
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 883

Divide and Conquer Algorithm for Multilingual Scripting Programming

Language (MLProScript)

Osée Muhindo MASIVI

Computer and Management Information System, School of Business, Rusangu University, Zambia
---***---
Abstract - “Divide and Conquer” has been proved to be one of
the most suitable strategies for complex computations
algorithm design. This paper presents “Divide and Conquer”
application to design a simple, extensible and easy to
implement parser algorithm. Results prove an improved, easy
to implement model for multilingual programming language.
The proposed algorithm splits the source code into smaller
code sets easy to analyze and translate. Then the conquer
algorithm part execute each code set using a simple
interpreter. The last module combines code sets results and
avails then to the target user program. A high level of
multilingual programming language prototype for both
programming language developers and end user
programmers was built and tested.

Key Words: Divide and Conquer, Parser, multilingual,
scripting language.

1. INTRODUCTION

Two major techniques have been used to build parsing
algorithms. The “bottom-up” based algorithms and he “top-
down” based algorithms [1] [2]. Depending on the technique
used by the parsing algorithm, two tools are intensively used
to automatically generate the parser: YACC is used for LALR
[2] parsers while the ANTLR [3] is a widely used tool to
automatically generate parsers based on the LL(*) grammar
[4] [5] [6]. The ANTLR has the particularity of being capable
to generate the Recursive Descent Parser.

Beside the good time-complexity of the aforementioned
algorithms, their implementation is not straightforward
especially in scripting and end-user Programming languages
[7]. These new trends in programming language
development has introduced the concept of language
extendibility which requires the possibility for the end user
to add and use his own keywords and functionalities to the
programming language. It is in this view that this article
proposes an application of the “Divide and conquer”
algorithm design strategy [7] to design a new parsing
algorithm for a multilingual scripting language.

The proposed algorithm is intended to allow end-user to add
his own non-English keywords and insert scripts anywhere
in his code. The aim is to create a library which combines the
lexicon creator, parser and the interpreter using Divide and
Conquer famous algorithmic design pattern.

2. METHODOLOGY

To come with Multilingual Scripting Programming Language
(MLProScript) integrated library, three major groups of
classes are needed [8]: lexicon classes, parser classes and
interpreter classes. Lexicon related classes allow the user to
define, retrieve and analyze language keywords. Finite
Automata techniques were used to create lexicon elements
patterns.

Parser related classes are uses the generalized divide-and-
conquer in an object oriented three steps [9] [10] [11] [12].
The first step is “Divide”. This step divides the program
source into program subsets (expressions or functions). The
second step is “Conquer”. This step recursively solves each
sub problem using the first step and the associated trivial
registered functions used as divide threshold. If the program
subsets is simple action or a registered function, the problem
solved by straightforward method and return the solution so
obtained. Otherwise, divide the input data into two or more
disjoint subsets. The last step is “Combine”. This step takes
the solutions to the sub problems and merge them into a
solution to the original problem.

Compile related classes’ main role is to initialize lexicon and
parser classes, prepare and load end user code for lexical
and parsing analysis compilation. After compilation, scripts
results are given to the caller program.

3. RESULTS

3.1. Lexemes Creator and Analyzer

MLProScript is built on six major programming language
concepts as suggested by [13] and [14]: character set,
numbers, strings, identifiers, reserved words (operators,
keywords and delimiters), expressions and statement.
Keywords and Regular expression automata are stored in
xml files (Listing 1.1).

<?xml version="1.0" standalone="yes"?>

<Grammar>

 <MoCle>

 <Name>Number</Name>

 <Pattern>^[0-9]+|^[0-9]+.[0-9]+</Pattern>

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 884

 </MoCle>

 <MoCle>

 <Name>String</Name>

 <Pattern>^\"[^\r\n\"]*\"</Pattern>

 </MoCle>

 <MoCle>

 <Name>Identifiant</Name>

 <Pattern>^[_A-Za-z][A-Za-z0-9]*</Pattern>

 </MoCle>

 <MoCle>

</Grammar>

<?xml version="1.0" standalone="yes"?>

<Lexicon>

 <Francais>

 <Type>test</Type>

 <Cle>if</Cle>

 <Mot>si</Mot>

 </Francais>

…

</Lexicon>

Listing1.1: Grammar and Lexicon xml files sample

The end user is allowed to create (Listing 1.1) and modify his
own keyword in his own language.

public void setElement(string lang, string file, string type,
string mot, string cle){

try{

 DataSet dict = new DataSet();

 dict.ReadXml(file);

