complete 
(5 * 2 is larger than 8).The performance improvement of 
the variable-latency design can be calculated as follows: 
if the possibility of every input being one is zero. 5, the  
possibility of (A4 XOR B4)(A5 XOR B5) being 1 is 0.25.  
 
The average latency for the variable latency style is zero. 
75∗5+0.25∗10 = 6.25. Compared with the easy fixed-
latency RCA, which has an average latency of 8, the 
variable-latency design can achieve a 28% performance 
improvement. Fig.4 shows the path delay distribution of a 
16 × 16 AM and for both a traditional column-bypassing 
and traditional row-bypassing multiplier with 65536 
randomly chosen input patterns. 
 
All multipliers execute operations on a set cycle amount. 

The maximum path delay is 1.32 ns for the AM,1.88 ns for 
the column-bypassing multiplier, and 1.82 ns for the row-
bypassing multiplier. It can be seen that for the AM, quite 
ninety eight of the ways have a delay of <0.7ns. Moreover,  
more than 93% and 98% of the paths in the FLCB and  
row-bypassing multipliers present a delay of <0.9 ns, 
respectively. Hence, using the maximum path delay for all 
paths will cause significant timing waste for shorter 
paths, and redesigning the multiplier with variable 
latency can improve their performance. Another key 
observation is that the path delay for an operation is 
strongly tied to the number of zeros in the multiplicands 
in the column-bypassing multiplier. 
 

 
 

Fig-3: 8-bit RCA with Hold logic circuit 
 

 
 

Fig-4: Path Delay Distribution of AM, Column and Row 
bypassing multipliers for 65536 input patterns 

 

3. AGING AWARE RELIABLE MULTIPLIER  

 
Fig-5: Aging Aware Reliable Multiplier 
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Fig 5 is an aging-aware multiplier factor design, which 
incorporates 2 m-bit inputs (m may be a positive 
number), one 2m-bit output, one column- or row-
bypassing multiplier factor, 2m 1-bit Razor flip-
flops Associate in Nursing d an AHL circuit. The inputs of  
row-bypassing multiplier factor square measure the 
symbols within the parentheses. In the planned design, 
the column- and row-bypassing multipliers will 
be examined by the amount of zeros in either the number 
or multiplicator to predict whether or not the operation 
needs one cycle or two cycles to complete. When input 
patterns square measure random, the amount of zeros 
and ones within the multiplicator and number follows a 
traditional distribution. Therefore, mistreatment the 
amount of zeros or ones because the judgement criteria  
leads to similar outcomes. 
 
Hence, the 2 aging-aware multipliers will be enforced 
mistreatment similar design and therefore the distinction  
between the 2 bypassing multipliers lies within the input 
signals of the AHL. According to the bypassing choice 
within the column or row-bypassing multiplier, the input 
signal of the AHL in the architecture with the column-
bypassing multiplier is the multiplicand, whereas that of 
the row-bypassing multiplier is the multiplicator. 
 

4. RAZOR FLIPFLOP 
 

 
Fig -6:Razor Flipflop 

 
Fig 6. is Razor flip-flops which are often accustomed sight 
whether or not temporal order violations occur before 
consecutive input pattern arrives. A 1-bit Razor flip-flop 
contains a main flip-flop, shadow latch, XOR gate, and mux. 
The main flip-flop catches the execution result for the mix 
circuit employing a traditional clock signal, and also the 
shadow latch catches the execution result employing a 
delayed clock signal, which is slower than the normal clock 
signal. If the barred little bit of the shadow latch is 
completely different from that of the most flip-flop, this 
suggests the trail delay of this operation exceeds the cycle 
amount, and the main flip-flop catches an incorrect result. If 
errors occur, the Razor flip-flop will set the error signal to 1 
to notify the system tore execute the operation and notify 

the AHL circuit that an error has occurred. We use Razor flip-
flops to sight whether or not Associate in Nursing operation 
that's thought of to be a one-cycle pattern will extremely end 
in a very cycle. 
 
If not, the operation is re-executed with two cycles. Although 
the re execution may seem costly, the overall cost is low 
because the re execution frequency is low. The AHL circuit is 
the key component in the aging-ware variable-latency 
multiplier. The AHL circuit contains an aging indicator, two 
judging blocks, one mux, and one D flip-flop.  
 
The aging indicator indicates whether or not the circuit has 
suffered vital performance degradation because of the aging 
result. The aging indicator is enforced in a very straight 
forward counter that counts the {amount the quantity} of 
errors over a precise amount of operations and is reset to 
zero at the tip of those operations.  
 
