

Proficient Recovery Over Records using Encryption in Cloud Computing

Mrs Maithili K
1
, Assistant Professor in Kingston Engineering College ,Ranjith Kumar R

2
, Umesh N

3
,

Sunil Kumar J
4

Abstract—Secure document storage and retrieval is one of the
hottest research directions in cloud computing. Though many
searchable encryption schemes have been proposed, few of them
support efficient retrieval over the documents which are encrypted
based on their attributes. In this paper, a hier- archical attribute-based
encryption scheme is first designed for a document collection. A set
of documents can be encrypted together if they share an integrated
access structure. Compared with the ciphertext-policy attribute-based
encryption (CP-ABE) schemes, both the ciphertext storage space and
time costs of encryption/decryption are saved. Then, an index
structure named attribute-based retrieval features (ARF) tree is
constructed for the document collection based on the TF-IDF model
and the documents’ attributes. A depth-first search algorithm for the
ARF tree is designed to improve the search efficiency which can be
further improved by parallel computing. Except for the document
collections, our scheme can be also applied to other datasets by
modifying the ARF tree slightly. A thorough analysis and a series of
experiments are performed to illustrate the security and efficiency of
the proposed scheme.

Index Terms—Cloud computing, document retrieval, file hier-
archy, attribute-based encryption.

I. INTRODUCTION

ORE and more people and enterprises are motivated to

outsource their local document management systems to

the cloud which is a promising information technique (IT) to

process the explosive expanding of data [1]. Cloud computing

can collect and reorganize a huge amount of IT resources and

apparently, the cloud servers can provide more secure, flexible,

various, economic and personalized services compared with

the local servers. Despite the advantages of cloud services,

leaking the sensitive information, such as personal informa-

tion, company financial data and government documents, to

the public is a big threat to the data owners. In addition, to

make full use of the data on the cloud, the data users need

to access them flexibly and efficiently. Consequently, a huge

challenge of outsourcing the data to the cloud is how to protect

the confidentiality of the data properly while maintaining their

searchability.

An intuitive approach is encrypting the documents first and

then outsourcing the encrypted documents to the cloud. A large

This research is supported by National Natural Science Foundation of China
(Grant No.11261060).

N. Wang and J.W. Zeng are with the School of Mathematical Science, Xi-
amen University, Xiamen, 361005, China, e-mail: (wangna@stu.xmu.edu.cn,
jwzeng@xmu.edu.cn).

J.S. Fu is with the School of Electronic and Information Engineering,
Beijing Jiaotong University, Beijing, 100044, China, e-mail: (12120067@bj-
tu.edu.cn).

B.K. Bhargava is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47906, USA, e-mail: (bbshail@purdue.edu).

number of searchable document encryption schemes have been

proposed in the literatures, including single keyword Boolean

search schemes [2]–[6], single keyword ranked search schemes

[7]–[9] and multi-keyword Boolean search schemes [10]–

[14]. However, all these schemes cannot support effective,

flexible and efficient document search because of their sim-

ple functionalities. Privacy-preserving multi-keyword ranked

document search schemes [15]–[18] are more promising and

practical. However, all the documents in these schemes are

organized by a coarse-grained access control mechanism,

i.e., each authorized data user can access all the encrypted

documents. As an example, the whole IEEE Xplore Digital

Library can be accessed by all the authorized organizations

(e.g., the universities) at present and this cannot satisfy the

data owners and users in the future.

In this paper, a new situation is considered. A data user

may want to access part of the library (e.g., computers and

data related papers) and intuitively she wants to pay less

money compared with the data users who want to access

the whole library. In other words, in the document collection,

each document can be accessed only by a set of specific data

users. In this case, we need to design a fine-grained access

control mechanism for the documents and it is more reasonable

compared with the present method.

To make the data users able to access part of IEEE X-

plore Digital Library on demands, a possible approach is

encrypting the documents through attribute-based encryption

(ABE) schemes [19], [20] before outsourcing them to the

cloud. Meanwhile, the authorized data users are assigned with

a set of attributes. A data user can decrypt a file if and

only if her attributes match the file’s attributes. Recently,

ciphertext-policy attribute-based encryption (CP-ABE) [21]–

[27] is a hot research area and it can provide fine-grained,

one to many and flexible access control. In these schemes,

each document is encrypted individually and their encryp-

tion efficiency can be improved by employing hierarchical

attribute-based encryption schemes [28]–[31]. However, these

schemes cannot be employed directly to solve our problem

properly. First, most existing schemes focus on encrypting

a single access tree. However, it is impossible that all the

documents in IEEE Xplore Digital Library share a single

access tree and how to construct a set of optimized access

trees for the document collection is a huge challenge. Second,

in most existing schemes, when the documents are mapped

to a set of shared access trees, the data users need to store a

large number of secret keys which will be analyzed in Section

IV.B. Apparently, this is a heavy burden for the data users

especially for an extremely large document collection and how

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto:(wangna@stu.xmu.edu.cn
mailto:(wangna@stu.xmu.edu.cn

to decrease the amount of secret keys for the data users is

another challenge. Except for access control, document search

efficiency is also a challenge for a large document collection.

To our knowledge, most existing schemes cannot support time-

efficient retrieval over the documents which are organized

under attribute-based access control mechanism.

To support the previously discussed service, we first design

an algorithm to generate hierarchical access trees for the

document collection. The proposed algorithm employs the

greedy strategy to build the access trees incrementally and

each access tree grows by continuously splitting the nodes in

the tree. Then we design a ciphertext-policy attribute-based

hierarchical document collection encryption scheme called

CP-ABHE. In the proposed scheme, a set of documents can

share a same integrated access tree and be encrypted together

rather than being encrypted individually. In this way, both

the ciphertext storage space and time costs of the encryp-

tion/decryption are saved. The security of the proposed scheme

is proved theoretically and its effectiveness is also evaluated

by simulation.

To support accurate and efficient document search over the

encrypted documents, a complicated index structure is then

constructed for the document collection. We first map the

documents to document vectors based on the TF-IDF model

and, in addition, the attributes of the documents are also

taken into consideration. The similarity function between the

document vectors is carefully designed and the vectors are

organized based on their relative similarities in the ARF tree.

Specifically, the similar vectors compose micro clusters which

are then aggregated with each other to generate macro clusters

until all the vectors belong to one cluster. The ARF vectors

of the nodes in the tree are used to describe the inherent

properties of the clusters represented by the nodes. At last,

a depth-first search algorithm for the ARF tree is designed to

guarantee both the search efficiency and accuracy.

The main contributions of this paper are summarized as

follows:

A practical hierarchical attribute-based document collec-

tion encryption scheme is proposed in which the documents

are organized and controlled based on attributes. The proposed

scheme can greatly decrease the storage and computing bur-

dens.

We map the documents to vectors in which both the

keywords and associated attributes are considered. The ARF

tree is proposed to organize the document vectors and support

time-efficient document retrieval. In addition, a depth-first

search algorithm is designed.

A thorough simulation is performed to illustrate the securi-

ty, efficiency and effectiveness of our scheme. Specifically, the

proposed encryption scheme performs very well in both time

and storage efficiency. In addition, our scheme also provides

efficient and accurate document retrieval method.

The rest of this paper is organized as follows: The related

work is provided in Section II. In Section III, we state the prob-

lem and present some preliminary techniques. The hierarchical

attribute-based document encryption scheme is designed in

Section IV and we present the time efficient document retrieval

approach based on the ARF tree in Section V. The security

and efficiency analysis of our scheme is provided in Section

VI and we further evaluate the performance of the proposed

approach by experiments in Section VII. At last, Section VIII

concludes this paper.

II. RELATED WORK

Our approach is mainly related with two research fields of

cloud computing, i.e., ciphertext-policy attribute-based docu-

ment encryption and encrypted document retrieval. The related

work in these two fields is provided in the following.

Since Sahai et al. proposed the identity-based encryption

(IBE) scheme [19], many ABE schemes [20], [32]–[34] have

been proposed in which CP-ABE schemes [21]–[26], [35] are

very promising because of their flexibility and scalability. In

these CP-ABE schemes, the documents with different access

structures need to be encrypted individually. To improve the

encryption/decryption efficiency and scalability hierarchical

attribute-based encryption has been widely researched [28]–

[31] in which a set of documents may share a common access

structure and can be encrypted together. Wang et al. propose

a hierarchical attribute-based encryption scheme named FH-

CP-ABE [28] and have proved its security theoretically. An

advantage of the scheme is that the data users can decrypt all

the authorized documents by computing the secret key once.

Therefore, both the time costs of encryption and decryption are

saved. Wang et al. design a scheme named HABE [29] with

the traits of high performance, fine-grained access control,

scalability and full delegation. HABE is a combination of

hierarchical identity-based encryption and CP-ABE. Wan et

al. propose hierarchical attribute-set-based encryption scheme

(HASBE) [30] by extending ciphertext-policy attribute-set-

based encryption (ASBE) with a hierarchical structure of

the data users. The HASBE scheme can be seamlessly in-

corporated with a hierarchical structure of system users by

applying a delegation algorithm to ASBE. Deng et al. extend

ABE to CP-HABE [31] to support hierarchically distributing

and delegating the secret keys which can be used in large

organizations. Guo et al. [36] propose a resilient-leakage hier-

archical attribute-based encryption scheme to defend against

the auxiliary input leakage attack and the security of the

scheme is detailedly analyzed.

In addition to encrypting the documents, we also attempt

to search the encrypted document efficiently and accurately.

