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Abstract—Secure document storage and retrieval is  one  of  the 
hottest research directions in cloud computing. Though  many 
searchable encryption schemes have been proposed, few    of them 
support efficient retrieval over  the  documents  which are encrypted 
based on their attributes. In this paper, a hier- archical attribute-based 
encryption scheme is first designed for   a document collection. A set 
of documents can be encrypted together if they share an integrated 
access structure. Compared with the ciphertext-policy attribute-based 
encryption (CP-ABE) schemes, both the ciphertext storage space and 
time costs of encryption/decryption are saved. Then, an index 
structure named attribute-based retrieval features (ARF) tree is 
constructed for the document collection based on the TF-IDF model 
and the documents’ attributes. A depth-first search algorithm for the 
ARF tree is designed to improve the  search  efficiency  which can be 
further improved by parallel computing. Except for the document 
collections, our scheme can be also applied to other datasets by 
modifying the ARF tree slightly. A thorough analysis and a series of 
experiments are performed to illustrate the security and efficiency of 
the proposed scheme. 

Index Terms—Cloud computing, document retrieval, file hier- 
archy, attribute-based encryption. 

 
I. INTRODUCTION 

ORE and more people and enterprises are motivated to 

outsource their local document management systems to 

the cloud which is a promising information technique (IT) to 

process the explosive expanding of data [1]. Cloud computing 

can collect and reorganize a huge amount of IT resources and 

apparently, the cloud servers can provide more secure, flexible, 

various, economic and personalized services compared with 

the local servers. Despite the advantages of cloud services, 

leaking the sensitive information, such as personal informa- 

tion, company financial data and government documents, to 

the public is a big threat to the data owners. In addition, to 

make full use of the data on the cloud, the data users need     

to access them flexibly and efficiently. Consequently, a huge 

challenge of outsourcing the data to the cloud is how to protect 

the confidentiality of the data properly while maintaining their 

searchability. 

An intuitive approach is encrypting the documents first and 

then outsourcing the encrypted documents to the cloud. A large 
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number of searchable document encryption schemes have been 

proposed in the literatures, including single keyword Boolean 

search schemes [2]–[6], single keyword ranked search schemes 

[7]–[9] and multi-keyword Boolean search schemes [10]– 

[14]. However, all these schemes cannot support effective, 

flexible and efficient document search because of their sim- 

ple functionalities. Privacy-preserving multi-keyword ranked 

document search schemes [15]–[18] are more promising and 

practical. However, all the documents in these schemes are 

organized by a coarse-grained access control  mechanism,  

i.e., each authorized data user can access all the encrypted 

documents. As an example, the whole IEEE Xplore Digital 

Library can be accessed by all the authorized organizations 

(e.g., the universities) at present and this cannot satisfy the 

data owners and users in the future. 

In this paper, a new situation is considered. A data user  

may want to access part of the library (e.g., computers and 

data related papers) and intuitively she wants to pay less 

money compared with the data users  who  want  to  access  

the whole library. In other words, in the document collection, 

each document can be accessed only by a set of specific data 

users. In this case, we need to design a fine-grained access 

control mechanism for the documents and it is more reasonable 

compared with the present method. 

To make the data users able to access part  of  IEEE  X- 

plore Digital Library on demands, a possible approach is 

encrypting the documents through attribute-based encryption 

(ABE) schemes [19], [20] before outsourcing them to the 

cloud. Meanwhile, the authorized data users are assigned with 

a set of attributes. A data user  can  decrypt  a  file  if  and  

only if her attributes match the file’s attributes. Recently, 

ciphertext-policy  attribute-based  encryption  (CP-ABE) [21]– 

[27] is a hot research area and it can provide fine-grained,   

one to many and flexible access control. In these schemes, 

each document is encrypted individually and their  encryp- 

tion efficiency can be improved by employing hierarchical 

attribute-based encryption schemes [28]–[31]. However, these 

schemes cannot be employed directly to solve our problem 

properly. First, most  existing schemes  focus on  encrypting   

a single access tree. However, it is impossible that all the 

documents in IEEE Xplore Digital Library share a single 

access tree and how to construct a set of optimized access 

trees for the document collection is a huge challenge. Second, 

in most existing schemes, when the documents are mapped    

to a set of shared access trees, the data users need to store a 

large number of secret keys which will be analyzed in Section 

IV.B. Apparently, this is a heavy burden for the data users 

especially for an extremely large document collection and how 
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to decrease the amount of secret keys for the data users is 

another challenge. Except for access control, document search 

efficiency is also a challenge for a large document collection. 

To our knowledge, most existing schemes cannot support time- 

efficient retrieval over the documents which are organized 

under attribute-based access control mechanism. 

To support the previously discussed service, we first design 

an algorithm to generate hierarchical access trees for the 

document collection. The proposed algorithm employs the 

greedy strategy to build the access trees incrementally and 

each access tree grows by continuously splitting the nodes in 

the tree. Then we design a ciphertext-policy attribute-based 

hierarchical document collection encryption scheme called 

CP-ABHE. In the proposed scheme, a set of documents can 

share a same integrated access tree and be encrypted together 

rather than being encrypted individually. In  this  way,  both 

the ciphertext storage space and time costs of the encryp- 

tion/decryption are saved. The security of the proposed scheme 

is proved theoretically and its effectiveness is also evaluated 

by simulation. 

To support accurate and efficient document search over the 

encrypted documents, a complicated index structure is then 

constructed for the document collection. We first map the 

documents to document vectors based on the TF-IDF model 

and, in addition, the attributes of the documents are  also  

taken into consideration. The similarity function between the 

document vectors is carefully designed and the vectors are 

organized based on their relative similarities in the ARF tree. 

Specifically, the similar vectors compose micro clusters which 

are then aggregated with each other to generate macro clusters 

until all the vectors belong to one cluster. The ARF vectors    

of the nodes in the tree are used to describe the inherent 

properties of the clusters represented by the nodes. At last,      

a depth-first search algorithm for the ARF tree is designed to 

guarantee both the search efficiency and accuracy. 

The main contributions of this paper are summarized as 

follows: 

A practical hierarchical attribute-based document collec- 

tion encryption scheme is proposed in which the documents 

are organized and controlled based on attributes. The proposed 

scheme can greatly decrease the storage and computing bur- 

dens. 

We map the documents to vectors in which both the 

keywords and associated attributes are considered. The ARF 

tree is proposed to organize the document vectors and support 

time-efficient document retrieval. In addition, a depth-first 

search algorithm is designed. 

A thorough simulation is performed to illustrate the securi- 

ty, efficiency and effectiveness of our scheme. Specifically, the 

proposed encryption scheme performs very well in both time 

and storage efficiency. In addition, our scheme also provides 

efficient and accurate document retrieval method. 

The rest of this paper is organized as follows: The related 

work is provided in Section II. In Section III, we state the prob- 

lem and present some preliminary techniques. The hierarchical 

attribute-based document encryption scheme is designed in 

Section IV and we present the time efficient document retrieval 

approach based on the ARF tree in Section V. The security 

and efficiency analysis of our scheme is provided in Section 

VI and we further evaluate the performance of the proposed 

approach by experiments in Section VII. At last, Section VIII 

concludes this paper. 

 
II. RELATED WORK 

Our approach is mainly related with two research fields of 

cloud computing, i.e., ciphertext-policy attribute-based docu- 

ment encryption and encrypted document retrieval. The related 

work in these two fields is provided in the following. 

Since Sahai et al. proposed the identity-based encryption 

(IBE) scheme [19], many ABE schemes [20], [32]–[34] have 

been proposed in which CP-ABE schemes [21]–[26], [35] are 

very promising because of their flexibility and scalability. In 

these CP-ABE schemes, the documents with different access 

structures need to be encrypted individually. To improve the 

encryption/decryption efficiency and scalability hierarchical 

attribute-based encryption has been widely researched [28]– 

[31] in which a set of documents may share a common access 

structure and can be encrypted together. Wang  et al. propose  

a hierarchical attribute-based encryption scheme named FH- 

CP-ABE [28] and have proved its security theoretically. An 

advantage of the scheme is that the data users can decrypt all 

the authorized documents by computing the secret key once. 

Therefore, both the time costs of encryption and decryption are 

saved. Wang et al. design a scheme named HABE [29] with 

the traits of high performance, fine-grained access control, 

scalability and full delegation. HABE is a combination of 

hierarchical identity-based encryption and CP-ABE. Wan et 

al. propose hierarchical attribute-set-based encryption scheme 

(HASBE) [30] by extending ciphertext-policy attribute-set- 

based encryption (ASBE) with  a  hierarchical  structure  of  

the data users. The HASBE scheme can be seamlessly in- 

corporated with a hierarchical structure of system users by 

applying a delegation algorithm to ASBE. Deng et al. extend 

ABE to CP-HABE [31] to support hierarchically distributing 

and delegating the secret keys which can be used in large 

organizations. Guo et al. [36] propose a resilient-leakage hier- 

archical attribute-based encryption scheme to defend against 

the auxiliary input leakage attack and the security of the 

scheme is detailedly analyzed. 

In addition to encrypting the documents, we also  attempt  

to search the encrypted document efficiently and accurately. 

Consequently, multi-keywords ranked document retrieval over 

encrypted document collections is also strongly related with 

our scheme. In [17], Cao et al. first propose a basic privacy- 

preserving multi-keyword ranked search scheme based on 

secure kNN algorithm [37]. A set of strict privacy requirements 

are established and then two schemes are proposed to improve 

the security and search experience. However, an apparent 

drawback of this scheme is that the search  efficiency  is  

linear with the cardinality of the document collection and 

consequently, it cannot be used to process extremely large 

document databases. Xia et al. [18] design a keyword balanced 

binary (KBB) tree to organize the document vectors and 

propose a “Greedy Depth-First Search” algorithm to improve 

the search efficiency. Moreover, the index tree can be updated 
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dynamically with an acceptable communication burden. How- 

ever, the document vectors are chaotically organized in the tree 

and the search efficiency can be further improved. Chen et al. 