If the cycle amount is just too short, the column- or row-
bypassing multiplier factor isn't ready to complete these 
operations with success, inflicting temporal order violations. 
These temporal order violations are going to be caught by 
the Razor flip-flops, that generate error signals. 
 
If errors happen often and exceed a predefined threshold, it 
means the circuit has suffered significant timing degradation 
due to the aging effect, and the aging indicator will output 
signal 1; otherwise, it'll output zero to point the aging result 
remains not vital, and no actions square measure required. 
The first decision making block within the AHL circuit can 
output 1if the quantity of zeros within the number 
(multiplicator for the row-bypassing multiplier) is larger 
than n (n is a positive number, which will be discussed in 
Section IV), and these Cond judging block in the AHL circuit 
will output 1 if the number of zeros in the multiplicand 
(multiplicator) is larger than n + 1.  
 
They are each utilized to make your mind up whether or not 
an input pattern needs one or 2 cycles, however only 1 of 
them are chosen at a time. In the starting, the aging result 
isn't important, and the aging indicator produces 0, so the 
first judging block is used. After a amount of your time once 
the aging result becomes important, the second decision 
making block is chosen. Compared with the primary decision 
making block, the second decision making block permits a 
smaller range of patterns to become one-cycle patterns as a 
result of it needs a lot of zeros within the number 
(multiplicator). 
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5. ADAPTIVE HOLD LOGIC 

 
 

Fig-7:Adaptive Hold Logic 

 

Fig 7 is an Adaptive hold logic when an input pattern arrives, 
both judging blocks will decide whether the pattern requires 
one cycle or two cycles to complete and pass both results to 
the multiplexer. The multiplexer selects one of either result  
supported the output of the aging indicator. 
 
Then associate degree OR operation is performed between 
the results of the electronic device, and the Q signal is used 
to determine the input of the D flip-flop. 
 
When the pattern needs one cycle, the output of the 
multiplexer is 1. The !(gating) signal will become 1, and the 
and the input flip flops will latch new data in the next cycle. 
On the other hand, when the output of the multiplexer is 0, 
which means the input pattern requires two cycles to 
complete, the OR gate will output 0 to the D flip-flop. 
Therefore, the !(gating) signal are zero to disable the clock 
signal of the input flip-flops within the next cycle. 
 
Note that solely a cycle of the input flip-flop are disabled as a 
result of the D flip-flop can latch one within the next cycle. 
The overall flow of our planned design is as follows: once 
input patterns arrive, the column- or row-bypassing 
multiplier, and the AHL circuit execute simultaneously. 
 
According to the number of zeros in the multiplicand 
(multiplicator), the AHL circuit decides if the input patterns 
require one or two cycles. If the input pattern needs 2 cycles 
to complete, the AHL will output 0 to disable the clock signal 
of the flip-flops. Otherwise, the AHL can output one for 
traditional operations. When the column- or row-bypassing 
number finishes the operation, the result are passed to the 
Razor flip-flops. The Razor flip-flops check whether or not 
there's the trail delay temporal arrangement violation. 
 
If temporal arrangement violations occur, it suggests that the 
cycle amount isn't long enough for the present operation to 
complete which the execution results of the multiplier factor 
is wrong. Thus, the Razor flip-flops can output a slip to tell 
the system that the present operation must be re dead 
exploitation 2 cycles to make sure the operation is correct. 
In this situation, the extra re execution cycles caused by 
timing violation incurs a penalty to overall average latency.  

However, our planned AHL circuit will accurately predict 
whether or not the input patterns need one or 2 cycles in 
most cases. Only many input patterns might cause a 
temporal arrangement variation once the AHL circuit judges 
incorrectly. In this case, the extra re execution cycles did not 
produce significant timing degradation.  
 
In summary, our planned multiplier factor style has 3 key 
options. 
 
First, it is a variable-latency design that minimizes the timing 
waste of the noncritical paths.  
 
Second, it will give reliable operations even when the aging 
result happens. 
 
The Razor flip-flops discover the temporal arrangement 
violations and re execute the operations exploitation 2 
cycles. 
 
Finally, our design will regulate the share of one-cycle 
patterns to attenuate performance degradation thanks to the 
aging result. 
 
When the circuit is aged, and many errors occur, the AHL 
circuit uses the second judging block to decide if an input is 
one cycle or two cycles. 
 

6. MONTGOMERY ALGORITHM 
 
Montgomery multiplication could be a methodology for 
computing ab mod m for positive integers a, b, and m. 
1.It reduces execution time on a pc once there are an 
outsized range of multiplications to be through with 
constant modulus m, and with a tiny low range of 
multipliers. 
 