Consequently, multi-keywords ranked document retrieval over

encrypted document collections is also strongly related with

our scheme. In [17], Cao et al. first propose a basic privacy-

preserving multi-keyword ranked search scheme based on

secure kNN algorithm [37]. A set of strict privacy requirements

are established and then two schemes are proposed to improve

the security and search experience. However, an apparent

drawback of this scheme is that the search efficiency is

linear with the cardinality of the document collection and

consequently, it cannot be used to process extremely large

document databases. Xia et al. [18] design a keyword balanced

binary (KBB) tree to organize the document vectors and

propose a “Greedy Depth-First Search” algorithm to improve

the search efficiency. Moreover, the index tree can be updated

http://www.ieee.org/publications_standards/publications/rights/index.html

C · · ·

dynamically with an acceptable communication burden. How-

ever, the document vectors are chaotically organized in the tree

and the search efficiency can be further improved. Chen et al.

[15] take the relationships of documents into consideration

and a hierarchical-clustering-based index structure is designed

to improve the search efficiency. In addition, a verification

scheme is also integrated into their scheme to guarantee the

correctness of the results. Though the index structure can

obtain sub-linear search efficiency, it cannot return the accurate

search results. Fu et al. [16] present a personalized multi-

keyword ranked search scheme in which an interest model

of the data users is integrated into the document retrieval

system to support personalized search and improve users’

search experience. Specifically, the interest model of a data

user is built based on her search history with the help of

WordNet [38] in order to depict her behaviors in fine grit

level. However, this scheme cannot support dynamic update

operations, because the document vectors are constructed

based on the statistical information of all the documents in

the collection. In addition, though a MDB-tree is employed

to improve the search efficiency, the effectiveness of the tree

is hard to predict. Li et al. [39] propose a new attribute-

based encryption scheme (KSF-OABE) which can implement

keyword search function. Though the design goal of KSF-

OABE is some similar with our scheme, it cannot hierar-

chically encrypt a document collection and support efficient

multi-keyword document retrieval.

III. PROBLEM STATEMENT AND PRELIMINARIES

In this section, we state the problem and provide the related

preliminary techniques. For convenience, some notations are

first defined as follows:

The plaintext document collection of N files, denoted

as = F1, F2, , FN . Each document is treated as a

sequence of keywords. Note that, each file Fi(1 i N)
has a unique identifier fi(1 i N) in the whole document
collection.

• A− The attribute dictionary, denoted as A =

{A1, A2, · · · , An}. Each document and data user is associated

Fig. 1. System model

document’s attribute set is a subset of the data user’s attribute

set and this will be discussed in Section IV.A.

The result of a search request, i.e., a set of encrypted

documents which are the top-k relevant documents to the

request under the constraint of a data user’s attributes.

A. System Model and Design Goals

In this paper, we attempt to design a fine-grained access

control mechanism for the encrypted documents which also

support efficient document search. The search result of a query

is defined as the top-k relevant encrypted documents with

legal attributes. The process of executing a document query is

presented in Fig. 1 and it is mainly composed of five stages:

1 The data owner is responsible for collecting and pre-

processing the documents, and then obtains a set of high

quality files . He sets the attributes for each document and

then hierarchically encrypts the document collection based on

attributes. In addition, an index vector is extracted from each

document based on the document’s content and attributes. An

index structure is constructed based on the index vectors

of the documents. At last, both the encrypted documents

and encrypted index structure are sent to the cloud server. The

cloud server is responsible for storing the encrypted documents

and executing document search based on the index structure.

with a set of attributes in .

The ciphertext of . In this paper, is symmetrically

encrypted by content secret keys ck = ck1, ck2, , ckN ,

i.e., i = Ecki (Fi), i = 1, 2, , N and all the ciphertexts

of the files compose .

The index structure of . Each document is first

mapped to a document vector and the vectors are organized

in an ARF tree.

The keyword dictionary, denoted as =

w1, w2, , wm , which is used to generated the document

vectors and query vectors.

que

•
ry

W
.

Q− A subset of W , representing the keywords in a

The document query request of a data user. Each

query contains multiple keywords Q which are employed to

describe the interested documents. In addition, the attributes

of the data user are also added into to check the legality of

a document. We say that a document has legal attributes if the

2 When a data user wants to search a set of interested

documents, she first needs to register herself as an authorized

data user at the certificate authority (CA) center. Then, if

possible, several attributes selected from are assigned to

the data user by CA and a corresponding secret key associated

with these attributes is sent to the data user. At last, the data

user can send a query request to the cloud server.

3 4 5 Once a query is received from a data user, the cloud

server first communicates with the CA to check the legality of

the data user and her attributes. If the data user is authorized,

the cloud server searches the index structure to obtain the

search result . Then the corresponding encrypted docu-

ments are extracted from the encrypted document collection

and sent to the data user. At last, the data user decrypts the

documents by her secret key. Note that, the legality checking

functionality is optional which can be employed to improve

the security level of the whole system. With legality checking,

the data users who didn’t register themselves in the CA center

http://www.ieee.org/publications_standards/publications/rights/index.html

· · ·

· · ·

cannot search the interested documents through the cloud

server. However, the security of the system doesn’t greatly

decrease without this functionality and it can be explained by

the fact that the illegal data users cannot decrypt the documents

returned by the cloud server because they don’t have the secret

keys.

In this paper, we assume that the CA center and the cloud

server are trustable. Specifically, the CA center can distribute

proper attributes to the data users and the cloud server can

execute all the instructions honestly. We further assume that

the data users are greedy and attempt to obtain as many

plaintext files as possible. The data users try to collude with

other users to decrypt the encrypted documents. We mainly

restrict our attention to the process of encryption, document

search and decryption, and the design goals of our scheme are

presented as follows:

Flexibility. The documents can be encrypted and decrypt-

ed flexibly based on their attributes. In general, we hope

that the proposed scheme can get logarithmic encryption and

decryption time efficiency.

Compactability. For a data user with an attribute set, she

needs to store only one secret key and the key can be used to

decrypt all the documents that have legal attributes.

Accuracy. The search results are accurate according to the

data users’ search request.

Efficiency. Our scheme aims to achieve logarithmic search

efficiency over the encrypted files in general and at least sub-

linear search efficiency in the worst case.

Vj
′[i] = 0. The attribute vector of a data user VQ

′ can be

constructed based on the user’s attributes in the similar manner.
At last, we adopt the widely used “TF-IDF” measurement to

calculate the relevance score between a document Fj and a

query Q as follows:

RScore(Fj, Q) = RScore(Vj, VQ) = Vj · VQ (2)

It can be observed that the attribute vectors are not employed

when calculating the relevance scores between a document and

a query. This is reasonable considering that we need to return

the legal documents of the query rather than the documents

that have similar attributes with the query.

C. Attribute-based Retrieval Feature and ARF Tree

To improve the search efficiency of multi-keywords search

process, a height-balanced index tree named ARF tree is built

based on the document vectors. Specifically, the document

vectors are organized as clusters according to their similarities.

Each node in the tree represents a cluster composed of a

set of document vectors or sub-clusters. An ARF vector is a

quintuple summarization about a cluster. Given P documents

Fj where j = 1, 2, , P , we assume that a cluster C

comprises the document vectors of Fj , i.e., Vj, Vj
′ where

j = 1, 2, , P . Then, the ARF vector of the cluster is defined

as follows: ARF = (P, LS, SS, Vmax, Amin), where P is the

number of document content vectors in the cluster, LS is the

linear sum of the P content vectors, i.e., LS = P Vj,
SS is the square sum of the P content vectors, i.e., SS =

B. Document/Query Vector P
j=
1

V
2
, Vmax denotes a vector consisting of m values which

In this paper, the vector of a document is composed of two

parts including a normalized content vector and an attribute

vector. To build the content vector, each document is treated

as a stream of keywords and we use the normalized term

frequency (TF) vector to quantize the documents [40]. For

each keyword wi in keyword dictionary , we denote the

number of times that this keyword appears in the document

Fj by fj,wi and the TF value of keyword wi in Fj is defined
as TFj

′
,w = ln(1 + fj,wi). We construct the content vector

are calculated as follows:

Vmax[i] = max(V1[i], V2[i], · · · , VP [i]), i = 1, 2, · · · , m (3)

where Vj[i] is the i-th dimensional value of Vj, Amin is the

common attribute set vector of the documents in the cluster

and it can be calculated as follows:

Amin[i] = V1
′[i] ∧ V2

′[i] ∧ · · · ∧ VP
′ [i], i = 1, 2, · · · , n (4)

i

of F as ′ , TF ′ , · · · ′
 where V ′[i] is the i-th dimensional value of V ′. For each pair

1 2 m

this vector by of bits in V ′ and V ′, logic operation “ ∧ ” returns 1 if both

TFj,wi = √
TFj

′
,wi , i = 1, 2, · · · , m (1)

the two bits are 1; otherwise, “ ∧ ” returns 0. For each pair of

bits in Vi
′ and Vj

′, logic operation “ ∨ ” returns 1 if either of

Σwk ∈W (TFj

′
,w)

2

At last, the normalized content vector for Fj is denoted as
Vj = (TFj,w1 , TFj,w2 , , TFj,wm). The inverse document

frequency (IDF) value of the keyword wi is defined as

the two bits is 1; otherwise, “ ” returns 0. As an example,
(1, 0, 0, 1) (1, 1, 0, 0) = (1, 0, 0, 0); (1, 0, 0, 1) (1, 1, 0, 0) =
(1, 1, 0, 1).

