GLOBAL NON SPLIT DOMINATION IN JUMP GRAPHS

N. Pratap Babu Rao

Department of Mathematics Veerasaiva College Ballari

ABSTRACT - Let both J(G) and J(\overline{G}) be connected graphs. A set D of vertices in a graph J(G)=(V(J(G)), E(J(G))) is said to be a global non split dominating set. If D is non split dominating set of both J(G) and J(\overline{G}). The global non split domination number γ_{gns} (J(G)) of J(G) is the minimum cardinality of a global non split dominating set. Beside bounds in γ_{gns} (J(G)), its relationship with other domination parameters is investigated. Also some properties of global non split dominating sets are given.

Keywords; jump graphs, complement of a jump graph, non split domination, global non split domination.

Mathematical classification: 05C69.

INTRODUCTION:

All graphs J(G) considered here are finite, undirected and connected (i,e, both J(G) and J(\bar{G}) are connected) with no loops and multiple edges. Any undefined term in this communication may be found in Harary[1]

A set D of vertices in a graph J(G)=(V, E) is said to be a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(J(G))$ of J(G) is the minimum cardinality of a dominating set of J(G).

Different type of domination parameters have been defined by many authors [2]

N.Pratap Babu Rao and Sweta.N introduced the concept of non split domination in jump graphs as follows.

A dominating set D of a connected jump graph J(G)=(V, E) is said to be a non split dominating set (nsd-set) if the induced sub graph <V- D> is connected. The non split domination number $\gamma_{ns}(J(G))$ of J(G) is he minimum cardinality of a nsd-set of J(G).

A dominating set D of a jump graph J(G) is said to be a global dominating set (gd-set) if D is also a dominating set of J(\overline{G}). The global domination number $\gamma_{g}(J(G))$ of J(G) is the minimum cardinality of a gd-set of J(G).

In this paper, we combine these two concept and introduced the concept of global non split domination as follows.

A dominating set D of a jump graph J(G) is said to be a global non split dominating set (gnsd-set) if D is a nsd-set of both J(G) and J(\overline{G}). The global non split domination number of J(G). The γ_{gns} -set is a minimum gnsd-set, similarly other sets can be expected.

It is easy to observe the following.

Theorem 1; For any graph J(G)

i) $\gamma_{gns}(J(G)) \ge \max \gamma_{ns}(J(G))$ ii) $(\gamma_{\underline{ns}}(J(G)) + \gamma_{\underline{ns}}(J(\overline{G}))) \le \gamma_{ns}(J(G)) \le \gamma_{ns}(J(\overline{G}))$ 2

Next we give sufficient conditions for an nsd-set to be a gnsd-set.

Theorem 2: An nsd-set D of G is a gnsd-set if the following conditions are satisfied.

i) Every vertex in V-D is not adjacent to some vertex in D

ii) $\langle V-D \rangle$ is K₁ or other exists a set S \subseteq V-D such that diam($\langle S \rangle$) \geq 3 and for every vertex v \in V-D there exists a vertex u in S with u not adjacent to v.

Proof: By (i) D is a dominating set of $J(\overline{G})$

By (ii) ,V-D> is connected in $J(\overline{G})$. This implies that D is a gnsd-set.

Corollary: 2.1: Let D be a γ_{ns} -set of J(G) such that $\langle V-D \rangle$ is a tree with at least from cut vertices Then, $\gamma_{gns}(J(G)) \leq \gamma_{ns}(J(G)) + 2$

Next we characterize nsd-set which are gsd-sets.

Theorem 3: Let J(G) be a connected graph with at least two adjacent non adjacent vertices. An nsd-set D of J(G) is a gnsd-set, if and only if the following conditions are satisfied.

- i) Every vertex in V-D is not adjacent to some vertex in D.
- **ii)** D is not a vertex connecting of $J(\overline{G})$.

Proof: Suppose d satisfies the given conditions. Then by (i) D is a dominating set of $J(\bar{G})$. By (ii) <V-D> is connected in $J(\bar{G})$. This implies that D is a gnsd-set of J(G).

Conversely, let D be a gnsd-set of J(G). On the contrary, suppose one of the given conditions, say i) is not satisfied. Then there exists a vertex v in V-D adjacent to every vertex of D. This implies that w, $J(\bar{G})$. V is not adjacent to any vertex of D and hence D is not a dominating set of $J(\bar{G})$., a contradiction. Suppose (ii) does no hold. Then <V-D> is disconnected in $J(\bar{G})$., Once again a contradiction. Hence the given conditions are satisfied.