 DataTableCollection dtb =
this.getAllElemt("dictKeywords.xml");

 bool exist = false;

 for (int i = 0; i < dtb.Count;i++){

 if (dtb[i].TableName == lang){

 exist = true;

 break;

 }

 }

 if (exist){

DataRow dr = dict.Tables[lang].NewRow();

dr["Type"] = type;

 dr["Mot"] = mot;

 dr["Cle"] = cle;

 dict.Tables[lang].Rows.Add(dr);

 dict.WriteXml(file);

 }

else{

DataTable newLang = new DataTable(lang);

newLang.Columns.Add("Type",
typeof(System.String));

newLang.Columns.Add("Mot",
typeof(System.String));

newLang.Columns.Add("Cle",
typeof(System.String));

dict.Tables.Add(newLang);

DataRow dra = dict.Tables[lang].NewRow();

 dra["Type"] = type;

 dra["Mot"] = mot;

 dra["Cle"] = cle;

 dict.Tables[lang].Rows.Add(dra);

 dict.WriteXml(file);

 }

}

catch (Exception ex)

{

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 885

 Console.WriteLine("Error" + ex.Message);

}

}

Listing1.2: XML file reading

The xml files are used to feed the scripting language (Listing
1.3) with grammar (numbers, strings, identifiers), reserved
words (operators, keywords and delimiters) including their
translations in local languages.

public class Lexeure

 {

 ...

 static private Dictionary<string, string> MyAutomata;

 static private Dictionary<string, string> MyKeyWords;

 …

 public static void initial()

 {//Feed dictionary

 MyAutomata = new Dictionary<string, string>();

 MyKeyWords = new Dictionary<string, string>();

 try{

 LexiconElements lexEl = new LexiconElements();

 DataTable table = lexEl.getElemt("Grammar.xml");

 for (int i = 0; i < table.Rows.Count; i++)

 {

MyAutomata.Add(table.Rows[i]["Name"].ToString()
,table.Rows[i]["Pattern"].ToString());

 }

 MyKeyWords = mots.charSpec;

 }

 catch (Exception ex) {

 throw new DataException(ex.Message);

 }

 }

Listing1.3: Lexicon feeding

Once source code is provided, the lexical analyzer reads the
source code as a stream of characters and converts it into
meaningful lexemes. Listing 1.3 shows part of MLProScript
lexicon analysis.

private bool estNombre() { // Test Number

 motifNombre = MyAutomata["Number"];

 Match correspond =

 Regex.Match(source.Substring(index),
patternNombre);

 if (!correspond.Success){

 return false;

 int longueur = correspond.Length;

 string nombre = source.Substring(index, longueur);

 valToken = int.Parse(nombre);

 index += longueur;

 localise.accColonne += longueur;

 return true;

 }

 public string lexiconAnalyser()

 { ...

 if (estOperateur(out tokenSuivant))

 return tokenSuivant;

 else if (estSeparateur(out tokenSuivant))

 return tokenSuivant;

 else if (estMotcleOuIdent(out tokenSuivant))

 return tokenSuivant;

 else if (estNombre())

 return "Nombre";

 else if (estTexte())

 return "Texte";

 valToken = source[index];

 index++;

 mondebut= index - 1;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 886

 mataille = 1;

 monerreur = true;

 return "ERREUR";

 }

 ...

}

Listing1.4: Lexical analyzer

III.2. Divide and Conquer Parser

MLProscript Divide and Conquer algorithm is an adaptation
of Split and merge technique in [15] using the algorithm 201
sketched bellow.

Algorithm 2.1: Div_Conquer

1. Input: sourceCode
2. Result=null
3. If (sourceCode is empty)

Return null

4. ElseIf(notDividable(sourceCode))
Return Result + Conquer(sourceCode)

5. Else
Return Div_Conquer(sourceCode, start,end)

In the divide step (line 5), the source code is analyzed and
into a set of small independent and executable codes from
the start index to the end index. These sets can be single
expressions, expressions in parentheses and known
functions.

In the conquer step (line 4 last part) each independent and
executable code is evaluated using target language
straightforward expressions and statements or user defined
and recorded functions. The combine step (line 4) takes
place whenever a not divisible code set is reached. The
conquered result is then added to the previous result.

Actions in the conquer combine use either target
programming language operators (C# in our case).

 III.3. MLProScript Interpreter

Interpreter classes are responsible for initializing defined
keywords and their translations (from xml file), operators
and functions. Listing 3.1 illustrates the loadNonEnglish
function in the compiler.