In this paper, a search request of a data user contains both

a set of keywords WQ and a set of attributes SU associated IDFwi = ln(N) where N is the number of documents wi with the data user. Only the documents, whose attributes are
in the whole collection and Nwi is the number of documents

that contain the keyword wi. Further, the query vector of a

query Q is represented as VQ = (q1, q2, · · · , qm) where qi is

0, if wi ∈/ WQ; and qi is IDFwi , if wi ∈ WQ.

matched with SU and contents are relevant with Q, are

returned to the data user. As a consequence, both the content

vectors and the attribute vectors of the documents should be

taken into consideration in document search process. The sim-
The attribute vector of Fj is denoted as Vj

′

= ilarity between a pair of documents Fi, Fj with content vectors

(Vj
′[1], Vj

′[2], · · · , Vj
′[n]) which is constructed based on the Vi, Vj and attribute vectors Vi

′, Vj
′ is defined as follows:

attribute dictionary A = {A1, A2, · · · , An} as follows: If
′ ′

Ai ∈ att(Fj), Vj
′[i] = 1, where the function att(Fj) returns Sim(F ,F)= γ·RScore(V ,V)+(1−γ)·

Length(Vi ∧Vj)

(5)

 i j
 Length(V ′∨V ′)

) and further normalize

http://www.ieee.o/

challenger outputs a random 5-tuple (g, A = ga, B = gb, C =

gc, T = e(g, g)t). The adversary must then output a guess v′
of v.

An adversary, , has at least an ε advantage in solving the

DBDH problem if
a b c abc a b c t

|P r[B(g,g ,g ,g ,e(g,g))=1]−P r[B(g,g ,g ,g ,e(g,g))=1]|≥2ε

Fig. 2. Assumption of access control mechanism

where 0 γ 1 and RScore(Vi, Vj) is the relevance score

between the content vectors of the two documents and it is

calculated as:

where the probability is over the randomly chosen a, b, c, t and

the random bits consumed by . For the convenience of ex-

pression, we denote that BDH = (g, ga, gb, gc, e(g, g)abc)

and BDH = (g, ga, gb, gc, e(g, g)t) .

Definition 1: The DBDH assumption holds if no proba-

bilistic polynomial-time adversary has at least ε advantage in

solving the above game.

RScore(Vi, Vj) = Vi · Vj (6)

γ is a preset parameter to adjust the importance degrees of

document vectors and attribute vectors, Length(V ′) returns

the number of non-zero elements in vector V ′. Based on an
ARF vector, the centroid of a cluster C can be easily calculated

as:

c = LS/P (7)

and the similarity between cluster C and a document Fj is

defined as:
Length(Amin∧Vj

′)

E. Selective-Set Security Game

In this paper, we employ the Selective-Set Security Game

[21], [28], [41] to prove our scheme’s security. The game is

composed of six phases and they are presented as follows.

Init. The adversary declares an access tree with a set of

attributes S that he wants to be challenged upon.

Setup. The challenger runs the Setup algorithm presented

in Section IV to generate the public parameters which are

provided to the adversary.

Query Phase 1. The adversary is allowed to issue queries to

obtain the secret keys of any access structure A∗ with attribute

Sim(C,Fj)= γ ·RScore(c,Vj)+(1−γ)·
Length(A ∨V ′)

(8) set S′, where S ¢ S′. The secret keys are generated by the
min j

where 0 ≤ γ ≤ 1 and RScore(c, Vj) is calculated as:

RScore(c, Vj) = c · Vj (9)

Further, the radius of cluster C is defined as follows:

R = ΣP (Vj − c)2/P (10)

and it also can be calculated by the ARF vector as follows:

R = (SS − LS2/P)/P (11)

Theorem 1 (ARF Additivity Theorem) : If we

merge two disjoint clusters with ARF vectors:

ARF1 = (P1, LS1, SS1, Vmax1, Amin1), ARF2 =

(P2, LS2, SS2, Vmax2, Amin2), the ARF vector of the
combined cluster is:

ARF = ARF1 + ARF2

= (P + P , LS + LS , SS + SS , V , A)

challenger through the KeyGen(MSK, S′) algorithm.
Challenge. The adversary provides two different messages

M0 and M1 with equal length to the challenger. The challenger

randomly flips a coin µ 0, 1 and encrypts Mµ with

attribute set S. At last the encrypted message is sent to the
adversary.

Query phase 2. The query phase 1 is repeated.

Guess. Based on the obtained information, the adversary

output a guess µ′ of µ.
We say that our scheme is secure if all the polynomial time

adversaries have at most a negligible advantage in the game,

where the advantage of the adversary is defined as |Pr(µ′ =
µ) − |. Otherwise, we say that the adversary wins the game.

IV. HIERARCHICAL ATTRIBUTE-BASED DOCUMENT

ENCRYPTION

A. Monotone Hierarchical Access Tree

Let A = {A1, A2, · · · , An} be a set of attributes. A

1 2 1 2 1 2 max min collection A ⊆ 2A is monotone: Given ∀B, C, if B ∈ A

where Vmax[i]=max(Vmax1[i],Vmax2[i]),Amin=Amin1 Amin2.

Proof : The proof consists of straightforward algebra.

D. DBDH Assumption

Let G0, G1 be two groups of prime order p and g is a

generator of G0. The operator e is a bilinear map between G0

and G1 as specified in Section IV.B. The challenger chooses

a, b, c, t Zp at random. Then the challenger flips a fair binary
coin v and if v = 1, it generates a BDH 5-tuple (g, A =
ga, B = gb, C = gc, T = e(g, g)abc); otherwise, if v = 0, the

and B C, then C A. A monotone access structure of a
document is a monotone collection A comprised of non-empty

subsets of , i.e., A 2A . The sets in A are called
authorized sets and the sets not in A are called unauthorized
sets. In this paper, we restrict our attention to monotone access

structure which is practical considering the characteristics of

the problem stated previously.

In this paper, we assume that a file associated with several

attributes can be only accessed by the data users who possess

all the basic attributes of the file. As an example shown in

Fig. 2, the whole document set is divided into three categories

http://www.ieee.org/publications_standards/publications/rights/index.html

T

T T

T T

Algorithm 1 BuildingAccessStructure.

Input: Document collection F = {F1, F2,· · ·, FN } with

attribute sets {att(F1), att(F2),· · ·, att(FN)}
Output: A set of access trees ST

1: Sort the files in F in descending order based on the number of
their attributes and obtain F

′

= {F
′

, F
′

, · · · , F
′

};

(a) (b)

Fig. 3. Examples of access trees.

including computer, network and data related documents.

Some documents may own two or three attributes such as the

documents in region A, B, C and D. Under our assumption,

the crossing region A can be accessed by the data users

who own all the three roles of computer researcher, network

researcher and data researcher; region B can be accessed

by the data users who own the roles of data and computer

researcher; region C can be accessed by the data users who

own the roles of data and network researcher; region D can

be accessed by the data users who own the roles of network

and computer researcher. Apparently, under our assumption,

the access structure of a document is monotone. Take region

B as an example, a data user who owns the attribute of data

and computer researcher can access B and then any other data

users who have at least these two attributes can also access

region B.

Let be a monotone hierarchical access tree representing

an integrated access structure for a set of documents. The

collection of all the access trees is called the access structure

of the whole document collection. In this paper, each non-

leaf node of the tree represents a threshold “AND” gate and

associates with a set of attributes which are represented by

the leaf nodes. For convenience, some functions are defined

as follows. The number of the child nodes of a non-leaf

node x is denoted as numx. The function att(x) denotes the

associated attributes with the node x and in addition, att(Fi)

also returns the attribute set associated with document Fi. Each

node in the tree is assigned with a numerical identifier and the

function index(x) returns the identifier of node x. In addition,

index(Fi) returns the identifier of Fi. Note that, each non-leaf

node has a unique numerical identifier and the leaf nodes that

represent the same attribute in different access trees share a

same numerical identifier. Each node in an access tree may

contain some files identifiers and the corresponding files will

be encrypted by this node. The function file(x) return the file

identifiers contained in node x.

We say that node Y in the access tree matches a set

of attributes S if and only if the attribute set of Y equals

to S. As shown in Fig. 3(a), Y matches S if and only if

S = A1, A2, A3 and we denotes it as Y (S) = 0. If there

is no node in the tree can match S, we check whether a node

in the tree can cover S. We say that node X covers S if X

cannot match S and the leaf child nodes of X compose a

superset of S. We denote TX (S) = 1 if node X covers S. As

shown in Fig. 3(a), node Y covers S if S = {A1, A2} and

1 2 N

2: ST = null;
3: for i = 1 : N do

4: S = att(F
′

);
5: Scan the access trees in order;
6: for the scanned access tree in S do

7: if node Y in matches S, i.e., Y (S) = 0 then
8: Insert the identifier of Fi

′ into node Y ;
9: break;

10: else if node X in covers S, i.e., X (S) = 1 then
11: Build a new node Z and let the created node Z be the

child of X, and further the leaf nodes associated with S
are inserted to Z; meanwhile, the leaf nodes are deleted
from X;

12: Insert the identifier of Fi
′ into the new node Z;

13: break;
14: end if
15: end for

16: if the identifier of Fi
′ has not been inserted into an access tree

then
17: Build a new access tree for Fi

′ based on its attributes and
insert the identifier of Fi

′ to the root node;
18: Insert the tree to ST ;
19: end if

20: end for

node X covers S if S = {A4, A5, A6}.

