
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1277

Kubernet Dockerize Application on Amazon Web Service Using KOPS

ARUN KUMAR K1, VINAYADITYA B V2, VINUTHA B S3

1Assistant Professor, School of CS & IT, Jain University, Bangalore, Karnataka, India
2,3PG Scholar – School of CS & IT, Jain University, Bangalore, Karnataka, India

---***--
Abstract – In this paper we deployed a containerized
application on to a Kubernetes cluster managed by KOPS
(Kubernetes Operation Tool’s). Is a fully managed service
that makes it easy to deploy, manage, and scale
containerized papers using Kubernetes on AWS. KOPS runs
the Kubernetes control plane for you across multiple AWS
availability zones to eliminate a single point of failure. In this
paper, we will use Amazon Kops to deploy a highly available
Kubernetes control plane. We will then configure 'kubectl',
an open source command line tool to interact with your
Kubernetes infrastructure. Using AWS CloudFormation, you
will launch a cluster of worker nodes on Amazon EC2, and
then launch a containerized guest book paper onto your
cluster.

Keywords: AWS – Amazon Web Services, Docker image,
KOPS

1. INTRODUCTION

Containers are a method of operating system
virtualization that allows you to run an paper and its
dependencies in resource – isolated processes. Containers
allow you to easily package an paper's code, configurations,
and dependencies into easy to use building blocks that
deliver environmental consistency, operational efficiency,
developer productivity, and version control. Containers can
help ensure that papers deploy quickly, reliably, and
consistently regardless of deployment environment.
Containers also give you more granular control over
resources giving your infrastructure improved efficiency.
Running containers in the AWS Cloud allows you to build
robust, scalable papers and services by leveraging the
benefits of the AWS Cloud such as elasticity, availability,
security, and economies of scale. You also pay for only as
much resources as you use. Any containerized paper
typically consists of multiple containers. There are
containers for the paper itself, a database, possibly a web
server, and so on. During development, it’s normal to build
and test this multi-container paper on a single host. This
approach works fine during early dev and test cycles but
becomes a single point of failure for production, when paper
availability is critical.

In such cases, a multi-container paper can be
deployed on multiple hosts. Customers may need an external
tool to manage such multi-container, multi - host
deployments. Container orchestration frameworks provides
the capability of cluster management, scheduling containers
on different hosts, service discovery and load balancing,

crash recovery, and other related functionalities. There are
multiple options for container orchestration on Amazon Web
Services: Amazon ECS, Docker for AWS, and DC/OS. Another
popular option for container orchestration on AWS
is Kubernetes.

2. BACK END LANGUAGE:

In this paper we used PHP programming language
because, PHP is a general - purpose scripting language that is
especially suited to server-side web development, in which
case PHP generally runs on a web server. Any PHP code in a
requested file is executed by the PHP runtime, usually to
create dynamic web page content or dynamic images used
on websites

i. Version: PHP 7.0
ii. Java Script with bootstrap
iii. Back end: kubectl v1.3

2.1 DEPLOYMENT PLATFORM:

For deploying of this application, we used amazon
web Services. Amazon web services provide servers on rent
to deploy application. Amazon web services is the one of the
popular cloud based platform that Provide on-demand cloud
computing platforms to Individuals, companies and
governments, on a paid Subscription basis.

Platform: amazon web services (EC2 instance –
Ubuntu 16.4 servers)

3. EXISTING SYSTEM AND PROBLEM STATEMENT

Before the use of the Docker containers, we were
using VM cluster to host our applications. Here are some of
the limitations of the same:

Limitations no 1: Implementation and configuration
complexity

Limitations no. 2: Update and upgrade factors

Limitations no. 3: Cluster cost factors

PROBLEM STATEMENT:

Before the use of the Docker containers, we were
using VM cluster to host our applications. Whenever start to
run our application or website on a single EC2 instance and
over time, traffic increases to the point that you require

https://aws.amazon.com/ecs/
https://docs.docker.com/docker-for-aws/
https://dcos.io/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1278

more than one instance to meet the demand. And also it will
be like single point of failure. This causes major drawback to
run our business.

4. FLOW CHART

Fig 4.1: Master and Worker nodes API server

The API server is the entry points for all the REST
commands used to control the cluster. It processes the REST
requests, validates them, and executes the bound business
logic. The result state has to be persisted somewhere, and
that brings us to the next component of the master node.

4.1 Etcd storage

Etcd is a simple, distributed, consistent key-value
store. It’s mainly used for shared configuration and service
discovery. It provides a REST API for CRUD operations as
well as an interface to register watchers on specific nodes,
which enables a reliable way to notify the rest of the cluster
about configuration changes.

An example of data stored by Kubernetes in etcd is
jobs being scheduled, created and deployed, pod/service
details and state, namespaces and replication information,
etc.

4.2 Scheduler

The deployment of configured pods and services
onto the nodes happens thanks to the scheduler component.
The scheduler has the information regarding resources
available on the members of the cluster, as well as the ones
required for the configured service to run and hence is able
to decide where to deploy a specific service.

4.3 controller-manager

Optionally you can run different kinds of controllers
inside the master node. Controller - manager is a daemon
embedding those controllers. A controller uses Api server to
watch the shared state of the cluster and makes corrective
changes to the current state to change it to the desired one.
An example of such a controller is the Replication controller,
which takes care of the number of pods in the system. The
replication factor is configured by the user, and it's the
controller’s responsibility to recreate a failed pod or remove
an extra-scheduled one. Other examples of controllers are
endpoints controller, namespace controller, and service
accounts controller, but we will not dive into details here.