Lexicon lex = new Lexicon();

DataTableCollection dtb
=lex.getAllElemt("dictKeywords.xml");

public void loadNonEnglish (DataTable nonEngl, string
engl){

for (int i = 0; i < nonEngl.Rows.Count; i++){

 string newword;

 if (nonEngl.Rows[i]["Cle"].ToString() == engl){

newword =
nonEngl.Rows[i]["Mot"].ToString();

….}

ParserFunction funct = ParserFunction.GetFunction(engl);

ParserFunction.AddGlobal(newword, funct);

…

}

}

Listint 1.1 Script interpretation

4. IMPLEMENTATION AND TESTS

4.1. Prototype Implementation

MLProScript was implemented using MS.NET 2012 (C#,
Framework 4.5) resulting to a dynamic link library
“MLProScript.dll”. In addition, a set of two xml files were
created to store respectively multilingual keywords and
operators (dictKeywords.xml) and lexemes automaton
regular expression patterns (Grammar.xml).

4.2. Result Tests using the prototype

4.2.1. Lexemes definition

Fig. 1 shows the prototype of a how the user creates a
lexeme in his local language. Once the programming
language is created and the keywords are stored in the xml
file which can be used to share the programming language
with other programmers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 887

Fig. 1. Reserved word Definition prototype

4.2.2. Source code creation and execution

This paper has provided two ways of creating and running
the scripts. In the first way, source code can be directly
executed in the MLProScript Running Environment (MRE).
The source code can be either directly typed in the
environment or typed in a separate text file then loaded and
executed. Fig.2. Shows a code directly typed and executed in
MRE.

Fig. 2. MLProScript Running Environment (MRE).

Fig.3. shows a sample code type in two separated files. The
user defined functions file (funct.mlpro) and the main
program (_tests.mlpro) in which the instruction “include”
(translated here by “chukua” in Swahili) allows to call and
include user defined functions.

Fig. 3. Source code running from separate files

For the second way, MLProScript source code can be
executed as script in another .Net program. The following
few steps are needed to test the MLProScript library in a .Net
(C# or Visual Basic) program:

1. Create a .Net project and save it;
2. Copy the two files (.dll and .xml) in the project

bin/debug folder;
3. Add the dll as reference to the project;
4. Import (using) the dll in the source code file where

the MLProScrip is to be called;
5. Instanciate the class MLScript either as a global

attribute or private variable. If you plan to call the
script in a windows form application, call the
method MyConsole.AllocConsole() after the
instanciation.

6. Run your script. Two kinds of scripts are handled by
MLProScript : script located in a text file and free
text script.
6.1. To run a text file script, call the

.run(file_location) method of the MLScript
object.

6.2. To run a free text script, assign the script text to
the attribute .mySource or MLScript object,
then call .run() method from the same.

Fig. 4: MLProScript Scripting test in Visual Basic

Listing 4.1 shows how the source contained in the
aforementioned source files are called and executed as
scripts in a Visual Basic program. Results can be seen in
Fig.4.

Dim prog As New MLProScript

MyConsole.AllocConsole()

'User program

Console.WriteLine("We are ready to call a script")

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 888

' Call the srcipt

prog.myMain("scripts/_tests.mlpro")

' Put the code in a TextBox

txtSource.Text = prog.mySource

' Continue user program

Console.WriteLine("We are done with the script")

Listing 4.1 MLProScript Scripting in Visual Basic

5. CONCLUSION AND DISCUSSION

The executable programming language MLProScript
presented above proves that divide and conquer is a reliable
alternative to design and implement interpreted multilingual
programming languages. I allowed the researcher in this
paper to create friendly parser for a scripting language using
C#. Using the implemented prototype, junior developers and
teachers can create programming languages in a clear,
familiar, systematic and rapid manner using their local
languages lexemes. Their programming languages can then
be easily used by non-English end users and students
without any language barrier and frustration [16] [17] [18]
[19]. On the long run, results from this article can improve
local language promotion, programming productivity,
quality, and time-to-market among young programmers.

Furthermore, MLProScript is a real multilingual
programming language platform. It allows the language
developer to produce a language using lexemes from any
natural spoken language [20]. Another improvement is that
the end user can mix two or many languages in his scripts.

In order to make MLProScript a real scripting programming
language, further research should focus on introducing more
object oriented features as well as windows user interface
components. Finally, since the MLProScript needs to be
internationalized in order to be used by non-English
programming language developers.

 REFERENCES

[1] E. W. Dijkstra, "Stiching Mathematicak Centrum," Algol
Buletin Supplement nr 10, 1961.