In specific, it's helpful for computing Associate in Nursing 
mod m for an outsized worth of n. The number of 
multiplications modulo m in such a computation is reduced 
to variety considerably but n by in turn squaring and 
multiplying in line with the pattern of the bits within the 
binary expression for n (“binary decomposition”). But it will 
still be an outsized enough range to be worthy rushing up if 
potential. 
 
The difficulty is within the reductions modulo m, which are, 
primarily, division operations, which are costly in execution 
time. If one defers the modulus operation to the top, then the 
product can grow to terribly massive numbers, which slows 
down the multiplications and also the final modulus 
operation. To use Montgomery multiplication, we tend to 
should have the multipliers a and b but the modulus m. 
We introduce another whole number r that should be larger 
than m, and that we should have gcd(r, m) = 1. 
The method, primarily, changes the reduction modulo m to a 
discount modulo r. sometimes r is chosen to be Associate in 
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Nursing integral power of two, therefore the reduction 
modulo r is just a masking operation; that's, retentive the 
lg(r) low-order bits of Associate in Nursing intermediate 
result, and discarding higher order bits. If r could be a power 
of two, we have a tendency to should have m odd, to satisfy 
the gcd demand. (Any odd worth from three to r 1 is 
suitable.)  
 
The method: 1. realize 2 integers 1 r and m such one. one  
  rr  millimetre this could be done by the extended gcd 
algorithmic program. there's a binary extended gcd 
algorithmic program that will no divisions, and that 
simplifies considerably once one argument (r) could be a 
power of two and also the different (m) is odd. This 
simplified version of the algorithmic program is given below   
(C perform xbinGCD). 

2. rework the multipliers to “Montgomery space” by 
multiplying them by r (a shift left operation if r could be a 
power of 2) and reducing the merchandise modulo m. That 
is, mod. mod , and b br m a ar m   These area unit pricey 
operations, however they're done just one occasion per 
multiplier factor, and that they aren't done on the 
intermediate product of a sequence of multiplications.  
 
3. Perform the Montgomery multiplication step. This 
operates on the remodeled quantities a and b, giving the 
merchandise of a and b in Montgomery area. That is, the 
result's abr mod m. The multiplication tm isn't too pricey as 
a result of the mod r implies that solely the low-order lg(r) 
bits of the merchandise want be created. If the calculations 
area unit performed to some mounted length w bits, with 2, 
w r  then the opposite 2 multiplications area unit of the 
shape w  w  2w bits and also the addition is of the shape 
2w + 2w  2w + one bits (it will overflow). once division by 
r (a shift), u is of length w + one bits. 4. Do the inverse 
transformation to convert the result to an ordinary integer: 
mod . ab  city 1 m allow us to currently derive step three 
on top of. We would like to reason u = abr mod m. A 64-bit 
Implementation. Here we have a tendency to take an in 
depth consider AN implementation of Montgomery 
multiplication for arguments up to the computer’s word size. 
For corporeality we have a tendency to take it to be sixty 
four bits. The modulus m can be as large as 2 1, 64  and a 
and b can be as large as m 1. We take 2. 64 r  this can be a 
65-bit variety, however it are often handled while not nice 
issue. 

Step 1: The GCD Operation Below could be a C operate for 
the binary extended gcd operation, simplified for the case 
within which its initial argument a could be a power of two 
and the second argument b is odd. It is a simplification of the 
rule obtainable on the net.  

Step 2: Transform the Multipliers we have a tendency to 
should reason a  ar mod m, and equally for b. Because 2 , 
sixty four r  there's no multiplication to try to. We should 
kind a 128-bit whole number that consists of a followed by 

sixty four 0-bits, and compute the remainder of division of 
that quantity by m. Some machines have an instruction for 
that. For different machines, the C operate shown below 
could also be used. This is the “hardware division” algorithm 
of Hacker’s Delight. Invoke it as follows, wherever the 
primary 2 arguments represent ar. All variables are 64-bit 
unsigned integers. abar = modul64(a, 0, m) 
 
Step 3: Montgomery Multiplication This step deals with 128-
bit integers, however no quite that. The computation t  ab is 
multiplying 2 64-bit unsigned integers, giving a 128-bit 
product. Some machines have an instruction for that. For 
alternative machines, the C operate below could also be 
used. 

Next, the subsequent expression should be evaluated:  

u  (t  (tmmod r)m)/r. 

Variable t could be a 128-bit unsigned number, and m could 
be a 64-bit unsigned number. 
Because of the “mod r,” only the low-order 64 bits of the 
product tm is needed.  
This means that the high-order half t is neglected, and sixty 
four  sixty four  64-bit multiplication is used. 
The subsequent multiplication by m should be sixty four  
sixty four  128-bit multiplication. 
 