We construct the access structure of a document collection

in an incremental way and an access tree is constructed by

continuously splitting the tree in a top-down manner. In the

initial, we sort the documents in decent order based on the

number of their attributes. Apparently, the attribute set of the

first document must be a root node of an access tree and

the identifier of the document is inserted to the root node.

Given a set of access trees, we discuss how to insert a new

document Fi’s identifier into them. The attribute set of the new

document att(Fi) can be divided into three categories, i.e.,

being matched by a node in the access trees, being covered

by a node in the access trees or neither being matched or

covered by a node in the access trees. We first need to scan

the access trees until finding a node that matches att(Fi). If

the node exists, the identifier of the new document index(Fi)

is inserted to the node. Otherwise, we need to rescan the access

trees until find a node X that can cover att(Fi). If the node

exists, a new node Z is built in the tree to match att(Fi)

and insert index(Fi) into Z. Specifically, node Z is inserted

to the access tree as a child node of X and the leaf nodes

related with att(Fi) is inserted into node Z. Meanwhile, we

need to delete the leaf nodes from node X. As an example,

if we insert A4, A5 into the tree presented in Fig. 3(a), the

updated access tree is shown in Fig. 3(b). At last, if att(Fi)
neither is matched or covered by a node in the trees, we build a

new access tree for Fi and insert index(Fi) into the root node.

The above process is iterated until all the document identifiers

are inserted into the access trees. All the access trees compose

the access structure of the whole document collection.

http://www.ieee.org/publications_standards/publications/rights/index.html

· · ·

· ∀ ∈ ·

Fig. 4. The flow chart of document encryption and decryption

The pseudo-code of incrementally generating the hierarchi-

cal access trees for a document collection is presented in

Algorithm 1. Based on Algorithm 1, a set of integrated access

trees are constructed for the documents. Note that, all the

nodes in an access tree compose a monotone access structure

and each access tree contains several document identifiers. All

the documents in a tree can be encrypted together, which will

be discussed in Section IV.B. The identifier of the node x in

an access tree is assigned as follows:

1. If x associated with attribute Ai is a leaf node, its

numerical identifier is i.

2. If x is a non-leaf node and associated with a set of ordered

attributes Ai, Aj, , Ak (i < j < < k), its numerical

identifier is ij k.

In this way, each non-leaf node in the access structure has a

unique identifier and apparently the leaf nodes associated with

a same attribute share a same identifier.

B. Hierarchical Document Encryption

We first describe the system model of hierarchical attribute-

based document encryption scheme as shown in Fig. 4.

The data owner first selects a set of content keys ck =

ck1, ck2, , ckN which are used to encrypt the documents

in symmetrically. Then, the content keys are hierarchically

encrypted by the attributes assigned by the data owner. The

encrypted documents, access structure and encrypted content

keys are outsourced to the cloud server. In addition, the index

structure of the document collection is also stored in the cloud

server to support document search and it will be discussed in

Section V. Once the encrypted search results are sent to the

data users, they decrypt the content keys by their secret keys

and further decrypt the documents based on the decrypted

content keys. In the following, we mainly discuss how to

In addition, G0 is a bilinear group if the group operations

in G0 and the bilinear map e : G0 G0 G1 are both

efficiently computable. The Lagrange Coefficient i,S for
i Zp and a set, S, of elements in Zp is defined as i,S(x) =

 x−j
. In addition, a hash function H : 0, 1 ∗

is employed to map the string attributes to a random group

element in G0.

The detailed process of encrypting the documents is pre-

sented in the following:

Setup. Each document in is assigned with a set of

attributes and the access structure of the document collection

is constructed based on Algorithm 1. A set of content keys

ck = ck1, ck2, , ckN are randomly selected for the files

in which are used to encrypt the files symmetrically. Then

the setup algorithm chooses a bilinear group G0 with g as a

generator, a bilinear map e : G0 × G0 → G1 and two

random numbers α, β ∈ Zp. The public key is published

as:

PK = (G0, g, h = gβ, e(g, g)α)

and the master secret key MSK is (β, gα).

Encrypt(PK, ck, ST). For each attribute Ai in , we first
randomly select a unique secret number si Zp. si Zp. Then
we choose a secret number skx for each node x in the access

trees. In each access tree, these secret numbers for the nodes

are chosen in a bottom-up manner, starting from the leaf nodes

to the root node. The number skx of the leaf node x associated

with attribute Ai is set as si. Then for the non-leaf node x with

a set of child nodes Sx, the secret number skx is computed

as skx = z Sx
skz i,S

x
′ (index(x)) where i = index(z),

Sx
′ = index(z), z Sx , index(x) is the numerical identifier

of node x. By iterating the above process, each node in the

access structure can be assigned with a secret number.

Then, the content keys are encrypted by the secret numbers

of the nodes in the access trees. As presented in Algorithm

1, each node x contains a set of file identifiers fm, , fn

which can be returned by file(x). We encrypt all the cor-

responding content keys {ckm,· · ·, ckn} by the same secret

number skx. Specifically, for each access tree in ST , let
Y be the set of leaf nodes in . All content keys related with

are encrypted together and the ciphertext is constructed as

follows:

CT = (T , ∀x ∈ T , fi ∈ file(x) : Cx
∗ = gskx , Ci =

cki · e(g, g)α·skx ,∀y ∈ Y : Cy = hsky , Cy
′ = H(att(y))sky)

Note that, several leaf nodes y1, y2, · · · , yd of different access

trees T1, T2, · · · , Td may share a same attribute Ai and in this

case, Cy1 = Cy2 = · · · = Cyd = h , Cy = Cy2
= · · · =

encrypt the content keys in detail. Cy
′
d

 = H(Ai)si . Therefore, in the ciphertext of the whole

We first introduce the conceptions of bilinear map and

Lagrange interpolation which are involved in our scheme.

Let G0 and G1 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G0 and e be a bilinear map,

e : G0 × G0 → G1 with the following properties:

1. Bilinearity: For all u, v G0 and a, b Zp, e(ua, vb) =
e(u, v)ab.

2. Non-degeneracy: e(g, g) = 1.

3. Distributivity: For u, v, w G0 and a, b, c Zp,

e(ua, vbwc) = e(ua, vb)e(ua, wc).

document collection, only (i.e., the number of attributes)

records of Cy and Cy
′ need to be stored.

KeyGen(MSK, S). The key generation algorithm takes

a set of attributes S as input and output a secret key that

identifies the set. We first chose a random r Zp, and then

random rj Zp for each attribute Aj S. Then the keys are

computed as follows:

SK =(D = gα hr , Aj S : Dj = gr H(Aj)rj , Dj
′ = hrj)

Decrypt(CT, SK). We employ a recursive algorithm

DecryptNode(CT, SK, x) to decrypt the content keys. This

http://www.ieee.org/publications_standards/publications/rights/index.html

Fig. 5. Comparison of CP-ABE, FH-CP-ABE and our scheme

algorithm takes a ciphertext CT, a private key SK which is

associated with a set of attributes S, and a node x from as input.

If the node x is a leaf node, let Ai = att(x), and if Ai S,

the algorithm is defined as follows:

 e(Di, Cx)

Fig. 6. An ARF tree

number s31, s32. In FH-CP-ABE, file F1, F2 share an access

structure and they are encrypted together. File F3 is encrypted

individually. In this case, attribute A1 is related with two

secret number s11, s12. Attribute A2 is related with s2 and

attribute
DecryptNode(CT, SK, x) = e(D′ , C′) A3 is related with s31, s32. In our scheme, each attribute is

i x related with only one secret number.
e(gr · H(Ai)ri , hskx)

e(hri , H(Ai)skx)

e(gr , hskx)e(H(Ai)ri , hskx)
=

e(hri , H(Ai)skx)

= e(g, g)rβ·skx

If Ai / S, we define DecryptNode(CT, SK, x) = .

When x is a non-leaf node, the algorithm is operated

recursively. Specifically, it processes as follows: we denote

the set of x’s children nodes by Sx. For each node z Sx, it

calls DecryptNode(CT, SK, z) and stores the output as Fz. If

at least one Fz =⊥, the function DecryptNode(CT, SK, x)

returns ⊥. Otherwise, we denote i = index(z), Sx
′ =

{index(z), z ∈ Sx} and compute

V. EFFICIENT RETRIEVAL OVER ENCRYPTED DOCUMENT

COLLECTION

In this section, an efficient retrieval scheme over encrypted

document collection is designed and we first describe the

process of constructing the ARF tree. Then a depth-first

searching algorithm of the ARF tree is designed and in

addition, it can be operated in a parallel manner flexibly.

Given a collection of documents = F1, F2, , FN ,

each document needs to be scanned for one time and the

number of each keyword is recorded. Then a normalized

vector for the document is generated based on the keyword

dictionary as discussed in Section III.B. The attribute

vector of a document can be built based on attribute dictionary
△i,S

x
′ (index(x))

x z

z∈Sx

= (e(g, g)rβ·skz)△i,S
x
′ (index(x))

z∈Sx

= (e(g, g)rβ·Σz∈Sx skz·△i,S
x
′ (index(x))

= e(g, g)rβ·skx

If a data user with a set of attributes S that satisfies the sub-

tree x, the data user can calculate A = Fx = e(g, g)rβ·skx

and then each content key cki encrypted by node x with

skx can be decrypted by computing Ci/(e(Cx
∗, D)/A) =

Ci/(e(gskx , gα hr)/e(g, g)rβ·skx) = cki. At last, all the
documents encrypted by cki can be decrypted. Otherwise, the

data user cannot decrypt the documents.