4.4 Worker node

The pods are run here, so the worker node contains
all the necessary services to manage the networking
between the containers, communicate with the master node,
and assign resources to the containers scheduled.

4.4.1 Docker

Docker runs on each of the worker nodes, and runs
the configured pods. It takes care of downloading the images
and starting the containers.

4.4.2 kubelet

kubelet gets the configuration of a pod from the
apiserver and ensures that the described containers are up
and running. This is the worker service that’s responsible for
communicating with the master node. It also communicates
with etcd, to get information about services and write the
details about newly created ones.

4.4.3 kube-proxy

kube-proxy acts as a network proxy and a load
balancer for a service on a single worker node. It takes care
of the network routing for TCP and UDP packets.

4.4.4 kubectl

A command line tool to communicate with the API
service and send commands to the master node.

5. IMPLEMENTATION:

The implementation involves

I. create Docker Image

 Install Docker

 Install docker.io with this apt command

 Create Dockerfile

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1279

 Edit the 'Dockerfile' with vim

 Save the file and exit

II. Launch an Amazon EC2 Instance

 Launch Instance from console

 Configure your Instance

 Connect to your Instance

III. Enable Auto scaling and Load balancer for High
availability

 After launching instance enable auto scaling and load
balancer for high availability of server

IV. Containerized Application Support

 Specify dynamic ports in the ECS container task
definition

 When a new task is added to the fleet, the ECS schedule
auto-assigns it to the ALB using that port

 Share the ALB amongst multiple services using path-
based routing

 Improve cost efficiency by running more components of
your application per EC2 fleet.

V. Use KOPS commands on Ubuntu instance

 To become root user

 To get node information

 To get deployment information

6. FRONT END SCREEN (SCREENSHOT)

Fig 6.1 WEB Application front Page 1

This page consists of information about the web
application Birdlovers.ga where it provides all information
about the cockatiel bird.

Fig6.2 WEB application front Page 2

This page speaks about the bird origin where it is
from and how to take care of this bird in the captivity.

Fig 6.3 WEB Application front Page 3

This page speaks about the life span of this bird and
about the food diet of this bird and possible medications for
this bird.

Fig 6.4 Kops server

This screenshot shows all the information abut he
kops server which is installed on the Ubuntu server machine.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1280

Fig-5 Deployment information

~# kubectl get deployments is a command used to
get all the information about the cluster which is deployed in
this server machine.

7. CONCLUSIONS AND FUTURE ENHANCEMENT

This project is designed to deploy a containerized
application on to a Kubernetes cluster worker node using
KOPS. We have created the micro services of our web
application using Docker. The web application is running in a
container and that container is successfully deployed in a
Kubernetes cluster which has a master and a worker node
and this web application is successfully deployed and
running inside the node.

FUTURE ENHANCEMENT

For future enhancement we suggests to make this
work with a multi - container so that they can communicate
with each other and host any size huge web application
using Docker Networking Technology.

REFERENCES

1. P. Mell and T. Grance, The NIST Definition of Cloud
Computing: Recommendations of the National Institute
of Standards and Technology, NIST Special Publication
800-145, 2011.

2. U. Thakrar, “Introducing Right- Scale Cloud Appliance
for vSphere,” blog, 10 Dec. 2013;
www.rightscale.com/blog/enterprisecloudstrategies/in
troducing-rightscale-cloud-appliance -vsphere.

3. B. Kepes, “VoltDB Puts the Boot into Amazon Web
Services, Claims IBM Is Five Times Faster,” Forbes,
2014;www.forbes.com/sites/benkepes/2014/08/06/vo
ltdb-puts -the-boot-into-amazon-web-services -claims-
ibm-5-faster.

4. J. Petazzoni, “Containers & Docker: How Secure Are
They?” blog, 21 Aug. 2013; http://blog.docker
.com/2013/08/containers-docker -how-secure-are-
they.

5. J. Petazzoni, “Linux Containers (LXC), Docker, and
Security,”2014; ww.slideshare.net/jpetazzo/linux-
containers-lxc-docker-and-security.

6. C. Mcluckie, “Containers, VMs, Kubernetes and
VMware,”blog,.2014;http://googlecloudplatform.blogsp
ot.com/2014/08/containers-vms-kubernetes-and-
vmware.html.

7. B. Butler, “Containers: Buzzword du Jour, or Game-
Changing Technology?” Network World, 3 Sept.
2014;www.networkworld.com/article/2601925/cloud-
computing/container-party-vmware microsoft-cisco-
and-red-hat-all-get-in-on-app-hoopla.html.

8. https://github.com/kubernetes/kops/blob/master/docs
/cli/kops_create_secret_encryptionconfig.md

9. https://kubernetes.io/docs/tasks/administer-
cluster/encrypt-data/

10. https://github.com/kubernetes/kops/blob/master/nod
eup/pkg/model/kube_apiserver.go#L61

11. https://github.com/georgebuckerfield/kops/blob/mast
er/pkg/apis/kops/cluster.go#L162

https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_secret_encryptionconfig.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_secret_encryptionconfig.md
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://github.com/kubernetes/kops/blob/master/nodeup/pkg/model/kube_apiserver.go#L61
https://github.com/kubernetes/kops/blob/master/nodeup/pkg/model/kube_apiserver.go#L61
https://github.com/georgebuckerfield/kops/blob/master/pkg/apis/kops/cluster.go#L162
https://github.com/georgebuckerfield/kops/blob/master/pkg/apis/kops/cluster.go#L162