The addition of t should be 128 + 128  129-bit addition. 
This can be through with 128 + 128  128-bit addition and 
one by one computing the carry, as shown within the code 
below (variable ov). This sum always ends in 64 0-bits, so 
the low-order part of the sum is computed only to produce a 
carry bit. Incidentally, if the low-order halves of the 
summands were better-known to be each nonzero, then the 
carry would be one, leading to a simplification. 
 
However, the summand summands are often zero if either a 
or b is zero. finally (for step 3), we tend to should perform 
the computation: if (u  m) then come u  m; else come u. 
Variable u could be a 65-bit number, in effect, as a result of 
the overflow mentioned on top of. however the ultimate 
results of the calculation could be a 64-bit number. If the 
addition of t overflowed, then actually u  m. 
 
Otherwise, u and m could also be compared as 64- bit 
integers. The subtraction are often a 64-bit operation, as a 
result of it's glorious that when the subtraction, the sixty 
fifth little bit of the distinction are zero. A C operate for these 
computations follows. 
 
Next, the subsequent expression should be evaluated: u  (t 
 (tmmod r)m)/r. Variable t could be a 128-bit unsigned 
number, and m could be a 64-bit unsigned number. as a 
result of the “mod r,” solely the low-order sixty four bits of 
the merchandise tm is required. This implies that the high-
order half t are often neglected, and sixty four  sixty four  
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64-bit multiplication are often used. The next multiplication 
by m should be sixty four  sixty four  128-bit 
multiplication. The addition of t should be 128 + 128  129-
bit addition. This may be through with 128 + 128  128-bit 
addition and severally computing the carry, as shown within 
the code below (variable ov). This add perpetually ends in 
sixty four 0-bits, therefore the low-order a part of the add is 
computed solely to supply a carry bit. Incidentally, if the low-
order halves of the summands were glorious to be each 
nonzero, then the carry would be one, leading to a 
simplification.  
 
However, the summands are often zero if either a or b is 
zero. finally (for step 3), we tend to should perform the 
computation: if (u  m) then come u  m; else come u. 
Variable u could be a 65-bit number, in effect, as a result of 
the overflow mentioned on top of. However the ultimate 
results of the calculation could be a 64-bit number.  
 
If the addition of t overflowed, then actually u  m. 
Otherwise, u and m could also be compared as 64- bit 
integers. The subtraction are often a 64-bit operation, as a 
result of it's glorious that when the subtraction, the sixty 
fifth little bit of the distinction are zero. AC operate for these 
computation follows. 
 
 
Step4: The Inverse Transformation we tend to should 
reason , mod metropolis 1 m that is that the product of a 
and b modulo m as normal integers. All variables area unit 
64-bit unsigned integers. The multiplication should be done 
mistreatment sixty four  sixty four  128-bit 
multiplication, and also the modulo operation should be 
done mistreatment 128 / sixty four  64-bit division 
(actually remaindering).  
 
64-bit division (actually remaindering).  
 

 

7. CONCLUSION 
 
This paper proposed an efficient multiplier design with AHL 

using Montgomery multiplication algorithm. The multiplier 

is able to adjust the AHL to mitigate the performance 

degradation because variable latency multipliers have less 

timing waste, but traditional multipliers need to consider the 

degradation caused by both BTI effect and electro migration 

and use the worst case delay as the cyclic period. In this 

purposed architecture we have shown that, AHL with 

Montgomery Multiplication Algorithm will decrease the 

delay and improves the performance compared with 

previous design. 

REFERENCES 
 

1. SaiLakshmy, et.al,” Performance Analysis of Aging- 
Aware Multiplier Using Various Adders”, 
International Conference on Communication and 
Signal Processing, April 6-8, 2016, India 

2. P.KamilaParveen,et.al.”Multiplier Design using 
MTCMOS with Adaptive Hold Logic” 2016 
International Conference on Advanced 
Communication Control and Computing 
Technologies (ICACCCT). 

3. Y. Cao. (2016). Predictive Technology Model (PTM) 
and   NBTI Model [Online]. Available: 
http://www.eas.asu.edu/∼ptm 

4. S. Zafaret al., “A comparative study of NBTI and 
PBTI   (charge trapping) in SiO2/HfO2 stacks with 
FUSI, TiN, Re gates,” in Proc. IEEE Symp. VLSI 
Technol. Dig. Tech. Papers, 2016, pp. 23–25 

 
 