Note that, in the encryption phase, the secret numbers of

the nodes are chosen in a bottom-up manner which is totally

different from existing schemes such as CP-ABE and FH- CP-

ABE. An advantage of this manner is that all the same

attributes in different access trees share a same secret number

and this can significantly improve the flexibility of encryption,

decryption and secret keys distribution. As an example shown

in Fig. 5, three files F1, F2, F3 are associated with attribute sets

A1, A2 , A1, A2, A3 and A1, A3 , respectively. In CP-

ABE, the three files are encrypted individually and attribute

A1 is related with three random secret number s11, s12, s13,

A2 is related with s21, s22, A3 is related with random secret

and the associated attributes assigned by the data owner.

Organizing the document vectors properly can significantly

improve the search efficiency. In some encrypted document

retrieval schemes [17], [18], the document content vectors are

organized randomly and the search complexity is O(N), where

N is the number of documents. To improve search efficiency,

in some other schemes [15], [16], the vectors are organized

based on their relative similarities and they can obtain sub-

linear search efficiency. However, the search accuracy cannot

be guaranteed. In our scheme, the similarity between a pair

of documents is calculated based on both the content vectors

and attribute vectors. The proposed scheme can always obtain

the accurate search results with at least a sub-linear search

efficiency.

For convenience sake, we first describe the structure of an

ARF tree briefly. An ARF tree is presented in Fig. 6 and it

can be observed that the ARF tree is a height-balanced multi-

way tree. An ARF tree has three main parameters including

branching factors K1, K2 and threshold T which are preset by

the data owner. A leaf node Li contains at most K1 document
vectors and it is defined as follows:

Li = (ARF, child1, · · · , childj), 1 ≤ j ≤ K1

where ARF is the ARF vector of the cluster, childj is a

pointer to the j-th document vector in the cluster. Each leaf

node represents a micro cluster composed of a set of document

http://www.ieee.org/publications_standards/publications/rights/index.html

vectors. Each non-leaf node NLi contains at most K2 child

nodes and it is defined as follows:

 Algorithm 2 DepthFirstSearch.

Input: an ARF tree with root r, a query vector VQ, an attribute

vector VQ
′ of the data user

NLi =(ARF, ARF1, child1, · · · , ARFj, childj), 1 ≤ j ≤

K2

where ARF is the ARF vector of the whole cluster represented

by NLi, ARFj is the ARF vector of the j-th sub-cluster and

childj is a pointer to the child node representing the sub-

cluster. Therefore, a non-leaf node represents a cluster made up

of all the sub-clusters represented by its child nodes. Further,

the cluster of a leaf node must satisfy a threshold requirement:

the radius of the cluster which can be calculated by (11) has

to be less than T .

We construct the ARF tree in an incremental manner which

Output: The most k relevant legal document vectors

1: u r;
2: while u is not a leaf node do
3: for all the child nodes v of node u do
4: Calculate the relevance scores between v with VQ by

RScore(v, VQ);
5: Check whether the attribute set Av,min is covered by VQ

′ by

comparing Length(Av,min VQ
′) and Length(Av,min);

6: u the most relevant child node whose attributes are
covered by VQ

′ ;
7: end for
8: end while
9: Select the most relevant k document vectors in the leaf node u

is similar to the construction process of the CF tree [42]. The

process of inserting a document Fj with vector Vj, Vj
′ into

the ARF tree is presented as follows:
• Identifying the appropriate leaf node: Starting from the

whose attributes are covered by VQ
′

10: Stack.push(r);
11: while Stack is not empty do
12: u ← Stack.pop();

and construct RList;

root, Fj recursively descents the ARF tree by choosing the

most similar child node according to the similarity scores

between Fj and the sub-clusters as defined in (8) until it

reaches a leaf node.

Modifying the leaf node: When Fj reaches a leaf node

Li, it tests whether Li can “absorb” Vj, Vj
′ without violating

the constraints of K1 and T . If so, Vj, Vj
′ is inserted into

Li and the ARF vector of Li is updated based on Theorem 1
as discussed in Section III.C. If not, we must split Li to two

leaf nodes. Node splitting is done by choosing the farthest

pair of document vectors based on (5) as seeds, and then

redistributing the remaining document vectors based on the

closest criteria. The ARF vectors of the two new leaf nodes

need to be recalculated.

• Modifying the path from the root node to the leaf node:

13: if the node u is not a leaf node then
14: if RScore(Vu,max, VQ) > kthScore and

Length(Au,min VQ
′) = Length(Au,min) then

15: Sort the child nodes of u in ascent order based on the
relevant scores with VQ whose attribute sets are covered
by VQ

′ ;
16: Push the children of u into Stack in order, i.e., the most

relevant child is latest inserted into Stack;
17: end if
18: else
19: Calculate the relevance scores between the document vec-

tors in the leaf node with VQ and compare their attributes
with VQ

′ ;
20: Update RList;
21: end if
22: end while

 23: return RList

After inserting Vj, Vj
′ into a leaf node, we need to update

the ARF vector for all the nodes on the path to the leaf node

Li. In the absence of a split, this simply involves updating

ARF vectors based on Theorem 1. A leaf node split requires

us to insert a new leaf node to the parent node. If the parent

node has space for the new leaf node, we just need to insert

the new leaf node into it and then update ARF vector for the

parent node. In general, however, we may have to split the

parent node as well, and so up to the root. If the root is split,

the tree height increases by one.

Except for K1, K2, and T , the parameter γ can also affect

the structure of the ARF tree. If γ is set to 1, the documents

will be organized based on their content only and the associ-

ated attributes are ignored. On the contrary, if we set γ as 0,

the attributes of the documents decide the ARF tree and the

content of the documents are not employed. In general, we can

set γ as a number between 0 and 1 to balance the important

degrees of documents’ contents and attributes.

Another challenge is searching the top-k relevant documents

whose attributes are covered by the data users. We design a

depth-first search algorithm for the ARF tree and the pseudo-

code is presented in Algorithm 2. For convenience, some

symbols and functions are first defined as follows:

kthScore - The smallest relevance score in current result

list RList which stores the most k relevant legal accessed

document vectors with VQ and the corresponding relevance

scores in order.

RScore(u, VQ) - The relevance score between the cluster

represented by node u and a query vector VQ is defined as

RScore(u, VQ) = c · VQ where c is the center of the cluster.

Stack - We employ the variable Stack to store the nodes

which need to be searched in the future. In addition,

Stack.push(u) inserts node u into Stack and Stack.pop()

returns the latest inserted node.

Length(V ′) - This function returns the number of

non-zero elements in attribute vector V ′. For two attribute
vectors V1

′ and V2
′, we can test whether V1

′ is covered by

V2
′ by checking whether Length(V1

′ V2
′) = Length(V1

′).

If Length(V1
′ V2

′) = Length(V1
′), V1

′ is covered by V2
′;

otherwise, V1
′ is not covered by V2

′.
As shown in line 1 to line 9 in Algorithm 2, we first need to

initialize RList by finding the most similar leaf node. Then,
as shown in line 10 to line 22, the paths in the tree needed to

be searched are selected by criteria RScore(Vu,max, VQ) >

kthScore and Length(Au,min VQ
′) = Length(Au,min).

This is reasonable considering that if RScore(Vu,max, VQ)
kthScore for a cluster, it is impossible that any document

vector in the cluster can be a candidate of the search result

because the elements in VQ and Vmax are naturally nonnega-

http://www.ieee.org/publications_standards/publications/rights/index.html

T ∀ ∈

tive. In addition, if Length(Au,min VQ
′) = Length(Au,min)

for a cluster, all the attributes of the documents in the cluster
cannot match that of the data user. As a consequence, this

cluster is also unnecessary to be searched. However, if a leaf

node is searched, the result list RList needs to be updated.

In this way, quite many paths are pruned and hence the

search efficiency greatly improves. Once the top-k relevant

documents are located in the ARF tree, the corresponding

encrypted documents are sent to the data user. Apparently,

these legal documents can be decrypted by the data user and

then the document query process is completed.

We can further improve the search efficiency by operating
the searching process in parallel. In the search process, all the

processors need to share the same result list RList. Assume

that there is a set of processors = p1, p2, , pl and

given a search request, an idle processor pi is used to find

most relevant leaf node on the tree and initialize RList.
Then, all the necessary search paths are selected based on

criteria VQ Vmax > kthScore and Length(Amin VQ
′) =

Length(Amin). If the search process can be continued on q
search paths and there are more than q idle processors, any q
processors are selected and each processor is responsible for

searching a child path. If there is q′(q′ < q) idle processors,

they search the latest inserted q′ children paths in Stack.
Once an idle processor appears, it continue to search the

node generated by Stack.pop(). At last, the most relevant k
encrypted files (i.e., the search result) are sent to the data

user and they are decrypted by the secret key of the data user.

Though the document retrieval efficiency is greatly im-

proved based on the ARF tree, a companying challenge is

how to protect the privacy of the document vectors in the

index structure and query vectors. Fortunately, this problem

has been widely discussed and researched [15]–[17], [37]. In
this paper, we strictly employ the method in [18] to protect

a simulator that can play the DBDH game with an advantage
ε . The game is executed as follows:

First, the challenger chooses G0, G1, g, a, b, c, t and a bilin-

ear map e as specified in Section IV.B. Then he randomly

flips a fair binary coin v and if v = 1, T = e(g, g)abc,

i.e.,(g, A = ga, B = gb, C = gc, T = e(g, g)abc) BDH ;

otherwise, if v = 0, T = e(g, g)t, i.e., (g, A = ga, B =

gb, C = gc, T = e(g, g)t) BDH . The challenger sends

(g, A, B, C, T) = (g, ga, gb, gc, T) to the simulator . The

simulator now plays the role of challenger in the security

game. Then, the security game are executed as follows:

Init. The adversary dv submits the simulator a set of

attributes S that it wants to be challenged upon.