[15] take the relationships of documents into consideration 

and a hierarchical-clustering-based index structure is designed 

to improve the search efficiency. In addition, a verification 

scheme is also integrated into their scheme to guarantee the 

correctness of the results. Though the index structure can 

obtain sub-linear search efficiency, it cannot return the accurate 

search results. Fu et al. [16] present a personalized multi- 

keyword ranked search scheme in  which  an  interest  model 

of the data users is integrated into the document retrieval 

system to support personalized search and improve users’ 

search experience. Specifically, the interest model of a data 

user is built based on her search history with the help of 

WordNet [38] in order to depict her behaviors in fine  grit 

level. However, this scheme cannot support dynamic update 

operations, because the document vectors are constructed 

based on the statistical information of all the documents in   

the collection. In  addition, though a  MDB-tree is employed  

to improve the search efficiency, the effectiveness of the tree 

is hard to predict. Li et al. [39] propose a  new  attribute-  

based encryption scheme (KSF-OABE) which can implement 

keyword search function. Though the design goal of KSF- 

OABE is some similar with our scheme, it cannot hierar- 

chically encrypt a document collection and support efficient 

multi-keyword document retrieval. 

 
III. PROBLEM STATEMENT AND PRELIMINARIES 

In this section, we state the problem and provide the related 

preliminary techniques. For convenience, some notations are 

first defined as follows: 

The plaintext document collection of N files, denoted 

as =  F1, F2, , FN  . Each document is treated as a  

sequence of keywords. Note that, each file Fi(1   i   N )  
has a unique identifier fi(1 i N ) in the whole document 
collection. 

• A−   The  attribute  dictionary,  denoted   as  A = 

{A1, A2, · · · , An}. Each document and data user is associated 

 

 
Fig. 1. System model 

 

 
document’s attribute set is a subset of the data user’s attribute 

set and this will be discussed in Section IV.A. 

The result of a search request, i.e., a set of encrypted 

documents which are the top-k relevant documents to the 

request under the constraint of a data user’s attributes. 

 
A. System Model and Design Goals 

In this paper, we attempt to design a fine-grained access 

control mechanism for the encrypted documents which also 

support efficient document search. The search result of a query 

is defined as the top-k relevant encrypted documents with 

legal attributes. The process of executing a document query is 

presented in Fig. 1 and it is mainly composed of five stages: 

1 The data owner is responsible for collecting and pre- 

processing the documents, and then obtains a set of high 

quality files . He sets the attributes for each document and 

then hierarchically encrypts the document collection based on 

attributes. In addition, an index vector is extracted from each 

document based on the document’s content and attributes. An 

index structure is constructed based on the index vectors  

of the documents. At last,  both  the  encrypted  documents 

and encrypted index structure are sent to the cloud server. The 

cloud server is responsible for storing the encrypted documents 

and executing document search based on the index structure. 

with a set of attributes in . 

The ciphertext of . In this paper, is symmetrically 

encrypted by content secret keys ck = ck1, ck2, , ckN , 

i.e.,    i = Ecki (Fi), i = 1, 2,      , N  and all the ciphertexts 

of the files compose . 

The index structure of . Each document is first 

mapped to a document vector and the vectors are organized   

in an ARF tree. 

The   keyword   dictionary, denoted  as = 

w1, w2, , wm , which is used to generated the document 

vectors and query vectors. 

que

•
ry

W
.  

Q−  A  subset  of  W ,  representing  the  keywords  in  a 

The  document  query  request  of  a  data  user. Each 

query contains multiple keywords Q which are employed to 

describe the interested documents. In addition, the attributes  

of the data user are also added into     to check the legality of   

a document. We  say that a document has legal attributes if the 

2 When a data user wants to search a set of interested 

documents, she first needs to register herself as an authorized 

data user at the certificate authority (CA) center. Then, if 

possible, several attributes selected from    are assigned to   

the data user by CA and a corresponding secret key associated 

with these attributes is sent to the data user. At last, the data 

user can send a query request to the cloud server. 

3 4 5 Once a query is received from a data user, the cloud 

server first communicates with the CA to check the legality of 

the data user and her attributes. If the data user is authorized, 

the cloud server searches the index structure to obtain the 

search result . Then the corresponding encrypted docu- 

ments are extracted from the encrypted document collection 

and sent to the data user. At last, the data user decrypts the 

documents by her secret key. Note that, the legality checking 

functionality is optional which can be employed to improve 

the security level of the whole system. With legality checking, 

the data users who didn’t register themselves in the CA center 
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cannot search the interested documents through the cloud 

server. However, the security of the system doesn’t greatly 

decrease without this functionality and it can be explained by 

the fact that the illegal data users cannot decrypt the documents 

returned by the cloud server because they don’t have the secret 

keys. 

In this paper, we assume that the CA center and the cloud 

server are trustable. Specifically, the CA center can distribute 

proper attributes to the data users and the cloud server can 

execute all the instructions honestly. We further assume that 

the data users are greedy and attempt to obtain as many 

plaintext files as possible. The data users try to collude with 

other users to decrypt the encrypted documents. We mainly 

restrict our attention to the process of encryption, document 

search and decryption, and the design goals of our scheme are 

presented as follows: 

Flexibility. The documents can be encrypted and decrypt- 

ed flexibly based on their attributes. In  general,  we  hope  

that the proposed scheme can get logarithmic encryption and 

decryption time efficiency. 

Compactability. For a data user with an attribute set, she 

needs to store only one secret key and the key can be used to 

decrypt all the documents that have legal attributes. 

Accuracy. The search results are accurate according to the 

data users’ search request. 

Efficiency. Our scheme aims to achieve logarithmic search 

efficiency over the encrypted files in general and at least sub- 

linear search efficiency in the worst case. 

Vj
′[i]  =  0.  The  attribute  vector  of  a  data  user  VQ

′   can  be 

constructed based on the user’s attributes in the similar manner. 
At last, we adopt the widely used “TF-IDF” measurement to 

calculate the relevance score between a document Fj and a 

query Q as follows: 

RScore(Fj, Q) = RScore(Vj, VQ) = Vj · VQ (2) 

It can be observed that the attribute vectors are not employed 

when calculating the relevance scores between a document and 

a query. This is reasonable considering that we need to return 

the legal documents of the query rather than the documents 

that have similar attributes with the query. 

 
C. Attribute-based Retrieval Feature and ARF Tree 

To improve the search efficiency of multi-keywords search 

process, a height-balanced index tree named ARF tree is built 

based on the document vectors. Specifically, the document 

vectors are organized as clusters according to their similarities. 

Each node in the tree represents a cluster composed of a   

set of document vectors or sub-clusters. An ARF vector is a 

quintuple summarization about a cluster. Given P documents 

Fj where j = 1, 2, , P , we assume that a cluster C 

comprises the document vectors of  Fj , i.e.,  Vj, Vj
′    where 

j = 1, 2,    , P . Then, the ARF vector of the cluster is defined 

as follows: ARF = (P, LS, SS, Vmax, Amin), where P is the 

number of document content vectors in the cluster, LS is the 

linear  sum  of  the  P  content  vectors,  i.e.,  LS  =  P   Vj, 
SS is the square sum of the P content vectors, i.e., SS = 

B. Document/Query Vector P 
j=
1 

V 
2
, Vmax denotes a vector consisting of m values which 

In this paper, the vector of a document is composed of two 

parts including a normalized content vector and an attribute 

vector. To build the content vector, each document is treated 

as a stream of keywords and we use the normalized term 

frequency (TF) vector to quantize the documents [40]. For 

each keyword wi in keyword dictionary , we denote the 

number of times that this keyword appears in the document 

Fj by fj,wi   and the TF value of keyword wi in Fj is defined 
as  TFj

′
,w    = ln(1 + fj,wi ).  We  construct  the  content  vector 

are calculated as follows: 

Vmax[i] = max(V1[i], V2[i], · · · , VP [i]), i = 1, 2, · · · , m (3) 

where Vj[i] is the i-th dimensional value of Vj, Amin is the 

common attribute set vector of the documents in the cluster 

and it can be calculated as follows: 

Amin[i] = V1
′[i] ∧ V2

′[i] ∧ · · · ∧ VP
′ [i], i = 1, 2, · · ·  , n (4) 

i 

of F as ′ , TF ′ , · · · ′
 where V ′[i] is the i-th dimensional value of V ′. For each pair 

1 2 m 

this vector by of bits in V ′ and V ′, logic operation “ ∧ ” returns 1 if both 

TFj,wi   = √ 
TFj

′
,wi , i = 1, 2, · · · , m (1) 

 
 

the two bits are 1; otherwise, “ ∧ ” returns 0. For each pair of 

bits in Vi
′ and Vj

′, logic operation “ ∨ ” returns 1 if either of 

 
Σwk ∈W (TFj

′
,w  )

2 

At last, the normalized content vector for Fj is denoted as 
Vj = (TFj,w1 , TFj,w2 , , TFj,wm ). The inverse document 

frequency (IDF) value of the keyword wi is defined as 

the two bits is 1; otherwise, “ ” returns 0. As an example, 
(1, 0, 0, 1)  (1, 1, 0, 0) = (1, 0, 0, 0); (1, 0, 0, 1)  (1, 1, 0, 0) = 
(1, 1, 0, 1). 

