
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 812

Amay Shiva Naik1, Feroz Ahmed Choudhary2, Deepa M K3, Bharathi S H4

1,2,3,4Dept. of Electronics and communication Engineering, REVA University, Bengaluru, India
---***---
Abstract – VLSI industry or exposure can be classified in
two parts distinctively which are Front-End and Back-end.
This paper mainly deals in Front-End part for Design
Verification Methodology which will give Basic understanding
of Universal System Verilog Architecture which can be used for
any Design Verification.

Before going to VLSI concepts we need to understand the
difference in Hardware and Software languages which will in
turn answer why HDL is for Designing and Verification. HDL
have options such as VHDL, Verilog, System Verilog etc. where
Verilog is preferred for writing Top module Design whereas
System Verilog is used for other Testing Blocks.

Key Words: VLSI Design Flow, Front-End VLSI, Back-End
VLSI, System Verilog (SV) Architecture, Verification
Scenario, QuestaSim Tool etc.

1. INTRODUCTION

The base of Front-End depends on HDL, which leads to one
simple question in every mind why we can’t use Software
languages for writing codes for Hardware Design & its
Verification. The answer to that question is very simple is
that Software Languages does not have the concept of Time
Constraint thus make it inappropriate to be used in place on
HDL.

HDL has many options to choose from namely VHDL, Verilog,
System Verilog etc. Most of times a coder prefer Verilog over
VHDL mainly because of improvement as well as Verilog
feels easy for learning and grasping the basic contents which
is required for coding. System Verilog can be called as a
hybrid of C, C++ and Verilog i.e. it includes the concepts of
Verilog and the Object Oriented Programming (OOPs)
concepts of c, c++. SV is preferred for writing codes for
blocks required in Verification and Testing whereas Verilog
is used for writing code for Top module Design.

Firstly lets understand the basic role play of each i.e. Front –
End & Back-End in VLSI domain. VLSI Design Flow (Fig 1.)
Explains all partly role played by both Ends.

1.1 VLSI Design Flow

As can be seen in fig 1 first 4 blocks represents role of Front-
end and the remaining blocks represents the role of Back–
end. Front-end Engineers job is till RTL synthesis after that

for the manufacturing of that Design/Device is done by Back-
End Engineers.

Let us understand the flow by taking an example say a client
approaches a Front-end Engineer with a Design Specification,
Front-end understands the client’s requirement and writes
the top level code for the design in any Advanced Verification
Tools. The top level code needs to be validated i.e. verified by
using SV architecture after getting the results is the design is
acceptable its RTL synthesis is given to the Back-end
Engineers. The tool required for the back-end are different
from those for Verification which are mostly deals in
Placement & Routing of cells for the device it also involves
Verification which different from Front-end Verification.

Fig -1: DESIGN FLOW

Verification in Front-end involves writing Test cases whereas
in case of Back-ends is verifying the cells order placement
for manufacturing purpose.

Front-End Universal VLSI Design Verification Methodology using

System Verilog (SV) Architecture for Design Verification Engineer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 813

2. System Verilog Architecture

The below show Fig-2 is for the System Verification
Architecture as can be seen there are various blocks which
are need to coding in the tool, but the question is why Verilog
only can be used and why in what way does System Verilog
have advantage over Verilog. DUT Block is the Device under
test i.e. the top module for which coding is done by using
Verilog. If all the remaining Blocks are coded via Verilog then
we have to instantiate coding by defining module name for
each block, module to module communication is very hectic
thus we don’t prefer Verilog for coding of other blocks
instead prefer System Verilog. The main reason is System
Verilog includes OOPs concepts thus defining each blocks
codes in a class format provides easy way of coding as
compare to Verilog.

The following Figure can be divided as two parts for master
and slave configuration, the left hand side is for master and
the right hand side is for the slave. Depending upon the no of
slave and master the figure can be modified for different
design aspects.

Fig -2: System Verilog Architecture

We can briefly define each block role independently as
follows

(i) Generator Block: Responsible for generating all the signals
required for all scenarios example clock & reset signals etc.

(ii)Driver/Bus function model (BFM): Routing Signals
generated from the generator.

(iii)Monitor: To check signals and has inputs from coverage &
assertion blocks.

(iv)Coverage Block: checking the given input to the DUT
whether it’s complete or not.

(v)Assertion Block: checking at the interface as per the
protocol or not i.e. indicates violation of protocols.

(vi)Reference: kind of having desire results.

(vii)Checker: Compare the outputs from the reference and
DUT block.

(viii)Scoreboard: Displays the result of Checker.

3. Verification Steps

 (i) Features listing down.
(ii) Scenario listing down.
(iii) Test plan development.
(iv) Functional Coverage Point listing down.
(v) Testbench architecture definition.
(vi) Testbench component coding.
(vii) Sanity test case development.
(viii) Sanity test case bring up.
(ix) other test cases.
(x) Setting up regression.
(xi) Running regression and debugging regression results.
(xii) Generating coverage results.
(xiii) Analyze coverage results.
(xiv) Closing functional Coverage.

4. Verification Tools

There are many companies which provides simulating
advanced verification tools namely QuestaSim, ModelSim,
Xilinx, Cadence etc.

Usually the tools works in 3 steps which includes:

(i) Compilation.
(ii) Elaboration.
(iii) Simulation.

Tool like QuestaSim has a inbuilt writing notepad otherwise
the code written in a separate notepad can be linked to the
tools. For every Design prospective we need to create a new
project in the tool and make sure all the required libraries
linked to the directories are included for the same project.

5. Conclusion

Universal Verification Methodology was studied for verifying
any design. The aim is to get 100% Functional Coverage
results i.e. verifying all test case scenario in order to get
better quality design for manufacturing purpose.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 814

REFERENCES

1. System Verilog for Quality of Results (QoR) DOI:
10.1109/ISQED.2008.4479777.

2. A loosely coupled C/Verilog environment for system
level verification. DOI: 10.1109/IVC.1998.660697.

3. 1364-1995 - IEEE Standard Hardware Description
Language Based on the Verilog(R) Hardware
Description Language. DOI:
10.1109/IEEESTD.1996.81542.

4. Guide lines for safe simulation and synthesis of
implicit style Verilog.
DOI: 10.1109/IVC.1998.660681.

https://doi.org/10.1109/ISQED.2008.4479777