Setup. The simulator sets α = α′ + ab where α′
is randomly selected from Zp and it computes e(g, g)α =

e(g, g)α
′

· e(g, g)ab. It further sets h = gβ = gb = B. At last,
the public key PK is sent to the adversary Adv.

Query Phase 1. The adversary dv queries the secret

keys SK of any access structure A∗ with a set of attributes

S′ and S ¢ S′. The simulator B randomly selects a number

r′ ∈ Zp and set r = r′ − a. Then it calculates D = gα · hr =

gα
′+ab · gb(r

′−a) = gα
′

· hr
′

. For each attribute Aj ∈ S′,

B randomly chooses rj ∈ Zp and calculates Dj = g
(r

′−a) ·

H(A)rj = g
r′

· H(A)rj and D′ = Brj . At last, the secret
key SK is sent to the adversary Adv.

Challenge. For convenience sake, we assume that only
one file is encrypted and consequently the ciphertext can be

simplified as CT = (, Cx
∗, Ci, y S ′ : Cy = Bsky , Cy

′ =

H(att(y))sky). The adversary dv submits two messages M0

and M1 with equal lengths to . The simulator randomly

flips a coin µ 0, 1 and encrypts Mµ with attribute set

S. Let Cx
∗ = gskx = gc = C . Suppose that the simulator

is given a BDH tuple, that is T = e(g, g)abc. Then we

the security of the document vectors while maintaining the have C̃i = Mµ · e(g, g)αc

= Mµ · e(g, g) abc · e(g, g) α
′c =

searchability.
VI. SECURITY ANALYSIS

Mµ T e(g, g)α
′c. We see that the ciphertext is a valid

encryption of Mµ. Otherwise, we have that T = e(g, g)t is a

random element of G1. In that case the ciphertext will give
In the document retrieval system, the cloud server and

CA center are assumed to be trustable. In this section, we

focus on the security of the proposed hierarchical document

encryption scheme and its security mainly involves two aspects

including document confidentiality and content keys confi-

dentiality. The documents are encrypted based on symmetric

encryption schemes (e.g., AES) with content keys and their

security is out of the scope in this paper. In this section, we

analyze the security of the content keys which are encrypted by

the proposed hierarchical encryption scheme. We provide the

Decisional Bilinear Diffie-Hellman [28], [41], [43] assumption

(DBDH) in Section III.D and Selective-Set Security Game is

given Section III.E. In this section, we reduce the security

of the content keys to the hardness of the DBDH and prove

the security of the proposed scheme under the Selective-Set

Security Game.

Theorem 2: Under the DBDH assumption, no polynomial

time adversary can win the Selective-Set Security Game.

Proof: Suppose there exists an polynomial adversary dv
that can break our scheme with an advantage ε. We can design

no information about the simulator’s choice of µ. At last, the
CT is sent to Adv.

Query phase 2. The query phase 1 is repeated.

Guess. The adversary dv makes a guess µ′ of µ based on
the obtained information. At the same time, the simulator
also makes the corresponding guess of v in playing the DBDH

game based on the different results the adversary dv guessed.

If µ′ = µ, outputs guess v′ = 1 in playing the DBDH game
and points out that the challenger given 5-tuple to it which is

selected from BDH . If µ′ = µ, outputs guess v′ = 0 in
playing the DBDH game and points out that the challenger

given 5-tuple to it which is selected from BDH .

The probability that the simulator successes in playing the

DBDH game between simulator and challenger is calculated

as follows.

If v = 1, the challenger generates a BDH tuple

(g, ga, gb, gc, e(g, g)abc), i.e. (g, A, B, C, T) BDH . Then we

see that CT is a valid encryption of Mµ and by definition, in

this case the adversary dv has a non-negligible advantage ε

to guess the correct µ′, whose probability of success can be

· ·

http://www.ieee.org/publications_standards/publications/rights/index.html

⊇ ⊇ · · · ⊇

TABLE I. Comparison of CP-ABE, FH-CP-ABE and our scheme

Component CP-ABE FH-CP-ABE Our Scheme

Encryption Time [2(|AC1|+· · ·+|ACN|)+N]CG0+NCG1+NCe

2[(|t1|+· · ·+|tN |)+N]CG1+[2(|AC1 |+· · ·+|ACN

|)+N]Ce

3LG0+LG1

LZp+LG0

[2(|AC1 |+· · ·+|ACN |)+N]LG0

[2(|AC1 |+· · ·+|ACN |)+N]LG0+NLG1

Null (2|A|+ρN

)CG0+NCG1+NCe

2N (ρ+1)CG1+(2|A|+N

)Ce

2LG0+LG1

LZp+LG0

(2|A|+1)LG0

(2|A|+ρN)LG0+NLG1

Decryption Time Null

The Size of PK 3LG0+LG1

The Size of MSK LZp+LG0

The Size of SK

The Size of CT

[2(|AC1 |+· · ·+|ACN |)+N

]LG0

Null

calculated as Pr[µ′ = µ (g, A, B, C, T) BDH] =
1
 + ε.

If v = 0, the challenger builds a random 5-tuple

(g, ga, gb, gc, e(g, g)t), i.e. (g, A, B, C, T) BDH . Then we

have that T is a random element of G1. The adversary dv

did not get any information about the message Mµ, so there

is no advantage to guess the correct µ′. As a consequence,
the adversary can make a correct choice with a probability
1 . Therefore, the probability of success for the simulator is

As a consequence, our scheme performs better then CP-

ABE in time costs of encryption and decryption, and the

sizes of PK, SK and CT . The two schemes have same

performance in the size of MSK. In conclusion, our scheme

can improve time and storage efficiency compared with CP-

ABE. For a constant attribute set and parameter ρ, the

encryption time, decryption time and size of CT all increase

linearly with the number of documents in our scheme. The 2

Pr[µ′ = µ|(g, A, B, C, T) ∈ RBDH] =
1

.

sizes of the keys are independent of the document collection.

At last, the overall advantage of B in playing the DBDH
game can be calculated as 1 Pr[µ′ = µ|(g, A, B, C, T) ∈

In addition, our scheme outperforms FH-CP-ABE in terms of
the size of PK and SK and they have similar performance

PBDH] +
1
 Pr[µ′ = µ| 2 (g, A, B, C, T)

∈ RBDH] − 1 = ε . in terms of MSK. Considering that FH-CP-ABE is designed
Based on the definition of DBDH assumption, we can infer
that our scheme is secure. The theorem is proved.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the hierar-

chical document encryption scheme and in addition the search

efficiency of the ARF tree. We first analyze the efficiency the-

oretically and then conduct experiments to verify the analysis

result.

 A. Theoretical Analysis

We compare our hierarchical encryption scheme with CP-

ABE scheme in [21] and FH-CP-ABE scheme [28], and some

definitions are defined first. We assume that CGi (i = 0, 1) is

the time cost of an operation on the group such as exponenti-

ation or multiplication. Let Zp be the group 0, 1, , p 1

and Ce be the cost of an bilinear map operation e. Let N be

the number of documents in the collection, ρ be a parameter

that associated with Algorithm 1 and ρN is the number of

the nodes in all the access trees. Considering that a set of

file identifiers share a node in the access trees, ρ is naturally

smaller then 1. Let , Au, ACi be the attribute dictionary,

the attributes associated with the data user and document Fi
respectively. Let ti be the number of interior nodes in the

access tree of file Fi. In addition, we define | ∗| as the number

of elements in , L∗ as the length of an element in .
In the analysis, we assume that the data owner has N

document files and their content keys are encrypted by CP-

ABE, FH-CP-ABE and our scheme. Note that, we focus on

the encryption process of the content keys rather than that

of the documents which are encrypted by the content keys

symmetrically. We further assume that a data user is respon-

sible for decrypting all the documents and the analysis result

is presented in Table 1. For a large document set, we have

|A| ≪ (|AC1 |+· · ·+|ACN |) and ρN < N ≪ |t1|+· · ·+|tN |.

to encrypt a set of documents with incremental attribute sets,
i.e., AC1 AC2 ACN , it is impossible to accurately

predict the time cost of encryption and decryption and the

size of CT for a document collection with randomly assigned

attribute sets. As a consequence, we will further compare our

scheme with FH-CP-ABE by simulation in Section VII.B.

The organization structure of the document collection af-

fects the search efficiency significantly. The keyword balanced

binary (KBB) tree [18] can provide accurate search result.

However, the document vectors are randomly inserted into the

tree and they are organized chaotically. Some similar vectors

may locate very far in the tree and some totally different

vectors may be neighbors with each other. Consequently, the

interior nodes in the tree can provide very limited information

to lead a query vector to the area with a set of strongly relevant

document vectors. On the contrary, the vectors in the ARF tree

are organized strictly according their similarities and similar

vector can always compose a cluster in spite of the vectors’

input order. The query vector can easily locate a cluster that

contains relevant document vectors. The search proportion is

defined as the proportion that the document vectors being

searched in a search process and it is calculated by the number

of the searched nodes to the number of all the nodes in the

tree. A basic comparison between the two trees is presented

in Fig. 7. All the document vectors are randomly generated in

2D and 3D space. To be fair, we ignore the attributes of data

user and documents considering that the KBB tree does not

support attribute constrained search. It can be observed that

the ARF tree outperforms KBB tree significantly in both 2D

and 3D spaces. Specifically, the search proportion of ARF tree

is about 5% to 10% to that of KBB tree.