In this paper, a search request of a data user contains both   

a set of keywords WQ and a set of attributes SU associated IDFwi = ln( N ) where N is the number of documents wi with the data user. Only the documents, whose attributes are 
in the whole collection and Nwi   is the number of documents 

that contain the keyword wi. Further, the query vector of a 

query Q is represented as VQ = (q1, q2, · · · , qm) where qi is 

0, if wi ∈/ WQ; and qi is IDFwi , if wi ∈ WQ. 

matched with SU and contents are relevant with Q, are 

returned to the data user. As a consequence, both the content 

vectors and the attribute vectors of the documents should be 

taken into consideration in document search process. The sim- 
The attribute vector of Fj is denoted as Vj

′
 

= ilarity between a pair of documents Fi, Fj with content vectors 

(Vj
′[1], Vj

′[2], · · · , Vj
′[n]) which is constructed based on the Vi, Vj and attribute vectors Vi

′, Vj
′ is defined as follows: 

attribute dictionary A  =  {A1, A2, · · · , An}  as follows: If 
′ ′

 

Ai ∈ att(Fj), Vj
′[i] = 1, where the function att(Fj) returns Sim(F ,F )= γ·RScore(V ,V )+(1−γ)· 

Length(Vi ∧Vj )
 

  

(5) 

 i j
 Length(V ′∨V ′) 

 
 

 

) and further normalize 
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challenger outputs a random 5-tuple (g, A = ga, B = gb, C = 

gc, T = e(g, g)t). The adversary must then output a guess v′ 
of v. 

An adversary, , has at least an ε advantage in solving the 

DBDH problem if 
a b c abc a   b   c t 

|P r[B(g,g ,g ,g ,e(g,g) )=1]−P r[B(g,g ,g ,g ,e(g,g) )=1]|≥2ε 
 
 

 
Fig. 2. Assumption of access control mechanism 

 

 

where 0 γ 1 and RScore(Vi, Vj) is the relevance score 

between the content vectors of the two documents and it is 

calculated as: 

where the probability is over the randomly chosen a, b, c, t and 

the  random  bits consumed by . For the convenience of ex- 

pression,  we denote that BDH = (g, ga, gb, gc, e(g, g)abc) 

and BDH = (g, ga, gb, gc, e(g, g)t) . 

Definition 1: The DBDH assumption holds if no proba- 

bilistic polynomial-time adversary has at least ε advantage in 

solving the above game. 

RScore(Vi, Vj) = Vi · Vj (6) 

γ is a preset parameter to adjust the importance degrees of 

document vectors and attribute vectors, Length(V ′) returns 

the number of non-zero elements in vector V ′. Based on an 
ARF vector, the centroid of a cluster C can be easily calculated 

as: 

c = LS/P (7) 

and the similarity between cluster C and a document Fj is 

defined as: 
Length(Amin∧Vj

′) 
 

 

E. Selective-Set Security Game 

In this paper, we employ the Selective-Set Security Game 

[21], [28], [41] to prove our scheme’s security. The game is 

composed of six phases and they are presented as follows. 

Init. The adversary declares an access tree with a set of 

attributes S that he wants to be challenged upon. 

Setup. The challenger runs the Setup algorithm presented 

in Section IV to generate the public parameters which are 

provided to the adversary. 

Query Phase 1. The adversary is allowed to issue queries to 

obtain the secret keys of any access structure A∗ with attribute 

Sim(C,Fj)= γ ·RScore(c,Vj)+(1−γ)·
Length(A ∨V ′) 

(8) set S′, where S ¢ S′. The secret keys are generated by the 
min j 

where 0 ≤ γ ≤ 1 and RScore(c, Vj) is calculated as: 

RScore(c, Vj) = c · Vj (9) 

Further, the radius of cluster C is defined as follows: 
 

 

R = ΣP    (Vj − c)2/P (10) 

and it also can be calculated by the ARF vector as follows: 
 

R = (SS − LS2/P )/P (11) 

Theorem  1  (ARF  Additivity  Theorem)  :   If   we  

merge  two   disjoint   clusters   with   ARF   vectors:   

ARF1 = (P1, LS1, SS1, Vmax1, Amin1), ARF2 = 

(P2, LS2, SS2, Vmax2, Amin2), the ARF vector of the 
combined cluster is: 

ARF = ARF1 + ARF2 

=  (P  + P , LS  + LS , SS  + SS , V , A ) 

challenger through the KeyGen(MSK, S′) algorithm. 
Challenge. The adversary provides two different messages 

M0 and M1 with equal length to the challenger. The challenger 

randomly flips a coin µ  0, 1  and  encrypts  Mµ  with 

attribute set S. At last the encrypted message is sent to the 
adversary. 

Query phase 2. The query phase 1 is repeated. 

Guess. Based on the obtained information, the adversary  

output a guess µ′ of µ. 
We  say that our scheme is secure if all the polynomial  time 

adversaries have at most a negligible advantage in the game, 

where the advantage of the adversary is defined as |Pr(µ′ = 
µ) −   |. Otherwise, we say that the adversary wins the game. 

IV. HIERARCHICAL ATTRIBUTE-BASED DOCUMENT 

ENCRYPTION 

A. Monotone Hierarchical Access Tree 

Let A = {A1, A2, · · · , An} be a set of attributes. A 

1 2 1 2 1 2 max min collection A ⊆ 2A is monotone: Given ∀B, C, if B ∈ A 

where Vmax[i]=max(Vmax1[i],Vmax2[i]),Amin=Amin1 Amin2. 

Proof : The proof consists of straightforward algebra. 

 
D. DBDH Assumption 

Let G0, G1 be two groups of prime order p and g is a 

generator of G0. The operator e is a bilinear map between G0 

and G1 as specified in Section IV.B.  The challenger chooses  

a, b, c, t Zp at random. Then the challenger flips a fair binary 
coin v and if v = 1,  it  generates  a  BDH  5-tuple  (g, A = 
ga, B = gb, C = gc, T = e(g, g)abc); otherwise, if v = 0, the 

and B C, then C A. A monotone access structure of a 
document is a monotone collection A comprised of non-empty 

subsets of   , i.e., A   2A   . The sets in A are called   
authorized sets and the sets not in A are called unauthorized 
sets. In this paper, we restrict our attention to monotone access 

structure which is practical considering the characteristics of 

the problem stated previously. 

In this paper, we assume that a file associated with several 

attributes can be only accessed by the data users who possess 

all the basic attributes of the file. As an example shown in  

Fig. 2, the whole document set is divided into three categories 
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Algorithm 1 BuildingAccessStructure. 

 

Input: Document collection F = {F1, F2,· · ·, FN } with 

attribute sets {att(F1), att(F2),· · ·, att(FN)} 
Output: A set of access trees ST 

1: Sort the files in F in descending order based on the number of 
their attributes and obtain F

′ 

= {F 
′ 

, F 
′ 

, · · · , F 
′ 

}; 

 

 

 

(a) (b) 

 

Fig. 3. Examples of access trees. 

 

 

including computer, network and data related documents. 

Some documents may own two or three attributes such as the 

documents in region A, B, C and D. Under our assumption, 

the crossing region A can be accessed  by  the  data  users  

who own all the three roles of computer researcher, network 

researcher and data researcher; region  B  can  be  accessed  

by the data users who own the roles of data and computer 

researcher; region C can be accessed by the data users who 

own the roles of data and network researcher; region D can  

be accessed by the data users who own the roles of network 

and computer researcher. Apparently, under our assumption, 

the access structure of a document is monotone. Take region  

B as an example, a data user who owns the attribute of data 

and computer researcher can access B and then any other data 

users who have at least these two attributes can also access 

region B. 

Let   be a monotone hierarchical access tree representing   

an integrated access structure for a set of documents. The 

collection of all the access trees is called the access structure 

of the whole document collection. In this paper, each non-  

leaf node of the tree represents a threshold “AND” gate and 

associates with a set of attributes which are represented by  

the leaf nodes. For convenience, some functions are defined  

as follows. The number of the child nodes of  a  non-leaf  

node x is denoted as numx. The function att(x) denotes the 

associated attributes with the node x and in addition, att(Fi) 

also returns the attribute set associated with document Fi. Each 

node in the tree is assigned with a numerical identifier and the 

function index(x) returns the identifier of node x. In addition, 

index(Fi) returns the identifier of Fi. Note that, each non-leaf 

node has a unique numerical identifier and the leaf nodes that 

represent the same attribute in different access trees share a 

same numerical identifier. Each node in an access tree may 

contain some files identifiers and the corresponding files will 

be encrypted by this node. The function file(x) return the file 

identifiers contained in node x. 

We  say that node Y  in the access tree   matches a set    

of attributes S if and only if the attribute set of Y  equals  

to S. As shown in Fig. 3(a), Y  matches S if and only if     

S =   A1, A2, A3   and we denotes it as   Y (S) = 0. If there 

is no node in the tree can match S, we check whether a node 

in the tree can cover S. We say that node X covers S if X 

cannot match S and the leaf child nodes of X compose a 

superset of S. We denote TX (S) = 1 if node X covers S. As 

shown in Fig. 3(a), node Y covers S if S = {A1, A2} and 

1 2 N 

2: ST = null; 
3: for i = 1 : N do 

4: S = att(F 
′ 

); 
5: Scan the access trees in order; 
6: for the scanned  access tree in S do 

7: if node Y in matches S, i.e., Y (S) = 0 then 
8: Insert the identifier of Fi

′ into node Y ; 
9: break; 

10: else if node X in covers S, i.e., X (S) = 1 then 
11: Build a new node Z and let the created node Z be the 

child of X, and further the leaf nodes associated with S 
are inserted to Z; meanwhile, the leaf nodes are deleted 
from X; 

12: Insert the identifier of Fi
′ into the new node Z; 

13: break; 
14: end if 
15: end for 

16: if the identifier of Fi
′ has not been inserted into an access tree 

then 
17: Build a new access tree for Fi

′ based on its attributes and 
insert the identifier of Fi

′ to the root node; 
18: Insert the tree to ST ; 
19: end if 

20: end for 

 
 

 
 

node X covers S if S = {A4, A5, A6}. 

We construct the access structure of a document collection 

in an incremental way and an access tree is constructed by 

continuously splitting the tree in a top-down manner. In the 

initial, we sort the documents in decent order based on the 

number of their attributes. Apparently, the attribute set of the 

first document must be a root  node  of  an  access  tree and 

the identifier of the document is inserted to the root node. 