A dominating set D of z connected jump graph J(G)=(V, E) is said to be a split dominating set if the induced sub graph $\langle V-D \rangle$ is disconnected in J(G). The split domination number $\mathbb{Z}_s(J(G))$ of J(G) is he minimum cardinality of a split dominating set of J(G).

Theorem A [4] Let G be a graph with diam(G) \geq 5 then γ (G) $\leq \gamma_g$ (G).

Theorem 4: Let G be a jump graph J(G) with diam(J(G)) ≥ 5 if γ (J(G)) $< \gamma_s$ (J(G)), γ_{ns} (J(G)) = γ_{gns} (J(G)).

Proof: Let D be a γ -set of J(G). Clearly <V-D> is connected and hence D is a γ_{ns} -set of J(G). Also by Theorem A it is a γ_s -set of J(G). Since D is minimal, each vertex in D is adjacent to some vertex in V-D, suppose diam(<V-D>)≤2.

Then it follows that diam(J(G)) ≤ 4 a contradiction. Thus diam ($\langle V-D \rangle$) ≥ 3 and by theorem 2 D is a gnsd-set of J(G).

Next we obtain a lower bound for $\gamma_{gns}(J(G))$

Let $\lceil x \rceil$ denotes least integer greater than or equal to x.

Theorem 5: For any graph J(G) $\frac{p(q-p)-6}{6} \leq \gamma_{gns}$ (J(G))

Further the bound is attained if and only if there exists a γ_{gns} -set D satisfying the following conditions.

- i. D has exactly two vertices.
- ii. Every vertex in V-D is adjacent to exactly one vertex in D and <V-D> is self complementary.

Proof: Let D be a γ_{gns} -set of J(G) and q_1 denotes the number of edges in J(G) \cup J(\overline{G}) incident to the vertices of V-D. Similarly q_2 denotes the number of edges of J(G) \cup J(\overline{G}) incident to the vertices of D only. Then $\frac{(p(p-1))}{2} \ge q_1 - q_2 \ge 4$ |-D| - 2 +|D - 1|

IRJET Volume: 06 Issue: 02 | Feb 2019 www.

This implies that $\gamma_{gns}(J(G)) \ge \frac{p(q-p-6)}{6}$ gives $\gamma_{gns}(J(G))$ is a whole number

Hence the theorem holds.

Now we can prove the second part, Suppose the bounds is attained, then $6 \le p \le 8$ and $q_1 = 4|V-D|-2$ and $q_2 = |D-1|$

if p=8 then either D contains three vertices or V-D has six vertices. In both cases either

 $q_2 > 1$, |D-1| or $q_1 > 4|V-D|-2$ contradiction. Hence p = 6 or 7 and D has exactly two vertices. Since D is a global dominating set, each vertex in V-D is adjacent to exactly one vertex in D. As $4 \le |V-D| \le 5$ and $\langle V-D \rangle$ has same number of edges in both J(G) and J(\overline{G}). $\langle V-D \rangle$ is a self-complementary graph.

Now we obtain an upper bound for $\gamma_{gns}(J(G))$.

Theorem 6: For any graph $J(G) = \gamma_{gns}(J(G)) \le p-4$. If and only if J(G) contains a path P_4 such that for any vertex v in P_4 there exists two vertices u and w not in P_4 such that v is adjacent to u but not w.

Proof: Suppose above inequality hold on the contrary for every set S with four vertices either $\langle S \rangle$ is not in P₄(I,e, path of four vertices) or there exists a vertex $v \in S$ adjacent to every vertex of V-S is either J(G) or J(\overline{G}). This implies that $\langle V-S \rangle$ is not gnsd-set of J(G) and hence $\gamma_{gns}(J(G)) = p-1$ a contradiction. This proves necessity.

Sufficiency is straight forward

The next result establishes relationship between $\gamma_{gns}(J(G))$ and $\gamma_{gns}(J(H))$ for every spanning sub graphs J(H) of J(G).