B. Experimental Simulation

We conduct a thorough experimental evaluation for the pro-

posed document retrieval scheme on a real world data set: the

http://www.ieee.org/publications_standards/publications/rights/index.html

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. , NO. , 2017

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8 9 10

1000

800

600

400

200

0

CP−ABE

pr=0.25

pr=0.3

pr=0.4

pr=0.5

pr=0.6

pr=0.7

pr=0.8

pr=0.9

pr=1.0

Number of data points

 Fig. 7. Search proportion of KBB tree and ARF tree

x 10
4

100 200 300 400 500 600 700 800 900 1000

Number of files

(a)

 Algorithm 3 AttributeGeneration.

Input: = C1, C2, C3, C4 , , pr (0.25 pr 1)
Output: The attributes of each document

3000

2500

CP−ABE

pr=0.25
 pr=0.3

pr=0.4

1: for each document Fi

2: Att = ∅;
∈ F do 2000 pr=0.5

pr=0.6

 pr=0.7

3: Randomly select a number m from 1, 2, 3, 4, 5 ;
4: Randomly select an attribute An from and we assume that

An Ck, k = 1, 2, 3, 4;
5: Insert An to Att;
6: for i = 2 : m do

7: Randomly generate a number p′
r(0 p′r 1) and if p′r

pr, randomly select an attribute Aq from Ck; otherwise,

1500

1000

500

0

pr=0.8

pr=0.9

pr=1.0

uniformly randomly select an attribute Aq
8: Insert Aq to Att;
9: end for

from A;
100 200 300 400 500 600 700 800 900 1000

Number of files

(b)

10: The attributes in Att is defined as the attributes of document
Fi;

11: end for

 Enron Email Data Set [44]. The data set is first processed and

1,000 records are randomly chosen as our experiment corpus.

We implement the hierarchical encryption scheme based on

CP-ABE toolkit and Java Pairing-Based Cryptography library

[45]. The document search process is implemented based on

Java language. All the following experiments are conducted

on a 2.6 GHZ Intel Core i5 processor, Windows 7 operating

system with a RAM of 4G.

1) Effectiveness of the Integrated Access Trees: The at-

tribute set is defined as = A, B, , Z which is

composed of 26 letters. Then, all the attributes are divid-

ed into 4 categories, i.e., C1 = A, B, , tt , C2 =

H, I, , N , C3 = O, P, , T , C4 = U, V, , Z .

The associated attributes of a document is randomly generated

through Algorithm 3. We assume that each document has at

least 1 attribute and at most 5 attributes. As shown in line 5

of Algorithm 3, the attributes of a document trend to belong

to one attribute category with a large probability pr. This is

reasonable considering that the attributes are associated with

each other and if a set of attributes are strongly related, they

are likely to belong to a document together. For example, if a

document is related with “computer”, it is more likely to be

also related with “network” rather than other attributes such

as “economic” and “finance”.

Parameter pr affects the access trees greatly as presented

Fig. 8. Number of access trees and that of nodes in the trees with different

pr and number of files

in Fig.8. For a constant pr, the number of the access trees

monotonously increases with the number of files as shown

in Fig.8(a). When pr is set to 1.0, all the attributes of a file

fall in a sub-category of and in this case the number of

access trees is the smallest. Note that, a small number of access

trees can lead a high encryption and decryption efficiency,

because many documents share an access tree and they can

be encrypted together in this case. When we decrease pr from

1.0 to 0.3, the attributes of a file are more and more likely to

be selected from the whole attribute set randomly and the

diversity of the documents’ attributes increases. Consequently,

the number of the access trees increases. In the worst case, i.e.,

pr is set to 0.25 and the attributes of a file are totally randomly

selected from , the number of access trees is the largest with

a constant number of files. In CP-ABE, each document has

an access tree and the number of all the access trees equals

to the number of files which is much larger than that of the

proposed scheme. As shown in Fig.8(b), the number of nodes

in the access trees has similar pattern with the number of

access trees and the proposed scheme always performs better

than CP-ABE.

We further analyze the distribution of files in the access

trees and simulation result with N = 1, 000 is provided in Fig.

9. The access trees are first descendingly sorted according to

their sizes, i.e., the number of nodes in the trees, and then the

numbers of files in the trees are calculated. It can be observed

http://www.ieee.org/publications_standards/publications/rights/index.html

500

400

300

200

100

 0

pr=0.25

pr=0.3

pr=0.4

pr=0.5

pr=0.6

pr=0.7

pr=0.8

pr=0.9

900

800

700

600

500

400

300

200

100

0

Storage space of CP−ABE

Storage space of FH−CP−ABE

Storage space of our scheme

25 50 75 100 125 150 175 200 225 250 275 300

Number of the trees

Fig. 9. Distribution of files in the access trees

100 200 300 400 500 600 700 800 900 1000

Number of files

Fig. 11. Storage space of the ciphertext CT

1200

1000

800

600

400

 200

Encryption time of CP−ABE

Encryption time of FH−CP−ABE

Encryption time of our scheme

Decryption time of CP−ABE

Decryption time of FH−CP−ABE

Decryption time of our scheme

4000

3500

3000

2500

2000

1500

1000

 0
100 200 300 400 500 600 700 800 900 1000

Number of files

Fig. 10. Efficiency of encryption and decryption

 that about 30% to 50% files are covered by the 25 largest trees

and about 40% to 80% files are covered by the 50 largest trees.

In addition, the files trend to aggregate with each other to some

larger trees with the increasing of pr. When we set pr to 1,

more than 90% files are covered by the largest 100 access trees

and, most of the other trees contain a small number of nodes

and they may cover 1 or 2 files. Without loss of generality, in

the following, we assume that pr equals to 0.9.

2) Efficiency of Hierarchical Document Encryption: The

time consumptions of encrypting and decrypting the whole

document collection are presented in Fig.10. In CP-ABE,

each document is encrypted and decrypted individually. Con-

sequently, the time of both encryption and decryption increases

almost linearly with the number of files. On the contrary,

a set of files in our scheme share an access tree and they

are encrypted and decrypted together. The encryption and

decryption time increases logarithmically with the number of

files. Apparently, the proposed scheme is much more time

efficient than CP-ABE. Though the FH-CP-ABE performs

slightly better than CP-ABE, it cannot efficiently encrypt and

decrypt a document collection considering that the number of

integrated access trees are much larger than that of our scheme.

The storage space of the ciphertext is presented in Fig.11.

Note that, only the encrypted content keys are considered in

this experiment and the symmetrically encrypted documents

are not considered. The storage space of CP-ABE linearly

increases with the number of files and it can be explained

500
100 200 300 400 500 600 700 800 900 1000

Number of files

Fig. 12. Construction time of an ARF tree

by the fact that each file has a content secret key which is

encrypted individually. In our scheme, if a set of file have

similar attribute sets, they may share an access structure and

their content keys are related with each other. In addition, a

set of files can share a same content key if they have the

same attribute sets. Consequently, the proposed scheme is

more space-efficient than CP-ABE. Similar to the efficiency of

encryption and decryption, FH-CP-ABE performs better than

CP-ABE and worse than our scheme.

3) Efficiency of Document Retrieval: Except for providing

an efficient document encryption scheme, we also improve

the search efficiency compared with MRSE. Note that, in our

simulation, the index structures of both MRSE and ARF are

plaintext. The construction time of an ARF tree is strongly

related with the number of files and it is presented in Fig.12.

The index construction times of both the two schemes linearly

increase with the number of files. This can be explained

by the fact that most time is consumed in the process of

generating document vectors (about 3.2 seconds/file). The

ARF tree consumes slightly more time than MRSE, because

the document vectors need to be inserted into the tree.

Another measurement of our scheme is the search efficiency.

In the Enron Email Data Set, the documents have no attribute

which should be assigned by the data owner. In general,

the attributes of the documents are related with their con-

tents. However, in Algorithm 3, the attributes of a document

are randomly selected and they may mislead the ARF tree

http://www.ieee.org/publications_standards/publications/rights/index.html

60

50

40

30

20

10

0
100 200 300 400 500 600 700 800 900 1000

Number of files

Fig. 13. Search time of a query

construction process. Consequently, for convenience, in the

following we set γ equals to 1 when constructing the ARF

tree. In addition, k is set as 10 (i.e., 10 encrypted documents

are returned for a query). However, the attributes are employed

in the document search process and the simulation result is

provided in Fig.13. Apparently, the search time in MRSE

linearly increases with the number of files considering that

the document vectors are organized randomly and all the

document vectors need to be scanned for one time. However,

the ARF tree organizes the files based their similarities which

greatly improve the search efficiency. Specifically, quite a

number of the search paths are pruned in the search process

and ARF tree has logarithmic time consumption with the

number of files.

VIII. CONCLUSION

In this paper, we consider a new encrypted document

retrieval scenario in which the data owner wants to control

the documents in fine-grained level. To support this service,

we first design a novel hierarchical attribute-based document

encryption scheme to encrypt a set of documents together that

share an integrated access structure. Further, the ARF tree

is proposed to organize the document vectors based on their

similarities. At last, a depth-first search algorithm is designed

to improve the search efficiency for the data users which

is extremely important for large document collections. The

performance of the approach is thoroughly evaluated by both

theoretical analysis and experiments.