Given a set of access trees, we discuss how to insert a new 

document Fi’s identifier into them. The attribute set of the new 

document att(Fi) can be divided into three categories, i.e., 

being matched by a node in the access trees, being covered   

by a node in the access trees or neither being matched or 

covered by a node in the access trees. We first need to scan  

the access trees until finding a node that matches att(Fi). If 

the node exists, the identifier of the new document index(Fi) 

is inserted to the node. Otherwise, we need to rescan the access 

trees until find a node X that can cover att(Fi). If the node 

exists, a new node Z is built in the tree to match att(Fi)      

and insert index(Fi) into Z. Specifically, node Z is inserted  

to the access tree as a child node of X and the leaf nodes 

related with att(Fi) is inserted into node Z. Meanwhile, we 

need to delete the leaf nodes from node X. As an example,     

if we insert A4, A5 into the tree presented in Fig. 3(a), the 

updated access tree is shown in Fig. 3(b). At last, if att(Fi) 
neither is matched or covered by a node in the trees, we build a 

new access tree for Fi and insert index(Fi) into the root node. 

The above process is iterated until all the document identifiers 

are inserted into the access trees. All the access trees compose 

the access structure of the whole document collection. 
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Fig. 4. The flow chart of document encryption and decryption 

 

 
The pseudo-code of incrementally generating the hierarchi- 

cal access trees for a document collection is presented in 

Algorithm 1. Based on Algorithm 1, a set of integrated access 

trees are constructed for the documents. Note that, all the 

nodes in an access tree compose a monotone access structure 

and each access tree contains several document identifiers. All 

the documents in a tree can be encrypted together, which will 

be discussed in Section IV.B. The identifier of the node x in  

an access tree is assigned as follows: 

1. If x associated with attribute Ai is a leaf node, its 

numerical identifier is i. 

2. If x is a non-leaf node and associated with a set of ordered 

attributes Ai, Aj, , Ak  (i < j <  < k), its numerical 

identifier is ij k. 

In this way, each non-leaf node in the access structure has a 

unique identifier and apparently the leaf nodes associated with 

a same attribute share a same identifier. 

 
B. Hierarchical Document Encryption 

We first describe the system model of hierarchical attribute- 

based document encryption scheme as shown in Fig. 4.   

The data owner first selects a set of content keys ck  =   

ck1, ck2, , ckN  which are used to encrypt the documents 

in symmetrically. Then, the content keys are hierarchically 

encrypted by the attributes assigned by the data owner. The 

encrypted documents, access structure and encrypted content 

keys are outsourced to the cloud server. In addition, the index 

structure of the document collection is also stored in the cloud 

server to support document search and it will be discussed in 

Section V. Once the encrypted search results are sent to the 

data users, they decrypt the content keys by their secret keys 

and further decrypt the documents based on the decrypted 

content keys. In the following, we mainly discuss how to 

In addition, G0 is a bilinear group if the group operations 

in G0 and the bilinear map e : G0  G0  G1  are  both 

efficiently computable. The Lagrange Coefficient    i,S for   
i Zp and a set, S, of elements in Zp is defined as i,S(x) = 

 x−j 
. In addition, a hash function H : 0, 1 ∗ 

is employed to map the string attributes to a random group 

element in G0. 

The detailed process of encrypting the documents is pre- 

sented in the following: 

Setup. Each document in is assigned with a set of 

attributes and the access structure of the document collection 

is constructed based on Algorithm 1. A set of content keys 

ck =  ck1, ck2,  , ckN  are randomly selected for the files 

in which are used to encrypt the files symmetrically. Then 

the setup algorithm chooses a bilinear group G0 with g as a 

generator, a bilinear map e : G0 × G0 → G1 and two 

random numbers α, β ∈ Zp. The public key is published 

as: 

PK = (G0, g, h = gβ, e(g, g)α) 

and the master secret key MSK is (β, gα). 

Encrypt(PK, ck, ST ). For each attribute Ai in , we first 
randomly select a unique secret number si  Zp. si  Zp. Then 
we choose a secret number skx for each node x in the access 

trees. In each access tree, these secret numbers for the nodes 

are chosen in a bottom-up manner, starting from the leaf nodes 

to the root node. The number skx of the leaf node x associated 

with attribute Ai is set as si. Then for the non-leaf node x with 

a set of child nodes Sx, the secret number skx is computed 

as  skx =    z   Sx  
skz    i,S

x
′     (index(x))  where  i = index(z), 

Sx
′ =  index(z), z    Sx  , index(x) is the numerical identifier 

of node x. By iterating the above process, each node in the 

access structure can be assigned with a secret number. 

Then, the content keys are encrypted by the secret numbers 

of the nodes in the access trees. As presented in Algorithm    

1, each node x contains a set of file identifiers   fm, , fn 

which can be returned by file(x). We encrypt all the cor- 

responding  content  keys  {ckm,· · ·, ckn}   by  the  same secret 

number  skx. Specifically,  for  each access tree in  ST , let 
Y be the set of leaf nodes in    . All content keys related with 

are encrypted together and the ciphertext is constructed as 

follows: 

CT  =  (T , ∀x   ∈  T , fi  ∈   file(x)   :   Cx
∗   =  gskx , Ci  = 

cki · e(g, g)α·skx ,∀y ∈ Y  : Cy = hsky , Cy
′ = H(att(y))sky) 

Note that, several leaf nodes y1, y2, · · · , yd of different access 

trees T1, T2, · · · , Td may share a same attribute Ai and in this 

case, Cy1 = Cy2 = · · · = Cyd = h , Cy = Cy2 
= · · · = 

encrypt the content keys in detail. Cy
′ 
d

 = H(Ai)si . Therefore, in the ciphertext of the whole 

We first introduce the conceptions of bilinear map and 

Lagrange interpolation which are involved  in  our  scheme. 

Let G0 and G1 be two multiplicative cyclic groups of prime 

order p. Let g be a generator of G0  and e be a bilinear map,   

e : G0 × G0 → G1 with the following properties: 

1. Bilinearity: For all u, v G0 and a, b Zp, e(ua, vb) = 
e(u, v)ab. 

2. Non-degeneracy: e(g, g)  = 1. 

3. Distributivity: For u, v, w G0 and a, b, c Zp, 

e(ua, vbwc) = e(ua, vb)e(ua, wc). 

document collection, only (i.e., the number of attributes) 

records of Cy and Cy
′  need to be stored. 

KeyGen(MSK, S). The key generation algorithm takes 

a set of attributes S as input and output a secret key that 

identifies the set. We first chose a random r Zp, and then 

random rj Zp for each attribute Aj S. Then the keys are 

computed as follows: 

SK =(D = gα  hr ,  Aj    S : Dj = gr  H(Aj)rj , Dj
′ = hrj ) 

Decrypt(CT, SK). We employ a recursive algorithm 

DecryptNode(CT, SK, x)  to  decrypt  the  content  keys. This 
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Fig. 5. Comparison of CP-ABE, FH-CP-ABE and our scheme 

 

 
algorithm takes a ciphertext CT, a private key SK which is 

associated with a set of attributes S, and a node x from as input. 

If the node x is a leaf node, let Ai = att(x), and if Ai S, 

the algorithm is defined as follows: 

 e(Di, Cx) 

 
Fig. 6. An ARF tree 

 

 
number s31, s32. In FH-CP-ABE, file F1, F2 share an access 

structure and they are encrypted together. File F3 is encrypted 

individually. In this case, attribute A1 is related with two 

secret number s11, s12. Attribute A2 is related with s2 and 

attribute 
DecryptNode(CT, SK, x) = e(D′ , C′ ) A3 is related with s31, s32. In our scheme, each attribute is 

i x related with only one secret number. 
e(gr · H(Ai)ri , hskx ) 

 
 

e(hri , H(Ai)skx ) 

e(gr , hskx )e(H(Ai)ri , hskx ) 
= 

e(hri , H(Ai)skx ) 

=  e(g, g)rβ·skx
 

If Ai / S, we define DecryptNode(CT, SK, x) = . 

When x is a non-leaf node, the algorithm is operated 

recursively. Specifically, it processes as follows: we denote 

the set of x’s children nodes by Sx. For each node z Sx, it 

calls DecryptNode(CT, SK, z) and stores the output as Fz. If 

at  least  one  Fz  =⊥,  the  function  DecryptNode(CT, SK, x) 

returns   ⊥.   Otherwise,   we   denote   i   =   index(z), Sx
′     = 

{index(z), z ∈ Sx} and compute 

 
V. EFFICIENT RETRIEVAL OVER ENCRYPTED DOCUMENT 

COLLECTION 

In this section, an efficient retrieval scheme over encrypted 

document collection is designed and we first describe the 

process of constructing the ARF tree. Then a depth-first 

searching algorithm of the ARF tree is designed and in 

addition, it can be operated in a parallel manner flexibly. 

Given  a  collection  of  documents  =   F1, F2,   , FN  , 

each document needs to be scanned for one time and the 

number of each keyword is recorded. Then a normalized 

vector for the document is generated based on the keyword 

dictionary as discussed in Section III.B. The attribute  

vector of a document can be built based on attribute dictionary 
△i,S

x
′  (index(x)) 

x z 

z∈Sx 

= (e(g, g)rβ·skz )△i,S
x
′  (index(x)) 

z∈Sx 

=  (e(g, g)rβ·Σz∈Sx skz·△i,S
x
′  (index(x)) 

=  e(g, g)rβ·skx
 

If a data user with a set of attributes S that satisfies the sub- 

tree    x,  the  data  user  can  calculate  A = Fx = e(g, g)rβ·skx 

and then each content key cki encrypted by node x with 

skx  can  be  decrypted  by  computing  Ci/(e(Cx
∗, D)/A)  = 

Ci/(e(gskx , gα    hr)/e(g, g)rβ·skx )  =  cki.  At  last,  all  the 
documents encrypted by cki can be decrypted. Otherwise, the 

data user cannot decrypt the documents. 

