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Abstract- Internet of Things (IoT) and its applications 
have increased the number of multi-sensors computer 
applications. Then, the necessity of multi-sensor data 
merging and expert independent decision algorithms is 
real. This paper proposes a novel multi-sensor system 
smart control model based on Bayesian. Proposed “study 
on intelligent” algorithms are expect-dependent trainable 
predicting the system only from anterior and actual data. 
Simulations test on a three sensors system (sol 
temperature, air temperature, and moisture) an overall 
prediction precision of more than 96%. However, a real 
life customizable implementation of the proposed 
algorithm is needed.  
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1. INTRODUCTION 

The meteoric rise of Internet of Things (IoT) has 
increased the number of sensors in almost all computer 
applications and hence increases the necessity of multi-
sensor systems smart control algorithms. These 
algorithms are not only required to merge sensed data 
from a good number of sensors into a common 
representational format, but also to make relevant 
decisions. Despite the fact that suggested principles, 
procedures, theories and tools are approximately the 
same [1], decision algorithms depend on the number of 
sensors [2] [3] in the application context [4]. 
Furthermore, sensors characteristics increase 
exponentially the complexity of the system decision 
algorithm. 

2. RELATED WORKS AND OBJECTIVES 

Data fusion and decision making and related challenges 
[4] have been addressed by researchers for decades. 
Since then, two major approaches have emerged: 
artificial intelligence methods and probabilistic based 
methods. Artificial approaches, with the main focus on 
machine learning, fuzzy logic, have been reputed to yield 
higher accuracy compared to other techniques [2][5]. In 
this line, [6] proposed a generic data fusion system 
which established a relationship between the source of 
data and the type of processing in order to extract 
maximum possible information from data collected. The 

system was able to stand between the source data and 
the human and helped him to make decisions based on 
the fused output. The big challenge with these methods 
is the amount of data and processing need for training 
the decision making algorithm. 

Therefore, Bayesian approach, including Bayesian 
analysis, Statistic, and recursive operators stood as one 
of reliable alternatives. Used already for data fusion [7] 
Bayesian approach is being accepted to be one of the 
most classical fusion approach. Furthermore, the authors 
in [8] demonstrated that the data fusion based on Bayes 
estimation can weaken the possible sensor errors, 
resulting from the sensor faults and noise inference. The 
most appealing advantage of Bayes parameters 
estimation algorithms is the small amount of training 
needed for classification [9] [10] and its impendence 
toward system experts.  

This paper introduces the Naïve Bayes theorem in the 
decision algorithm from merged data collected from 
sensors with different characteristics. The algorithm 
should to make decision in control systems under multi-
sensor context. The proposed method includes system 
parameters learning and time-based system state 
prediction and is expected [11] (a) to easy design 
process with less free parameters to set, (b) to easy 
result application to a large variety of tasks, (c) to use a 
small amount of data for learning process (d) to be 
computationally fast when making decisions.  

3. PROPOSED MATHEMATICAL METHOD 

In this paper, Bayesian inference is used to draw 
conclusions about features (parameters) in system 
control based on a sample from the same system. Both 
parameters and sample data are treated as random 
quantities [12]. The proposed algorithm computes the 
distribution for the system parameters from the 
likelihood function which defines the random process 
that generates the data, and a prior probability 
distribution for the parameters.  

By assuming that all the variables are observed with no 
missing data and that all classes have equal prior 
probabilities [13], the proposed method estimates the 
probability of a system feature by the frequency of 
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occurrence of the same feature      in the feature 

database      {   
   

    
   

}. 

The conditional likelihood of this feature is computed by 
(1) and the density probability of the set of data D is 
computed by (2).  Since        occurs whenever        

and          , (3) is deducted from (2), then the 

logarithmic notation of  (3) gives (4). 
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Since [6] demonstrates that (4) formula can be 
simplified to (5), the Maximum Likelihood (ML) 
approach used in this paper is expressed by (6).  
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With        being the number of features in the database 

whose variable    is in the state    and parents are in the 
configuration   .  

This classifier was improved by Naive Bayes to handle an 
arbitrary number of independent variables by 
constructing the posterior probability for the feature    

given a set of variables,   {          }  among a set 
of possible outcomes   {          } by (7). Assuming 
that the variables are statistically independent, the 
likelihood is decomposed to a product of terms in (8). 
Then from (8) the estimation computed by (9). 
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Where:  

-  (             ): Posterior probability of class 

membership. 

-  (          |  ) : Likelihood which is the 

probability of the predicator given class. 
-       : class prior probability 

Using (9), any new case X can be labeled by a class level 
   with the highest posterior probability. Then after 

normalization, the decision distribution is :  
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4. PROPOSED COMPUTATIONAL MODEL 

The proposed computational protocol sketched in Figure 
1, uses the following steps: (a) getting data from sensors 
(b) split training set from test data (c) learning/training 
the model (d) predict class using Naive Bayes model. 

Figure 1: Naïve Bayes protocol for state estimation 

A. Collecting data from sensors  

During this step, the system collects data from a given 
number of sensors. Each sensor can be in one of the 
three states: low, adequate or high. Each sensor is 
assumed to be independent in terms of data types and 
collecting rate [14] [15]. The example provided in Table 
1 gives the ranges for the training system of three 
sensors.  

Table 1. Adequate range values for the system C. 
 