The proposed scheme can be further improved in several

aspects: First, in this paper, we assume that each node in

the access trees represent an “AND” gate and this limits the

flexibility of assigning the attributes to the documents. In the

future, we will attempt to introduce “OR” gates into the access

trees. Second, the access structure of the document collection

is generated in a greedy manner and we will check whether

it can be further optimized to decrease the number of access

trees. In addition, the revocation method of the data users’

attributes needs to be designed. Third, the update strategy

of the ARF tree should be proposed. Though the ARF tree

naturally supports inserting new nodes to the tree, the method

of deleting a node from the tree didn’t provided. Fourth, a new

document collection, in which each file is associated with a

set of proper attributes, should be developed and a thorough

experiment should be conducted on the collection to test the

affection of parameter γ on the approach.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, pp. 69–73, Jan. 2012.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. SandP 2000.
Proceedings. 2000 IEEE Symposium on, pp. 0–44, 2002.

[3] E. J. Goh, “Secure indexes,” Cryptology ePrint Archive, http://
eprint.iacr.org/2003/216., 2003.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in ACM Conference on Computer and Communications Security, pp. 79–
88, 2006.

[5] J. Li, Y. Shi, and Y. Zhang, “Searchable ciphertext-policy attribute-based
encryption with revocation in cloud storage,” International Journal of
Communication Systems, vol. 30, no. 1, 2017.

[6] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute-
based keyword search over hierarchical data in cloud computing,” IEEE
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2017.

[7] A. Swaminathan, Y. Mao, G. M. Su, H. Gou, A. L. Varna, S. He, M. Wu,
and D. W. Oard, “Confidentiality-preserving rank-ordered search,” in
ACM Workshop on Storage Security and Survivability, Storagess 2007,
Alexandria, Va, Usa, October, pp. 7–12, 2007.

[8] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, pp. 1467–1479, Aug. 2012.

[9] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, “Zerber +r : top-
k retrieval from a confidential index,” in International Conference on
Extending Database Technology: Advances in Database Technology,
pp. 439–449, 2009.

[10] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” Lecture Notes in Computer Science, vol. 3089,
pp. 31–45, 2004.

[11] B. Dan and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of Cryptography Conference, pp. 535–554,
2007.

[12] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully
secure functional encryption: attribute-based encryption and (hierarchi-
cal) inner product encryption,” in International Conference on Theory
and Applications of Cryptographic Techniques, pp. 62–91, 2010.

[13] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[14] Y. Miao, J. Ma, X. Liu, Q. Jiang, J. Zhang, L. Shen, and Z. Liu, “Vcksm:
Verifiable conjunctive keyword search over mobile e-health cloud in
shared multi-owner settings,” Pervasive and Mobile Computing, vol. 40,
pp. 205–219, 2017.

[15] C. Chen, X. Zhu, P. Shen, J. Hu, S. Guo, Z. Tari, and A. Zomaya,
“An efficient privacy-preserving ranked keyword search method,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 951–963,
Apr. 2016.

[16] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized
search over encrypted outsourced data with efficiency improvement,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, p-
p. 2546–2559, Sep. 2016.

[17] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, pp. 222–233, Jan. 2014.

[18] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 340–352,
Jan. 2016.

[19] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in In-
ternational Conference on Theory and Applications of Cryptographic
Techniques, pp. 457–473, 2005.

[20] J. Hur and K. N. Dong, “Attribute-based access control with efficient
revocation in data outsourcing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 7, pp. 1214–1221, 2010.

[21] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy, p-
p. 321–334, 2007.

http://www.ieee.org/publications_standards/publications/rights/index.html

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. , NO. , 2017

[22] V. Goyal, A. Jain, O. Pandey, and A. Sahai, Bounded Ciphertext Policy
Attribute Based Encryption. DBLP, 2008.

[23] F. Guo, Y. Mu, W. Susilo, and D. S. Wong, “Cp-abe with constant-size
keys for lightweight devices,” Information Forensics and Security IEEE
Transactions on, vol. 9, pp. 763–771, May. 2014.

[24] Y. Yang, J. K. Liu, K. Liang, K. K. R. Choo, and J. Zhou, Extended
Proxy-Assisted Approach: Achieving Revocable Fine-Grained Encryp-
tion of Cloud Data, vol. 9327. Springer International Publishing, Sep.
2015.

[25] K. Liang, H. A. Man, J. K. Liu, W. Susilo, D. S. Wong, G. Yang,
Y. Yu, and A. Yang, “A secure and efficient ciphertext-policy attribute-
based proxy re-encryption for cloud data sharing ,” Future Generation
Computer Systems, vol. 52, pp. 95–108, Nov. 2015.

[26] Y. S. Rao, “A secure and efficient ciphertext-policy attribute-based
signcryption for personal health records sharing in cloud computing,”
Future Generation Computer Systems, vol. 67, pp. 133–151, Feb. 2017.

[27] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-grained
attribute-based data storage in cloud computing,” IEEE Transactions on
Services Computing, vol. 10, no. 5, pp. 785–796, 2017.

[28] S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie, “An efficient
file hierarchy attribute-based encryption scheme in cloud computing,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 6,
pp. 1265–1277, 2016.

[29] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services,” in ACM
Conference on Computer and Communications Security, pp. 735–737,
2010.

[30] Z. Wan, J. Liu, and R. H. Deng, “Hasbe: A hierarchical attribute-based
solution for flexible and scalable access control in cloud computing,”
IEEE Transactions on Information Forensics and Security, vol. 7,
pp. 743–754, Apr. 2012.

[31] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and
W. Shi, “Ciphertext-policy hierarchical attribute-based encryption with
short ciphertexts,” Information Sciences, vol. 275, pp. 370–384, Aug.
2014.

[32] E. Luo, Q. Liu, and G. Wang, “Hierarchical multi-authority and attribute-
based encryption friend discovery scheme in mobile social networks,”
IEEE Communications Letters, vol. 20, pp. 1772–1775, Sep. 2016.

[33] J. Li, Y. Wang, Y. Zhang, and J. Han, “Full verifiability for outsourced
decryption in attribute based encryption,” IEEE Transactions on Services
Computing, 2017.

[34] H. Qian, J. Li, Y. Zhang, and J. Han, “Privacy-preserving personal health
record using multi-authority attribute-based encryption with revocation,”
International Journal of Information Security, vol. 14, no. 6, pp. 487–
497, 2015.

[35] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, “User collusion avoidance
cp-abe with efficient attribute revocation for cloud storage,” IEEE
Systems Journal, 2017.

[36] Y. Guo, J. Li, Y. Zhang, and J. Shen, “Hierarchical attribute-based
encryption with continuous auxiliary inputs leakage,” Security and
Communication Networks, vol. 9, no. 18, 2016.

[37] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in ACM SIGMOD International
Conference on Management of Data, pp. 139–152, 2009.

[38] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the Acm, vol. 38, pp. 39–41, Nov. 1995.

[39] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: Outsourced attribute-
based encryption with keyword search function for cloud storage,” IEEE
Transactions on Services Computing, vol. 10, no. 5, pp. 715–725, 2017.

[40] C. D. Manning and P. Raghavan, Introduction to Information Retrieval,
vol. 1. Cambridge University Press, 2010.

[41] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” in ACM
Conference on Computer and Communications Security, pp. 89–98,
2006.

[42] T. Zhang, R. Ramakrishnan, and M. Livny, “birch:an efficient data
clustering method for very large databases,” pp. 103–114, in Proceedings
of the 1996 ACM SIGMOD International Conference on Management
of Data, 1996.

[43] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” Lecture Notes in Computer
Science, vol. 2008, pp. 321–334, 2015.

[44] C. Project, “Enron email dataset,” https://www.cs.cmu.edu/enron/, 2005.
[45] A. D. Caro and V. Iovino, “jpbc: Java pairing based cryptography,” in

Computers and Communications, pp. 850–855, Jun. 2011.

Na Wang received the B.S. and M.S. degrees in
Mathematics from Xinjiang Normal University, Chi-
na, in 2012 and 2015 respectively. She is currently
working toward the Ph.D. degree in the School of
Mathematical Sciences, Xiamen University, China.
Her research interests include cryptography, message
sharing and information security issues in distributed
and cloud systems.

Junsong Fu received the B.E. degree from Beijing
Jiaotong University, Beijing, China, in 2012. He is
currently working toward the Ph.D. degree in the
Key Laboratory of Communication and Information
Systems, Beijing Jiaotong University. His research
interests include in-network data processing, secret
sharing and information privacy issues in distributed
systems and Internet of Things.

Bharat Bhargava is a Professor of Computer Sci-
ence at Purdue University. He is the editor-in-chief
of four journals and serves on over ten editorial
boards of international journals. Prof. Bhargava is
the founder of the IEEE Symposium on Reliable and
Distributed Systems, IEEE conference on Digital
Library, and the ACM Conference on Information
and Knowledge Management. Prof. Bhargava has
published hundreds of research papers and has won
five best paper awards in addition to the technical
achievement award and golden core award from

IEEE. He is a fellow of IEEE.

Jiwen Zeng is a Professor of School of Mathematic
Science, Xiamen University. He obtained Ph.D de-
gree from Beijing University in 1995. As academ-
ic visiting professor, he once visited Birmingham
University of Unite Kingdom, York University of
Canada, Jena University of Germany and Pingdong
University in Taiwang, China. His research work is
supported by natural science foundation of China.
He is evaluation expert of state natural science
foundation in Mathematics and its application. His
research interests include mathematics, information

security and cloud computing.

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.cs.cmu.edu/enron/