[2] F. DeRemer and T. Pennello, "Efficient Computation of
LALR(1) Look-Ahead Sets," Transactions on
Programming Languages (ACM), vol. 4, no. 4, p. 615–
649, 2015.

[3] T. Parr and R. Qwong, "ANTLR: A Predicated-LL(k)
Parser Generator," SOFTWARE-PRACTICE AND
EXPERIENCE, vol. 25, no. 7, p. 789–81, 1995.

[4] T. Parr and K. Fisher, "LL(*): The foundation of the
ANTLR parser generator.," Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) , pp. 425-436, 2011.

[5] A. Wöß, M. Löberbauer and H. Mössenböck, "LL(1)
Conflict Resolution in a Recursive Descent Compiler
Generator. .," in Modular Programming Languages, Joint
Modular Languages Conference, JMLC 2003, Klagenfurt,
Austria, 2003.

[6] B. Kuhl and A.-T. Schreiner, "An Object-oriented LL(1)
parser generator" (2000). , Vol. 35 (No.," ACM SIGPLAN
Notices, vol. 35, no. 12, 2000.

[7] H. Prähofer, D. Hurnaus and H. Mössenböck, "Building
End-User Programming Systems Based on a Domain-
Specific Language.," 2019.

[8] G. P. Arya, P. R. Neha Sohail, P. Kumari and S. Khatoon,
"Design and Implementation of a Customized
Compiler," (IJCSIT) International Journal of Computer
Science and Information Technologies, vol. 8, no. 3, pp.
342-346, 2017.

[9] R. D. Necaise, Data Structures and Algorithms Using
Algorithms Using, Hoboken: Wiley, 2011.

[10] B. Miller and D. Ranum, Problem Solving with
Algorithms and Data Structures, 2013.

[11] C. Chow, T. Y. Chen and T. Tse, "The ART of Divide and
Conquer," in The Symposium on Engineering Test
Harness (TSETH ’13), Proceedings of the 13th
International Conference on Quality Software (QSIC
’13), IEEE Computer Society, Los Alamitos, CA (2013),
2013.

[12] T. Kozsik and I. B. Z. H. Melinda Toth, "Static analysis for
divide-and-conquer pattern discovery," Computing and
Informatics, vol. 35, pp. 764-791, 2016.

[13] E. A. Albacea, Concepts in Programming Languages, 2nd
ed., Quezon City: JPVA Publishing House, 2003.

[14] O. M. Masivi, "Extensible and Executable Lexicon
Metamodel for non-English-like Programming
Languages," International Journal of Scientific Research
and Development (IJSRD), vol. 6, no. 11, pp. 858-863,
2019.

[15] V. Kaplan, "A New Algorithm to Parse a Mathematical
Expression and its Application to Create a Customizable
Programming Language," ICSEA 2016 : The Eleventh
International Conference on Software Engineering

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 889

Advances, pp. 272-277, 2016.

[16] A. Kamal, M. N. Monsur, S. T. Jishan and N. Ahmed,
"ChaScript: Breaking language barrier using a bengali
programming system," 8th International Conference on
Electrical and Computer Engineering, 29 January 2015.

[17] Y. A. Bassil and A. M. Barbar, "MyProLang – My
Programming Language A Template-Driven Automatic
Natural Programming Language," in Proceedings of the
World Congress on Engineering and Computer Science
2008, SanFrancisco, 2008.

[18] P. J. Guo, "Non-Native English Speakers Learning
Computer Programming: Barriers, Desires, and Design
Opportunities," in CHI '18 Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems,
Montreal QC, Canada, 2018.

[19] A. K. Veerasamy and A. Shillabeer, "Teaching English
Based Programming Courses to English Language
Learners/Non-Native Speakers of English,"
International Proceedings of Economics Development
and Research (IPEDR), vol. 70, no. 4, pp. 17-22, 2014.

[20] A. Riker, "Natural Language in Programming An English
Syntax-based Approach for Reducing the Difficulty of
First Programming Language Acquisition," Brandeis
University, Waltham, Massachusetts, 2010.

[21] P. L. Shiuan and C. T. H. Ann, "A Divide-and-Conquer
Strategy for Parsing," in Proceedings of the
ACL/SIGPARSE 5th International Workshop on Parsing
Technologies, Santa Cruz, USA, pp. 57 – 66.

BIOGRAPHY

Dr MASIVI is a Computer Science
PhD holder from University of the
Philippines Los Banos. He is
currently Associate Professor
lecturing IT and Computer Science
courses at Rusangu University
(Zambia) and ISP/Muhangi (RDC).

