
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 2 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 326

A Novel Approach to Process Small HDFS Files with Apache Spark

Priyanka N Dukale1

1Department of Computer Engineering, SPPU University / Vishwabharati college of Engineering,
Ahmednagar, India

---***--
Abstract - Hadoop is an open source distributed computing
platform and HDFS is Hadoop Distributed File System. The
HDFS has a powerful data storage capacity. Therefore, it is
suitable for cloud storage system. However, HDFS was
originally developed for the streaming access on large
software; it has low storage efficiency for massive small files.
To solve this problem, the HDFS file storage process is
improved. The files are judged before uploading to HDFS
clusters. If the file is a small file, it is merged and the index
information of the small file is stored in the index file with
the form of key-value pairs. The MapReduce based
simulation shows that the improved HDFS has lower
NameNode memory consumption than original HDFS and
Hadoop Archives (HAR files). This memory consumption can
be optimized significantly if MapReduce based file
processing is reduced by Spark based file processing. Thus, it
can improve the access efficiency as well.

Key Words: Hadoop, Cloud storage, Map Reduce,
Apache Spark, Name Node/Data Node

1. INTRODUCTION

The Hadoop Distributed File System (HDFS) is the primary
storage system used by Hadoop Applications. HDFS is a
distributed file system that provides high-performance
access to data across Hadoop clusters. Like other Hadoop-
related technologies, HDFS has become a key tool for
managing pools of big data and supporting big data
analytics applications.

HDFS is typically deployed on low-cost commodity
hardware, so server failures are common. The file system
is designed to be highly fault-tolerant, however, by
facilitating the rapid transfer of data between compute
nodes and enabling Hadoop systems to continue running if
a node fails. That decreases the risk of catastrophic failure,
even in the event that numerous nodes fail.

When HDFS takes in data, it breaks the information down
into separate pieces and distributes them to different
nodes in a cluster, allowing for parallel processing. The file
system also copies each piece of data multiple times and
distributes the copies to individual nodes, placing at least
one copy on a different server rack than the others. As a
result, the data on nodes that crash can be found
elsewhere within a cluster, which allows processing to
continue while the failure is resolved.

HDFS is built to support applications with large data sets,
including individual files that reach into the terabytes. It
uses a master/slave architecture, with each cluster
consisting of a single NameNode that manages file system
operations and supporting Data Nodes that manage data
storage on individual compute nodes.

HDFS is originated primarily to tackle the problem of
handling large files. As per core design, HDFS processes
large files with exceptional performance. However,
problem arises while processing large number of small
files. Performance of HDFS decreases significantly while
handling such usual cases.

Various approaches have been proposed to address this
issue through heterogeneous aspects. Some of them have
been discussed in next section as well. A novel approach is
proposed in this paper on a top of all these existing
approaches. This approach looks towards brand new
Spark technology as a more optimal way to process HDFS
files with the in memory computation capabilities of
Spark.

2. LITERATURE REVIEW

2.1 Harball Archive

Harball archive contains the metadata entry for the index
of file it contains. This index serves as a meta-meta data
layer for the data in the archive, causing slight overhead in
referencing files. File referencing request goes through the
metadata of the archive to the index of metadata that the
archive contains. The overhead of file referencing is
negligible as it is done in main memory. [1]

2.2 HDFS I/O Speed Optimization

HDFS is designed to store large files and suffers
performance penalty while storing large amount of small
files. This performance penalty can be reduced drastically
by optimizing HDFS I/O speed of small files based on the
original HDFS. The basic way is let one block save many
small files and let the datanode save some meta-data of
small files in its memory, this will reduce the read and
write request received by the namenode; furthermore, by
sorting files with directory and file name when reading
and writing files will further optimize increase the speed
of reading. [2]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 327

2.3 Prefetching Technique

Access patterns play crucial role in performance if HDFS is
being accessed by heterogeneous users. These
performance issues have the remedy of an efficient
Prefetching technique for improving the performance of
the read operation where large number of small files is
stored in the HDFS Federation. This Prefetching algorithm
learns through the files access patterns progressively.
Even though some existing solutions incorporated
prefetching, it was purely based on the locality of
reference. The proposed solution based on the file access
patterns improves the read access time by 92 percent
compared to the time taken with the prefetching based on
the locality of reference and 94 percent compared to the
time taken without prefetching. The files are prefetched
into the cache on webserver, which eliminates cache
coherence problems. [3]

2.4 New Hadoop Archive (NHAR)

NHAR redesigns the architecture of HAR in order to
improving performance of small-file accessing in Hadoop.
Since reading file from HAR need to access 2 indexes
which affect access performance To resolve this problem,
the architecture of HAR has been modified to minimize the
metadata storage requirements for small files and to
improve the access performance. This approach can
achieve obvious improvements on small I/O performance.
[4]

2.5 Enhanced HDFS

In enhanced HDFS, the performance of handling
interaction-intensive tasks is significantly modifications to
the HDFS are:

(1) Changing the single namenode structure into an
extended namenode structure;

(2) Deploying caches on each rack to improve I/O
performance of accessing interactive-intensive files; and

(3) Using PSO-based algorithms to find a near optimal
storage allocation plan for incoming files.

Structurally, only small changes were made to the HDFS,
i.e. extending single namenode to a hierarchical structure
of name nodes. However, the experimental results show
that such a small modification can significantly improved
the HDFS throughput when dealing with interaction-
intensive tasks and only cause slight performance
degradation for handling large size data accesses. [5]

3. PROPOSED SYSTEM

The proposed approach highlights the usability of Spark
far faster file processing. The architectural model can be

divided into three layers i.e. User Layer, Data Processing
Layer and Storage Layer.