Theorem7:Let J(H) be a spanning sub graph of J(G) if $e(J(T)) \le \gamma_{gns}(J(H))$ then $\gamma_{gns}(J(G)) \le \gamma_{gns}(J(H))$

where e(J(T)) is the maximum number of end vertices in a spanning tree J(T) of J(G)

Proof: Let D be a γ_{gns} -set of J(H). Then obviously <V-D> is connected in both J(G) and J(\overline{G}). Suppose there exists a vertex in V-D adjacent to every vertex of D in J(G) then it is easy to see that $e(T) \ge \gamma_{gns}$ J(H) a contradiction.

Hence each vertex of V-D is not adjacent to some vertex of D in J(G). This implies that D is also a gnsd-set of J(G)

Hence above inequality holds.

Similarly we can prove

Theorem 8: if e(J(T)), $p - \gamma_{gns}(J(G))$ then

 $\gamma_{c}(J(\bar{G})) + \gamma_{gns}(J(G)) \leq p$ when $\gamma_{c}(J(G))$ is the connected domination number of J(G).

Theorem 9: Let J(G) be a block graph with diam $(J(G)) \ge 5$ if every cut vertex is adjacent to a non-cut vertex then $\gamma_{gns}(J(G)) = k$ where k is the number of blocks in J(G) containing non-cut vertices.

Proof: Let B_1 , B_2 , B_3 ,..... B_k be the k number of blocks in J(G) containing non-cut vertices u_1 , u_2 , u_3 ,..... u_k respectively. Then clearly { u_1 , u_2 , u_3 ,..... u_k } is a γ_{gns} -set of J(G).

Further each vertex in V - { u_1 , u_2 , u_3 ,.... u_k } is not adjacent to some vertex in { u_1 , u_2 , u_3 ,... u_k } and < V - { u_1 , u_2 , u_3 ,... u_k } > is connected in J(\overline{G}) also as diam (J(G)) \geq 5, This implies that { u_1 , u_2 , u_3 ,... u_k } is a γ_{gns} -set of J(G)

Hence the proof.

A dominating set D of J(G) is said to be a co-total dominating set (ctd-set) if $\langle V-D \rangle$ has no isolates. The co total domination number $\gamma_{ct}(J(G))$ of jump graph J(G) is the minimum cardinality of a ctd-set of J(G). This concept was also studied as restrained domination in graphs[7]

Theorem 10: For any graph J(G) $\gamma_{cr}J(G)) \le \gamma_{gns}(J(G)).$

Proof: Let D be a γ_{gns} -set of J(G).

We consider the following cases.

Case (i) Suppose $\gamma_{gns}(J(G) = p - 1$. Since J(G) has at least two non adjacent end vertices u and v. V – {u, v} is a ctd-set of J(G).

Case (ii) Suppose $\gamma_{gns}(J(G) = p - 2$ Since $\langle V-D \rangle$ has no isolate, D is a ctd-set of J(G).

Hence from case (i) and (ii) Theorem holds.

REFERENCES

- [1] Harary F (1969) Graph Theory Addison Wesley Reading mass.
- [2] HaynesT.W, Hedetniemi S.T and Slatter P.J (1997) Fundamentals of domination in Graphs Marcel Dekkar, Inc
- [3] Kulli V.R and B. Janakiram(2000) Indian J.Pure and Applied maths 31 (4) 441
- [4] Sampath kumar E (1989) J.maths.phys.sci 23; 377
- [5] Kulli V.R and B. Janakiram(1997) Graph Theory Notes of New 1997) Graph Theory Notes of New ork 32:16
- [6] Kulli V.R and B. Janakiram(1999) J.of Discrete athematical scinces and cryptographs 2 (2-3) 179
- [7] Domke, G.S Hatting J.M, Hedetniemi S.T Laskar R.C and Markus L.R (1999) Discrete Mathematics 203:61
- [8] Kulli V.R and B. Janakiram ((1997) Graph Theory Notes of New-York33:11
- [9] Kulli V.R and B. Janakiram (2004) International. j. of management system siene 20(3)219
- [10] N.Pratap Babu Rao and Sweta.N Split domination number IJMTT vol 57 issue 1 (2018)

[11] N.Pratap Babu Rao and Sweta.N Connected co total domination in jump graph International jounal of Analytic Review vol 5 issue 3(2018) 141-146.

[12] Kulli V.R and B. Janakiram (2005) National Academy Sci.Lett.Vol28 No.11 and 12.