Note that, in the encryption phase, the secret numbers of  

the nodes are chosen in a bottom-up manner which is totally 

different from existing schemes such as CP-ABE and FH- CP-

ABE. An advantage of this manner is that all the same 

attributes in different access trees share a same secret number 

and this can significantly improve the flexibility of encryption, 

decryption and secret keys distribution. As an example shown 

in Fig. 5, three files F1, F2, F3 are associated with attribute sets 

A1, A2  ,  A1, A2, A3  and  A1, A3  ,  respectively.  In  CP- 

ABE, the three files are encrypted individually and attribute  

A1 is related with three random secret number s11, s12, s13, 

A2 is related with s21, s22, A3 is related with random secret 

and the associated attributes assigned by the data owner. 

Organizing the document vectors properly can significantly 

improve the search efficiency. In some encrypted document 

retrieval schemes [17], [18], the document content vectors are 

organized randomly and the search complexity is O(N ), where 

N is the number of documents. To improve search efficiency, 

in some other schemes [15], [16], the vectors are organized  

based on their relative similarities and they can obtain sub-  

linear search efficiency. However, the search accuracy cannot 

be guaranteed. In our scheme, the similarity between a pair   

of documents is calculated based on both the content vectors 

and attribute vectors. The proposed scheme can always obtain 

the accurate search results with at least a sub-linear search 

efficiency. 

For convenience sake, we first describe the structure of an 

ARF tree briefly. An ARF tree is presented in Fig. 6 and it  

can be observed that the ARF tree is a height-balanced multi- 

way tree. An ARF tree has three main parameters including 

branching factors K1, K2 and threshold T which are preset by 

the data owner.  A leaf node Li contains at most K1  document 
vectors and it is defined as follows: 

Li = (ARF, child1, · · · , childj), 1 ≤ j ≤ K1 

where ARF is the ARF vector of the cluster, childj is a 

pointer to the j-th document vector in the cluster. Each leaf  

node represents a micro cluster composed of a set of document 
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vectors. Each non-leaf node NLi contains at most K2 child 

nodes and it is defined as follows: 

 Algorithm  2 DepthFirstSearch.  

Input: an ARF tree with root r, a query vector VQ, an attribute 

vector VQ
′  of the data user 

NLi =(ARF, ARF1, child1, · · · , ARFj, childj), 1 ≤ j ≤ 

K2 

where ARF is the ARF vector of the whole cluster represented 

by NLi, ARFj is the ARF vector of the j-th sub-cluster and 

childj is a pointer to the child node representing the sub- 

cluster. Therefore, a non-leaf node represents a cluster made up 

of all the sub-clusters represented by its child nodes. Further, 

the cluster of a leaf node must satisfy a threshold requirement: 

the radius of the cluster which can be calculated by (11) has   

to be less than T . 

We construct the ARF tree in an incremental manner which 

Output: The most k relevant legal document vectors 

1:  u r; 
2: while u is not a leaf node do 
3: for all the child nodes v of node u do 
4: Calculate the relevance scores between v with VQ by 

RScore(v, VQ); 
5: Check whether the attribute set Av,min is covered by VQ

′  by 

comparing Length(Av,min VQ
′ ) and Length(Av,min); 

6: u the most relevant child node whose attributes are 
covered by VQ

′ ; 
7: end for 
8:  end while 
9: Select the most relevant k document vectors in the leaf node u 

is similar to the construction process of the CF tree [42]. The 

process of inserting a document Fj  with vector  Vj, Vj
′  into 

the ARF tree is presented as follows: 
• Identifying the appropriate leaf node: Starting from the 

whose attributes are covered by VQ
′ 

10: Stack.push(r); 
11: while Stack is not empty do 
12: u ← Stack.pop(); 

and construct RList; 

root, Fj recursively descents the ARF tree by choosing the 

most similar child node according to the similarity scores 

between Fj and the sub-clusters as defined in (8) until it 

reaches a leaf node. 

Modifying the leaf node: When Fj reaches a leaf node 

Li, it tests whether Li can “absorb” Vj, Vj
′ without violating 

the constraints of K1  and T . If so,  Vj, Vj
′  is inserted into 

Li and the ARF vector of Li is updated based on Theorem 1 
as discussed in Section III.C. If not, we must split Li to two 

leaf nodes. Node splitting  is done by choosing the farthest  

pair of document vectors based on (5) as seeds, and then 

redistributing the remaining document vectors based on the 

closest criteria. The ARF vectors of the two new leaf nodes 

need to be recalculated. 

• Modifying the path from the root node to the leaf node: 

13: if the node u is not a leaf node then 
14: if RScore(Vu,max, VQ) > kthScore and 

Length(Au,min VQ
′ ) = Length(Au,min) then 

15: Sort the child nodes of u in ascent order based on the 
relevant scores with VQ whose attribute sets are covered 
by VQ

′ ; 
16: Push the children of u into Stack in order, i.e., the most 

relevant child is latest inserted into Stack; 
17: end if 
18: else 
19: Calculate the relevance scores between the document vec- 

tors in the leaf node with VQ and compare their attributes 
with VQ

′ ; 
20: Update RList; 
21: end if 
22: end while 

 23:   return  RList  

After inserting  Vj, Vj
′  into a leaf node, we need to update   

the ARF vector for all the nodes on the path to the leaf node 

Li. In the absence of a split, this simply involves updating 

ARF vectors based on Theorem 1. A leaf node split requires 

us to insert a new leaf node to the parent node. If the parent 

node has space for the new leaf node, we just need to insert  

the new leaf node into it and then update ARF vector for the 

parent node. In general, however, we may have to split the 

parent node as well, and so up to the root. If the root is split, 

the tree height increases by one. 

Except for K1, K2, and T , the parameter γ can also affect 

the structure of the ARF tree. If γ is set to 1, the documents 

will be organized based on their content only and the associ- 

ated attributes are ignored. On the contrary, if we set γ as 0, 

the attributes of the documents decide the ARF tree and the 

content of the documents are not employed. In general, we can 

set γ as a number between 0 and 1 to balance the important 

degrees of documents’ contents and attributes. 

Another challenge is searching the top-k relevant documents 

whose attributes are covered by the data users. We design a 

depth-first search algorithm for the ARF tree and the pseudo- 

code is presented in Algorithm 2. For convenience, some 

symbols and functions are first defined as follows: 

kthScore - The smallest relevance score in current result 

list RList which stores the most k relevant legal accessed 

document vectors with VQ and the corresponding relevance 

scores in order. 

RScore(u, VQ) - The relevance score between the cluster 

represented by node u and a query vector VQ is defined as 

RScore(u, VQ) = c · VQ where c is the center of the cluster. 

Stack - We employ the variable Stack to store the nodes 

which need to be searched in the future. In addition, 

Stack.push(u) inserts node u into Stack and Stack.pop() 

returns the latest inserted node. 

Length(V ′) - This function returns the number of 

non-zero elements in attribute vector V ′. For two attribute 
vectors V1

′ and V2
′, we can test whether V1

′  is covered by  

V2
′ by checking whether Length(V1

′  V2
′)  = Length(V1

′). 

If Length(V1
′ V2

′) = Length(V1
′), V1

′ is covered by V2
′; 

otherwise, V1
′ is not covered by V2

′. 
As shown in line 1 to line 9 in Algorithm 2, we first need to 

initialize RList by finding the most similar leaf node. Then, 
as shown in line 10 to line 22, the paths in the tree needed to 

be searched are selected by criteria RScore(Vu,max, VQ) > 

kthScore  and  Length(Au,min     VQ
′ )  =  Length(Au,min). 

This is reasonable considering that if RScore(Vu,max, VQ) 
kthScore for a cluster, it is impossible that any document 

vector in the cluster can be a candidate of the search result 

because the elements in VQ and Vmax are naturally nonnega- 
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tive. In addition, if Length(Au,min   VQ
′ ) = Length(Au,min) 

for a cluster, all the attributes of the documents in the cluster 
cannot match that of the data user. As a consequence, this 

cluster is also unnecessary to be searched. However, if a leaf 

node is searched, the result list RList needs to be updated.    

In this way, quite many paths are pruned and hence  the  

search efficiency greatly improves. Once the top-k relevant 

documents are located in the ARF tree, the corresponding 

encrypted documents are sent to the data user. Apparently, 

these legal documents can be decrypted by the data user and 

then the document query process is completed. 

We can further improve the search efficiency by operating 
the searching process in parallel. In the search process, all the 

processors need to share the same result list RList. Assume 

that there is a set of processors  =  p1, p2,   , pl   and   

given a search request, an idle processor pi is used to find 

most relevant leaf node on the tree and initialize RList. 
Then, all the necessary search paths are selected based on 

criteria  VQ   Vmax  > kthScore and  Length(Amin    VQ
′ ) = 

Length(Amin). If the search process can be continued on q 
search paths and there are more than q idle processors, any q 
processors are selected and each processor is responsible for 

searching a child path. If there is q′(q′ < q) idle processors, 

they search the latest inserted q′ children paths in Stack. 
Once  an  idle  processor  appears,  it  continue  to  search  the 

node generated by Stack.pop(). At last, the most relevant k 
encrypted files (i.e., the search result ) are sent to the data 

user and they are decrypted by the secret key of the data user. 

Though the document retrieval efficiency is greatly im- 

proved based on the ARF tree, a  companying challenge is 

how to protect the privacy of the document vectors in the 

index structure and query vectors. Fortunately, this problem 

has been widely discussed and researched [15]–[17], [37]. In 
this paper, we strictly employ the method in [18] to protect 

a simulator that can play the DBDH game with an advantage 
ε . The game is executed as follows: 

First, the challenger chooses G0, G1, g, a, b, c, t and a bilin- 

ear map e as specified in Section IV.B. Then he randomly  

flips a fair binary coin v and if v =  1, T  =  e(g, g)abc, 

i.e.,(g, A = ga, B = gb, C = gc, T = e(g, g)abc) BDH ; 

otherwise, if v = 0, T  =  e(g, g)t,  i.e.,  (g, A  =  ga, B = 

gb, C = gc, T  = e(g, g)t)     BDH .  The  challenger  sends 

(g, A, B, C, T ) = (g, ga, gb, gc, T ) to the simulator . The 

simulator now plays the role of challenger in the security 

game. Then, the security game are executed as follows: 

Init. The adversary dv submits the simulator a set of 

attributes S that it wants to be challenged upon. 