Sensor S1 S2 S3 

Values                             
 

B. Learning & training the model 

The proposed model is “study on intelligent” say it was 
trained from data collected from sensors [15]. Hence, the 
state of the system depends on values provided by 
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different sensors: at time t, Ct depends on the state of S1t, 
S2t, S3t, Snt. From example (Table 1), the System State 
had 27 different probable classes. Each class is 
composed by 3 different states provide by the 3 sensors.  
The class C1can be represented by: S1low, S2adequate, 
S3high, meaning that at a given time t, sensor 1 sent a 
value lower than 16, sensor 2 sent a value between 20 
and 25 and sensor 3 sent a value higher than 120. The 
learning process used it this paper can be summarized 
by algorithm 1 as follow:  

Algorithm 1: Training process 
Input: K (Training set) 
          For each class c in K do 
                Compute mean(k) and std(k) 
          End for 
Output: mean, std 

 
During the training stage, the mean and standard 
deviation values of the features for each class were 
computed.  

C. Classification 

Assuming that system parameters are distributed 
according to the Gaussian density, two parameters were 
computed. First the parent node without parents  . It 

probability       is the frequency of the    class in the 

training database. Since all the classes have the same 
probability at this stage:  
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Where: 
  : The size of the database 

 (  ): The number of observation belonging to the class 

   

Second, the probability of the children nodes were 
computed by using the Normal law in conditional 
probability of node     considering the parent     (12) 

then combine the different values computed in the 
previous step (13).             in (13) being constant 
hence easy to compute, (13) was rewritten as (14). 
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D. Decision 

The proposed Bayesian classifier (Algorithm 2) is a 
probabilistic model based on the Bayes rule [17] in 
which each element            ) is associated to a    

class with a maximum a posteriori. 
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Algorithm 2: Testing 
Input: k(Learned features) 
         For each class li do 
                 Calculate P(li|k) 
         End for 
Output:            {      }(estimated 
class) 

 
The probabilities for the objective existing in each class 
are computed and the highest is chosen as the estimated 
class.  

5. SIMULATION RESULTS 

The proposed computational model was evaluated and 
its goodness was tested using the following evaluation 
parameters: accuracy, precision, recall, f1 score drawn 
from a confusion matrix. Furthermore, imbalanced data 
set results were compared to balanced data set results 

A. Confusion matrix  

 
Figure 2. Confusion matrix for imbalanced data set 

Figure 2, shows a confusion matrix, with an accuracy 
rate of 87% for imbalanced data. In Figure 3, the false 
negative and the false positive have been minimized by 
balancing the data in the training set; the result shows 
that the accuracy of the model has improved from 
87.33% to 96.33%.  
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Figure 3. Confusion matrix with balanced data sent. 

Comparative Accuracy 

After varying the percentage of the learning set and the 
test set, we create 9 different set of data. Figure 3 show 
the relationship between the size of the learning set and 
the test set. 

(a) 

(b) 
Figure 4: Relation between the size of the 
learning set and accuracy.  (a) Imbalance data 
set (b) Balanced data set. 

 
Better result are obtained when the size of the training 
set ranges between 40 to 65 % as shown in (a) and (b) in 
Figure 4. On the other hand taking the same number of 
data for each class in the training set (balanced data set) 
can improve the accuracy of the system from 87.3% to 

96.33%.  Accuracy is misled by the class with high 
support, thus reducing the overall accuracy as shown in 
(a). 

Precision, recall, f1-score 

 
(a) 

 
(b) 

 
Figure 5: Precision (a) Precision for imbalance data set 

(b) Precision for balanced data set. 

Figure 5 shows that the balanced data set achieves high 
precision than the imbalance data set, reaching 6 times a 
precision of 100%, on the other hand, the highest 
precision for classes in the imbalance data set reached 
hardly reached 100%. Figure 5 represents the sensitivity 
of balanced and imbalance data set. 

In term of sensitivity, the balanced data set, produce a 
higher rate of sensitivity than the imbalance data set.   
F1-score conveys the balance between the precision and 
the recall, when dealing with imbalance classes, 
classification alone cannot be trusted to select a well 
performing model.  Figure 8, shows the relationship 
between precision, recall and f1-score.  
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(a) 

 
(b) 
 

Figure 6: Recall (a) Precision for imbalance data set (b) 
Precision for balanced data set. 

The support of the class in the training set has a positive 
impact on the precision of the class, especially when we 
have imbalance class in the training set.  Figure 7 shows 
the relationship between the support and the precision. 

 
(a) 

 
(b) 

Figure 7: f1 score (a) Precision for imbalance data set (b) 
Precision for balanced data set. 

 

 
(a) 

 
(b) 

Figure 8: Precision (a) Precision for imbalance data 
set (b) Precision for balanced data set. 

For imbalance class in the training set, the support of a 
class has a positive impact on the precision of the class; 
however, classes with a very high accuracy can create an 
accuracy paradox problem by predicting the value of the 
majority class for all predictions and achieve high 
classification accuracy.  

 
(a) 

 
(b) 

Figure 9: Relationship between the support and the precision. 
(a) Relationship between the support and precision for 

imbalance data set (b) Relationship between the support and 
precision for balanced data set. 
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6. DISCUSSIONS AND CONCLUSION 

A novel multi-sensor system smart control model based 
on Bayesian data was proposed. The proposed algorithm 
is able to predict the state of a system taking into 
account the actual and the anterior data collected from 
different types of sensors. For test seek, a three sensors 
system (sol temperature, air temperature, and moisture) 
was set and the algorithm performance was measured. 
Simulation tests have proved that the proposed 
algorithm can predict at an overall rate of more than 
96% the actual state of the system.  

Since the trained and proposed model is “study on 
intelligent”, the algorithm reduces the reliance on 
experts. It is a “previous system data” dependent model. 
This means that any non-expert can train and use the 
system. A few expertise is only required during the 
training step of the system. However, a real life 
customizable implementation of the proposed algorithm 
is needed.  
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