3.1 User Layer

This layer provides user with an ability to perform certain
operations on HDFS les. User layer gives end user an ease
of access to add/ update/ delete les of HDFS. User
interface of Ambari can be used to access the HDFS in a
user friendly manner. Ambari has an authentication-
oriented mechanism to protect HDFS les from
unauthorized access.

3.2 Data Processing Layer

This layer represents an operational unit of the complete
architectural model. This unit can be split into four
sequential parts as explained below:-

3.2.1 File Judging Unit

This unit categorizes an input le based on its size. It
determines whether an input file is small or big against the
predefined le size threshold value. If the input le size value
is below threshold level, it is sent to le merging unit,
whereas for above threshold value, file is straightaway
sent to HDFS client for processing it in a traditional HDFS
way, as the conventional HDFS has best possible capability
to process big size HDFS.

3.2.2 Spark based File Processing Unit

This unit receives files small size les from File Judging
Unit, calculates file size and starts creating incremental
oset values until the pre-defined block size exceeds. Spark
is used here for le retrieval and in-memory oset
calculation. The calculated files are the passed to Spark
Based File Merging Unit.

3.2.3 Spark based File Merging Unit

After receiving computed les, this unit performs merging
of small computer les using datasets of Spark. This
merging operation refers predefined block sizes and offset
values to assure creation of optimal le block sizes.

3.2.4. HDFS Client

File blocks having reached oset size are received by HDFS
client and then stored in HDFS. This blocks are
accompanied by the big sized les, already landed into
HDFS directly from File Judging Unit.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 328

Fig -1: Proposed System

4. SYSTEM ARCHITECTURE

A description of the program architecture is presented.

Fig -2: System Architecture

The overall project architecture comprised of three cloud
instances i.e. one namenode and two datanodes. All the
cloud instances are capable to communicate with each
other through password-less SSH mechanism to have
seamless communication. HDP repositories are pre-loaded
on namenode. Service of HDFS(Hadoop File System) is up
and running on namenode.

Admin user is able login to namenode instance through
interactive user interface of Ambari service. User provides
file to the namenode using this interface. Once file is
received, Spark-based project code is invoked. It starts
analysing file received, using File Judging Code.

If file size is greater than or equal to the predefined
threshold value, it is categorized as big file and then sent
directly to HDFS storage. But if le size falls below this
predefined threshold value, it is marked as small size file,
which is sent to File Processing Code to set the file-block
oset value. This value remains as a reference while the le is
being merged by File Merging Code. This merging activity
keeps going on for further incoming files until the le-block
oset value becomes greater than or equal to predefined
threshold value. Once this value reached/ exceeded, the
generated le block is uploaded to HDFS storage.

All this processing is performed by Spark code through in-
memory computation. The computation is distributed
across namenode and datanodes to enhance the
processing speed, response time and performance without
compromising on efficiency of file processing.

5. RESULTS

5.1 Table -1: Results

File Size Time taken by
conventional

Hadoop System

Time taken by
Spark Hadoop

System

57.3 Mb 102.74sec 50.43sec

110 Mb 200.65sec 101.23sec

40 Mb 80.32sec 25.21sec

5.2 Snapshot of Result

Fig -3: Screenshots of Results

6. CONCLUSIONS AND FUTURE SCOPE

Aiming at the low store and access efficiency on small files
in HDFS cloud storage, the HDFS file stored process is
improved. If the file is a small file by judging before
uploading to HDFS clusters, it is merged and the index
information of the small file is stored in the index file with
the form of key-value pairs. The file storage and access
efficiency is analyzed through Spark. The results show that
the improved NameNode memory consumption of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 329

Spark based Hadoop Processing is the least. It can also
gives 100 times faster performance than Map reduce. It
can save the NameNode memory when storing the small
files. Thus, the Spark based Hadoop Processing can
optimize the access efficiency of small files.

REFERENCES

[1] A. K, A. R. A, S. M. C, C. Babu and P. B, "Efficient
Prefetching Technique for Storage of Heteregeneous
small files in Hadoop Distributed File System
Federation," in Fifth International Conference on
Advanced Computing (ICoAC), 2013.

[2] C. Vorapongkitipun and N. Nupairoj, "Improving
Performance of Small-File Accessing in Hadoop," in
11th International Joint Conference on Computer
Science and Software Engineering (JCSSE), 2014.

[3] G. Mackey, S. Sehrish and J. Wang, "Improving
Metadata Management for Small Files in HDFS," in
IEEE International Conference on Cluster Computing
and Workshops, 2009.

[4] L. Changtong, "An Improved HDFS for Small Files," in
18th International Conference on Advanced
Communication Technology (ICACT), 2016.

[5] M. A. Mehta and A. Patel, "A Novel Approach for
Efficient Handling of Small Files in HDFS," in IEEE
International Advance Computing Conference (IACC),
2015.

[6] P. Gohil, B. Panchal and J. S. Dhobi, "A Novel Approach
to Improve the Perform

[7] X. Hua, W. Hao and S. Ren, "Enhancing Throughput of
Hadoop Distributed File System for Interaction-
Intensive Tasks," in 22nd Euromicro Intternational
Conference on Parallel, Distributed, and Network-
Based Processing, 2014.