Setup.  The  simulator  sets  α  =  α′ + ab where  α′ 
is randomly selected from Zp and it computes e(g, g)α = 

e(g, g)α
′   

· e(g, g)ab. It further sets h = gβ = gb = B. At last, 
the public key PK is sent to the adversary Adv. 

Query Phase 1. The adversary dv queries the secret 

keys SK of any access structure A∗ with a set of attributes 

S′ and S ¢ S′. The simulator B randomly selects a number 

r′ ∈ Zp and set r = r′ − a. Then it calculates D = gα · hr = 

gα
′+ab  · gb(r

′−a)   =  gα
′    

· hr
′ 

.  For  each  attribute  Aj  ∈  S′, 

B  randomly  chooses  rj  ∈  Zp  and  calculates  Dj  = g
(r

′−a)  · 

H(A )rj = g
r′ 

· H(A )rj and D′ = Brj . At last, the secret 
key SK is sent to the adversary Adv. 

Challenge. For convenience sake, we assume that only 
one file is encrypted and consequently the ciphertext can be 

simplified  as  CT  = (   , Cx
∗, Ci,  y     S ′ : Cy = Bsky , Cy

′  = 

H(att(y))sky ). The adversary dv submits two messages M0 

and M1  with equal lengths to  . The simulator   randomly   

flips  a  coin  µ       0, 1   and  encrypts  Mµ with  attribute set 

S.  Let  Cx
∗  =  gskx    =  gc  =  C .  Suppose  that  the  simulator 

is  given  a  BDH  tuple,  that  is  T  =  e(g, g)abc. Then we 

the security of the document vectors while maintaining the have  C̃i   =  Mµ · e(g, g)αc 
 

 

= Mµ · e(g, g) abc · e(g, g) α
′c = 

searchability. 
VI. SECURITY ANALYSIS 

Mµ T e(g, g)α
′c.  We  see  that  the  ciphertext  is  a  valid 

encryption of Mµ. Otherwise, we have that T = e(g, g)t is a 

random element of G1. In that case the ciphertext will give 
In the document retrieval system, the cloud server and 

CA center are assumed to be trustable. In this section, we 

focus on the security of the proposed hierarchical document 

encryption scheme and its security mainly involves two aspects 

including document confidentiality and content keys confi- 

dentiality. The documents are encrypted based on symmetric 

encryption schemes (e.g., AES) with content keys and their 

security is out of the scope in this paper. In this section, we 

analyze the security of the content keys which are encrypted by 

the proposed hierarchical encryption scheme. We provide the 

Decisional Bilinear Diffie-Hellman [28], [41], [43] assumption 

(DBDH) in Section III.D and Selective-Set Security Game is 

given Section III.E. In this section, we reduce the security     

of the content keys to the hardness of the DBDH and prove  

the security of the proposed scheme under the Selective-Set 

Security Game. 

Theorem 2: Under the DBDH assumption, no polynomial 

time adversary can win the Selective-Set Security Game. 

Proof: Suppose there exists an polynomial adversary dv 
that can break our scheme with an advantage ε. We can design 

no information about the simulator’s choice of µ. At last, the 
CT is sent to Adv. 

Query phase 2. The query phase 1 is repeated. 

Guess. The adversary dv makes a guess µ′ of µ based on 
the obtained information. At the same time,  the  simulator 
also makes the corresponding guess of v in playing the DBDH 

game based on the different results the adversary dv guessed. 

If µ′ = µ, outputs guess v′ = 1 in playing the DBDH game 
and points out that the challenger given 5-tuple to it which is 

selected from BDH . If µ′ = µ, outputs guess v′ = 0 in 
playing the DBDH game and points out that the  challenger 

given 5-tuple to it which is selected from BDH . 

The probability that the simulator successes in playing the 

DBDH game between simulator and challenger is calculated 

as follows. 

If  v  =   1,  the  challenger  generates  a  BDH  tuple    

(g, ga, gb, gc, e(g, g)abc), i.e. (g, A, B, C, T ) BDH . Then we 

see that CT is a valid encryption of Mµ and by definition, in 

this case the adversary dv has a non-negligible advantage ε 

to guess the correct µ′, whose probability of success can be 

· · 
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TABLE I. Comparison of CP-ABE, FH-CP-ABE and our scheme 

 

Component CP-ABE FH-CP-ABE Our Scheme 

Encryption Time [2(|AC1|+· · ·+|ACN|)+N ]CG0+NCG1+NCe 

2[(|t1|+· · ·+|tN |)+N ]CG1+[2(|AC1 |+· · ·+|ACN 

|)+N ]Ce 

3LG0+LG1 

LZp+LG0 

[2(|AC1 |+· · ·+|ACN |)+N ]LG0 

[2(|AC1 |+· · ·+|ACN |)+N ]LG0+NLG1 

Null (2|A|+ρN 

)CG0+NCG1+NCe 

2N (ρ+1)CG1+(2|A|+N 

)Ce 

2LG0+LG1 

LZp+LG0 

(2|A|+1)LG0 

(2|A|+ρN )LG0+NLG1 

Decryption Time Null 

The Size of PK 3LG0+LG1 

The Size of MSK LZp+LG0 

The Size of SK 

The  Size  of CT 

[2(|AC1 |+· · ·+|ACN |)+N 

]LG0 

Null 

 

calculated as Pr[µ′ = µ (g, A, B, C, T ) BDH ] = 
1
 + ε. 

If  v  =   0,  the  challenger  builds  a  random  5-tuple 

(g, ga, gb, gc, e(g, g)t), i.e. (g, A, B, C, T ) BDH . Then we 

have that T  is a random element of G1. The adversary  dv  

did not get any information about the message Mµ, so there    

is no advantage to guess the correct µ′. As a consequence,   
the adversary can make a correct choice with a probability 
1 . Therefore, the probability of success for the simulator is  

As a consequence, our scheme performs better  then  CP-  

ABE in time costs of encryption and decryption,  and  the  

sizes of PK,  SK and CT . The two schemes have same 

performance in the size of MSK. In conclusion, our scheme 

can improve time and storage efficiency compared with CP- 

ABE. For a constant attribute set and parameter ρ, the 

encryption time, decryption time and size of CT all increase 

linearly with the number of documents in our scheme. The 2 

Pr[µ′ = µ|(g, A, B, C, T ) ∈ RBDH ] = 
1
 

. 

sizes of the keys are independent of the document collection. 

At last, the overall advantage of B  in playing the DBDH 
game can be calculated as  1 Pr[µ′ =  µ|(g, A, B, C, T ) ∈ 

 

 

In addition, our scheme outperforms FH-CP-ABE in terms of 
the size  of  PK and  SK  and they have similar  performance 

PBDH ] + 
1
 Pr[µ′ = µ| 2 (g, A, B, C, T ) 

∈ RBDH ] − 1 = ε . in terms of MSK. Considering that FH-CP-ABE is designed 
Based on the definition of DBDH assumption, we can infer 
that our scheme is secure. The theorem is proved. 

 
VII. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the hierar- 

chical document encryption scheme and in addition the search 

efficiency of the ARF tree. We first analyze the efficiency the- 

oretically and then conduct experiments to verify the analysis 

result. 

 A. Theoretical Analysis 

We compare our hierarchical encryption scheme with CP- 

ABE scheme in [21] and FH-CP-ABE scheme [28], and some 

definitions are defined first. We assume that CGi (i = 0, 1) is 

the time cost of an operation on the group such as exponenti- 

ation or multiplication. Let Zp be the group 0, 1, , p 1 

and Ce be the cost of an bilinear map operation e. Let N be 

the number of documents in the collection, ρ be a parameter 

that associated with Algorithm 1 and ρN is the number of 

the nodes in all the access trees. Considering that a set of 

file identifiers share a node in the access trees, ρ is naturally 

smaller  then 1. Let , Au, ACi be the attribute dictionary, 

the attributes associated with the data user and document Fi 
respectively. Let ti be the number of interior nodes in the 

access tree of file Fi. In addition, we define | ∗| as the number 

of elements in , L∗ as the length of an element in . 
In  the  analysis,  we  assume  that  the  data  owner  has  N 

document files and their content keys are encrypted by CP- 

ABE, FH-CP-ABE and our scheme. Note that, we focus on 

the encryption process of  the  content  keys rather  than  that 

of the documents which are encrypted by the content keys 

symmetrically. We further assume that a data user is respon- 

sible for decrypting all the documents and the analysis result 

is presented in Table 1. For a large document set, we have 

|A| ≪ (|AC1 |+· · ·+|ACN |) and ρN < N ≪ |t1|+· · ·+|tN |. 

to encrypt a set of documents with incremental attribute sets, 
i.e., AC1         AC2 ACN , it is impossible to accurately 

predict the time cost of encryption and decryption and the   

size of CT for a document collection with randomly assigned 

attribute sets. As a consequence, we will further compare our 

scheme with FH-CP-ABE by simulation in Section VII.B. 

The organization structure of the document collection af- 

fects the search efficiency significantly. The keyword balanced 

binary (KBB) tree [18] can provide accurate search result. 

However, the document vectors are randomly inserted into the 

tree and they are organized chaotically. Some similar vectors 

may locate very far in the tree and some totally different 

vectors may be neighbors with each other. Consequently, the 

interior nodes in the tree can provide very limited information 

to lead a query vector to the area with a set of strongly relevant 

document vectors. On the contrary, the vectors in the ARF tree 

are organized strictly according their similarities and similar 

vector can always compose a cluster in spite of the vectors’ 

input order. The query vector can easily locate a cluster that 

contains relevant document vectors. The search proportion is 

defined as the proportion that the document vectors being 

searched in a search process and it is calculated by the number 

of the searched nodes to the number of all the nodes in the 

tree. A basic comparison between the two trees is presented  

in Fig. 7. All the document vectors are randomly generated in 

2D and 3D space. To be fair, we ignore the attributes of data 

user and documents considering that the KBB tree does not 

support attribute constrained search. It can be observed that 

the ARF tree outperforms KBB tree significantly in both 2D 

and 3D spaces. Specifically, the search proportion of ARF tree 

is about 5% to 10% to that of KBB tree. 

 
B. Experimental Simulation 

We conduct a thorough experimental evaluation for the pro- 

posed document retrieval scheme on a real world data set: the 
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  Algorithm  3 AttributeGeneration.  

Input: =  C1, C2, C3, C4  , , pr (0.25 pr 1) 
Output: The attributes of each document 

3000 

 

2500 

 

CP−ABE 

pr=0.25 
  pr=0.3 

pr=0.4 

1: for each document Fi 

2: Att = ∅; 
∈ F do 2000   pr=0.5 

pr=0.6 

  pr=0.7 

3: Randomly select a number m from 1, 2, 3, 4, 5 ; 
4: Randomly select an attribute  An from and we assume that 

An Ck, k = 1, 2, 3, 4; 
5: Insert  An  to Att; 
6: for i = 2 : m do 

7: Randomly generate a number p′
r(0 p′r 1) and if p′r 

pr, randomly select an attribute Aq from Ck; otherwise, 

1500 

 

1000 

 

500 

 

0 

pr=0.8 
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pr=1.0 

uniformly randomly select an attribute Aq 
8: Insert Aq to Att; 
9: end for 

from A; 
100 200 300 400 500 600 700 800 900 1000 

Number of files 

(b)  

10: The attributes in Att is defined as the attributes of document 
Fi; 

11: end for 

 

 

 
 Enron Email Data Set [44]. The data set is first processed and 

1,000 records are randomly chosen as our experiment corpus. 

We implement the hierarchical encryption scheme based on 

CP-ABE toolkit and Java Pairing-Based Cryptography library 

[45]. The document search process is implemented based on 

Java language. All the following experiments are conducted 

on a 2.6 GHZ Intel Core i5 processor, Windows 7 operating 

system with a RAM of 4G. 

1) Effectiveness of the Integrated Access Trees: The at- 

tribute set  is  defined  as  =  A, B,  , Z  which  is 

composed of 26 letters. Then, all the attributes are divid-  

ed  into  4  categories,  i.e.,  C1   =   A, B,    , tt  , C2   = 

H, I,   , N  , C3  =   O, P,   , T  , C4  =   U, V,    , Z . 

The associated attributes of a document is randomly generated 

through Algorithm 3. We assume that each document has at 

least 1 attribute and at most 5 attributes. As shown in line 5 

of Algorithm 3, the attributes of a document trend to belong 

to one attribute category with a large probability pr. This is 

reasonable considering that the attributes are associated with 

each other and if a set of attributes are strongly related, they 

are likely to belong to a document together. For example, if a 

document is related with “computer”, it is more likely to be 

also related with “network” rather than other attributes such 

as “economic” and “finance”. 

Parameter pr affects the access trees greatly as presented 

Fig. 8. Number of access trees and that of nodes in the trees with different 

pr and number of files 

 

 

in Fig.8. For a constant pr, the number of the access trees 

monotonously increases with the number of files as shown    

in Fig.8(a). When pr is set to 1.0, all the attributes of a file  

fall in a sub-category of  and in this case the number of  

access trees is the smallest. Note that, a small number of access 

trees can lead a high encryption and decryption efficiency, 

because many documents share an access tree and they can   

be encrypted together in this case. When we decrease pr from 

1.0 to 0.3, the attributes of a file are more and more likely to 

be selected from the whole attribute set randomly and the 

diversity of the documents’ attributes increases. Consequently, 

the number of the access trees increases. In the worst case, i.e., 

pr is set to 0.25 and the attributes of a file are totally randomly 

selected from  , the number of access trees is the largest with  

a constant number of files. In CP-ABE, each document has  

an access tree and the number of all the access trees equals    

to the number of files which is much larger than that of the 

proposed scheme. As shown in Fig.8(b), the number of nodes 

in the access trees has similar pattern with the number of 

access trees and the proposed scheme always performs better 

than CP-ABE. 

We further analyze the distribution of files in the access 

trees and simulation result with N = 1, 000 is provided in Fig. 

9. The access trees are first descendingly sorted according to 

their sizes, i.e., the number of nodes in the trees, and then the 

numbers of files in the trees are calculated. It can be observed 
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 that about 30% to 50% files are covered by the 25 largest trees 

and about 40% to 80% files are covered by the 50 largest trees. 

In addition, the files trend to aggregate with each other to some 

larger trees with the increasing of pr. When we set pr to 1, 

more than 90% files are covered by the largest 100 access trees 

and, most of the other trees contain a small number of nodes 

and they may cover 1 or 2 files. Without loss of generality, in 

the following, we assume that pr equals to 0.9. 

2) Efficiency of Hierarchical Document Encryption: The 

time consumptions of encrypting and decrypting the whole 

document collection are presented in Fig.10. In  CP-ABE, 

each document is encrypted and decrypted individually. Con- 

sequently, the time of both encryption and decryption increases 

almost linearly  with  the  number  of  files.  On  the  contrary, 

a set of files in  our  scheme  share  an  access  tree and they 

are encrypted and decrypted together. The encryption and 

decryption time increases logarithmically with the number of 

files. Apparently, the proposed scheme is much more time 

efficient than CP-ABE. Though the FH-CP-ABE performs 

slightly better than CP-ABE, it cannot efficiently encrypt and 

decrypt a document collection considering that the number of 

integrated access trees are much larger than that of our scheme. 

The storage space of the ciphertext is presented in Fig.11. 

Note that, only the encrypted content keys are considered in 

this experiment and the symmetrically encrypted documents 

are not considered. The storage space of CP-ABE linearly 

increases with the number of files and it can be explained 

500 
100 200 300 400 500 600 700 800 900     1000 

Number of files 

Fig. 12. Construction time of an ARF tree 

 

 
by the fact that each file has a content secret key which is 

encrypted individually. In our scheme, if a set of file have 

similar attribute sets, they may share an access structure and 

their content keys are related with each other. In addition, a 

set of files can share a same content key if  they have the  

same attribute sets. Consequently, the proposed scheme is 

more space-efficient than CP-ABE. Similar to the efficiency of 

encryption and decryption, FH-CP-ABE performs better than 

CP-ABE and worse than our scheme. 

3) Efficiency of Document Retrieval: Except for providing 

an efficient document encryption scheme, we also improve 

the search efficiency compared with MRSE. Note that, in our 

simulation, the index structures of both MRSE and ARF are 

plaintext. The construction time of an ARF tree is strongly 

related with the number of files and it is presented in Fig.12. 

The index construction times of both the two schemes linearly 

increase with the number  of  files.  This  can  be  explained  

by the fact that most time is consumed in the process of 

generating document vectors (about 3.2 seconds/file). The 

ARF tree consumes slightly more time than MRSE, because 

the document vectors need to be inserted into the tree. 

Another measurement of our scheme is the search efficiency. 

In the Enron Email Data Set, the documents have no attribute 

which should be assigned by  the  data  owner.  In  general,  

the attributes of the documents are related with their con- 

tents. However, in Algorithm 3, the attributes of a document 

are randomly selected and they may mislead the ARF tree 
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construction process. Consequently, for convenience, in the 

following we set γ equals to 1 when constructing the ARF 

tree. In addition, k is set as 10 (i.e., 10 encrypted documents 

are returned for a query). However, the attributes are employed 

in the document search process and the simulation result is 

provided in Fig.13. Apparently, the search time in MRSE 

linearly increases with the number of files considering that  

the document vectors are organized randomly and all the 

document vectors need to be scanned for one time. However, 

the ARF tree organizes the files based their similarities which 

greatly improve the search efficiency. Specifically, quite a 

number of the search paths are pruned in the search process 

and ARF tree has logarithmic time consumption with the 

number of files. 

 
VIII. CONCLUSION 

In this paper, we consider a new encrypted document 

retrieval scenario in which the data owner wants to control  

the documents in fine-grained level. To support this service, 

we first design a novel hierarchical attribute-based document 

encryption scheme to encrypt a set of documents together that 

share an integrated access  structure.  Further,  the  ARF tree 

is proposed to organize the document vectors based on their 

similarities. At last, a depth-first search algorithm is designed 

to improve the  search  efficiency  for  the  data  users  which 

is extremely important for large document collections. The 

performance of the approach is thoroughly evaluated by both 

theoretical analysis and experiments. 

The proposed scheme can be further improved in several 

aspects: First, in this paper, we  assume  that  each  node  in 

the access trees represent an “AND” gate and this limits the 

flexibility of assigning the attributes to the documents. In the 

future, we will attempt to introduce “OR” gates into the access 

trees. Second, the access structure of the document collection 

is generated in a greedy manner and we will check whether    

it can be further optimized to decrease the number of access 

trees. In addition, the revocation method of the data users’ 

attributes needs to be  designed.  Third,  the  update  strategy 

of the ARF tree should be proposed. Though the ARF tree 

naturally supports inserting new nodes to the tree, the method 

of deleting a node from the tree didn’t provided. Fourth, a new 

document collection, in which each file is associated with a 

set of proper attributes, should be developed and a thorough 

experiment should be conducted on the collection to test the 

affection of parameter γ on the approach. 

 
REFERENCES 

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public 
cloud,” IEEE Internet Computing, vol. 16, pp. 69–73, Jan. 2012. 

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for  
searches on encrypted data,” in Security and Privacy, 2000. SandP 2000. 
Proceedings. 2000 IEEE Symposium on, pp. 0–44, 2002. 

[3] E. J. Goh, “Secure indexes,” Cryptology ePrint Archive, http:// 
eprint.iacr.org/2003/216., 2003. 

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable 
symmetric encryption: improved definitions and efficient constructions,” 
in ACM Conference on Computer and Communications Security, pp. 79– 
88, 2006. 

[5] J. Li, Y. Shi, and Y. Zhang, “Searchable ciphertext-policy attribute-based 
encryption with revocation in cloud storage,” International Journal of 
Communication Systems, vol. 30, no. 1, 2017. 

[6] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute- 
based keyword search over hierarchical data in cloud computing,” IEEE 
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2017. 

[7] A. Swaminathan, Y. Mao, G. M. Su, H. Gou, A. L. Varna, S. He, M. Wu, 
and D. W. Oard, “Confidentiality-preserving rank-ordered search,” in 
ACM Workshop on Storage Security and Survivability, Storagess 2007, 
Alexandria, Va, Usa, October, pp. 7–12, 2007. 

[8] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient 
ranked keyword search over outsourced cloud data,” IEEE Transactions 
on Parallel and Distributed Systems, vol. 23, pp. 1467–1479, Aug. 2012. 

[9] S. Zerr, D. Olmedilla, W.  Nejdl, and W.  Siberski, “Zerber +r : top-        
k retrieval from a confidential index,” in International Conference on 
Extending Database Technology: Advances in Database Technology, 
pp. 439–449, 2009. 

[10] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search 
over encrypted data,” Lecture Notes in Computer Science, vol. 3089,  
pp. 31–45, 2004. 

[11] B. Dan and B. Waters, “Conjunctive, subset, and range queries on 
encrypted data,” in Theory of Cryptography Conference, pp. 535–554, 
2007. 

[12] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully 
secure functional encryption: attribute-based encryption and (hierarchi- 
cal) inner product encryption,” in International Conference on Theory 
and Applications of Cryptographic Techniques, pp. 62–91, 2010. 

[13] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute- 
based multi-keyword search scheme in mobile crowdsourcing,” IEEE 
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017. 

[14] Y. Miao, J. Ma, X. Liu, Q. Jiang, J. Zhang, L. Shen, and Z. Liu, “Vcksm: 
Verifiable conjunctive keyword search over mobile e-health cloud in 
shared multi-owner settings,” Pervasive and Mobile Computing, vol. 40, 
pp. 205–219, 2017. 

[15] C. Chen, X. Zhu, P.  Shen, J. Hu, S. Guo, Z. Tari,  and A. Zomaya,     
“An efficient privacy-preserving ranked keyword search method,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 27, pp. 951–963, 
Apr. 2016. 

[16] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized 
search over encrypted outsourced data with efficiency improvement,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 27, p-      
p. 2546–2559, Sep. 2016. 

[17] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi- 
keyword ranked search over encrypted cloud data,” IEEE Transactions 
on Parallel and Distributed Systems, vol. 25, pp. 222–233, Jan. 2014. 

[18] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A  secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 27, pp. 340–352, 
Jan. 2016. 

[19] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in In- 
ternational Conference on Theory and Applications of Cryptographic 
Techniques, pp. 457–473, 2005. 

[20] J. Hur and K. N. Dong, “Attribute-based access control with efficient 
revocation in data outsourcing systems,” IEEE Transactions on Parallel 
and Distributed Systems, vol. 22, no. 7, pp. 1214–1221, 2010. 

[21] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute- 
based encryption,” in IEEE  Symposium  on  Security  and  Privacy, p- 
p. 321–334, 2007. 

 

 

 

 

http://www.ieee.org/publications_standards/publications/rights/index.html


                             

        
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. , NO. , 2017 

              
    

 
 

[22] V. Goyal, A. Jain, O. Pandey, and A. Sahai, Bounded Ciphertext Policy 
Attribute Based Encryption. DBLP, 2008. 

[23] F. Guo, Y. Mu, W. Susilo, and D. S. Wong, “Cp-abe with constant-size 
keys for lightweight devices,” Information Forensics and Security IEEE 
Transactions on, vol. 9, pp. 763–771, May. 2014. 

[24] Y. Yang, J. K. Liu, K. Liang, K. K. R. Choo, and J. Zhou, Extended 
Proxy-Assisted Approach: Achieving Revocable Fine-Grained Encryp- 
tion of Cloud Data, vol. 9327. Springer International Publishing, Sep. 
2015. 

[25] K. Liang, H. A. Man, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, 
Y. Yu, and A. Yang, “A secure and efficient ciphertext-policy attribute- 
based proxy re-encryption for cloud data sharing ,” Future Generation 
Computer Systems, vol. 52, pp. 95–108, Nov. 2015. 

[26] Y. S. Rao, “A secure and efficient ciphertext-policy attribute-based 
signcryption for personal health records sharing in cloud computing,” 
Future Generation Computer Systems, vol. 67, pp. 133–151, Feb. 2017. 

[27] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-grained 
attribute-based data storage in cloud computing,” IEEE Transactions on 
Services Computing, vol. 10, no. 5, pp. 785–796, 2017. 

[28] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, “An  efficient  
file hierarchy attribute-based encryption scheme in cloud computing,” 
IEEE Transactions on Information Forensics and Security, vol. 11, no. 6, 
pp. 1265–1277, 2016. 

[29] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption  
for fine-grained access control in cloud storage services,” in ACM 
Conference on Computer and Communications Security, pp. 735–737, 
2010. 

[30] Z. Wan, J. Liu, and R. H. Deng, “Hasbe: A hierarchical attribute-based 
solution for flexible and scalable access control in cloud computing,” 
IEEE Transactions on  Information  Forensics  and  Security,  vol.  7,  
pp. 743–754, Apr. 2012. 

[31] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and 
W. Shi, “Ciphertext-policy hierarchical attribute-based encryption with 
short ciphertexts,” Information Sciences, vol. 275, pp. 370–384, Aug. 
2014. 

[32] E. Luo, Q. Liu, and G. Wang, “Hierarchical multi-authority and attribute- 
based encryption friend discovery scheme in mobile social networks,” 
IEEE Communications Letters, vol. 20, pp. 1772–1775, Sep. 2016. 

[33] J. Li, Y. Wang, Y. Zhang, and J. Han, “Full verifiability for outsourced 
decryption in attribute based encryption,” IEEE Transactions on Services 
Computing, 2017. 

[34] H. Qian, J. Li, Y. Zhang, and J. Han, “Privacy-preserving personal health 
record using multi-authority attribute-based encryption with revocation,” 
International Journal of Information Security, vol. 14, no. 6, pp. 487– 
497, 2015. 

[35] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, “User collusion avoidance 
cp-abe with efficient attribute revocation for cloud storage,” IEEE 
Systems Journal, 2017. 

[36] Y. Guo, J. Li, Y. Zhang, and J. Shen, “Hierarchical attribute-based 
encryption with continuous auxiliary inputs leakage,” Security and 
Communication Networks, vol. 9, no. 18, 2016. 

[37] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure knn 
computation on encrypted databases,” in ACM SIGMOD International 
Conference on Management of Data, pp. 139–152, 2009. 

[38] G. A. Miller, “Wordnet: a lexical database for english,” Communications 
of the Acm, vol. 38, pp. 39–41, Nov. 1995. 

[39] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: Outsourced attribute- 
based encryption with keyword search function for cloud storage,” IEEE 
Transactions on Services Computing, vol. 10, no. 5, pp. 715–725, 2017. 

[40] C. D. Manning and P. Raghavan, Introduction to Information Retrieval, 
vol. 1. Cambridge University Press, 2010. 

[41] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en- 
cryption for fine-grained access control of encrypted data,” in ACM 
Conference on Computer and Communications Security, pp. 89–98, 
2006. 

[42] T. Zhang, R. Ramakrishnan, and M. Livny, “birch:an efficient data 
clustering method for very large databases,” pp. 103–114, in Proceedings 
of the 1996 ACM SIGMOD International Conference on Management 
of Data, 1996. 

[43] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, 
efficient, and provably secure realization,” Lecture Notes in Computer 
Science, vol. 2008, pp. 321–334, 2015. 

[44] C. Project, “Enron email dataset,” https://www.cs.cmu.edu/enron/, 2005. 
[45] A. D. Caro and V. Iovino, “jpbc: Java pairing based cryptography,” in 

Computers and Communications, pp. 850–855, Jun. 2011. 

Na Wang received the B.S. and M.S. degrees in 
Mathematics from Xinjiang Normal University, Chi- 
na, in 2012 and 2015 respectively. She is currently 
working toward the Ph.D. degree in the School of 
Mathematical Sciences, Xiamen University, China. 
Her research interests include cryptography, message 
sharing and information security issues in distributed 
and cloud systems. 

 

 

 

 

 

 

 

 

 
 

Junsong Fu received the B.E. degree from Beijing 
Jiaotong University, Beijing, China, in 2012. He is 
currently working toward the Ph.D. degree in the 
Key Laboratory of Communication and Information 
Systems, Beijing Jiaotong University. His research 
interests include in-network data processing, secret 
sharing and information privacy issues in distributed 
systems and Internet of Things. 

 

 

 

 

 

 

 

 

 
 

Bharat Bhargava is a Professor of Computer Sci- 
ence at Purdue University. He is the editor-in-chief 
of four journals and serves on over ten editorial 
boards of international journals. Prof. Bhargava is 
the founder of the IEEE Symposium on Reliable and 
Distributed Systems, IEEE conference on Digital 
Library, and the ACM Conference on Information 
and Knowledge Management. Prof. Bhargava has 
published hundreds of research papers and has won 
five best paper awards in addition to the technical 
achievement award and golden core award from 

IEEE. He is a fellow of IEEE. 

 

 

 

 

 

 

 
 

Jiwen Zeng is a Professor of School of Mathematic 
Science, Xiamen University. He obtained Ph.D de- 
gree from Beijing University in 1995. As academ-  
ic visiting professor, he once visited Birmingham 
University of Unite Kingdom, York University of 
Canada, Jena University of Germany and Pingdong 
University in Taiwang, China. His research work is 
supported by natural science foundation of China. 
He is evaluation expert of state natural science 
foundation in Mathematics and its application. His 
research interests include mathematics, information 

security and cloud computing. 

  

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.cs.cmu.edu/enron/

