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Abstract- A long term prediction of future load is helpful in better operation of power systems and its economical utilization. A
number of algorithms have been suggested for solving this problem. In soft computing techniques neural networks and
combined Fuzzy Logic, for long term load forecasting is proposed. The output load obtained is corrected using a correction
factor from neural networks, which depends on the previous set of loads, number of customers etc. The data is taken for the
three years and the results are obtained for the fourth year. It is further validated using the actual data from an electrical
company.
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1. INTRODUCTION

For centuries humans have designed buildings and settlements to take advantage of light and heat from the sun. While many of
thesedesigntechniquesfell outoffavorwiththeadventoffossil-fuel-produced heatandelectricity, in recent years communities
across the India and throughout the world have taken a renewed interest in both passive and active solar energy use. In many
industrialized nations, rising fuel prices and concerns over energy security during the 1970s planted the first seeds of the
modernmarketforsolarenergyproduction. However, these initial investments in solar technology remained quite modest until
the first decade of the twenty-first century. Solar energy isacommunity resource and should, therefore, be treated as such. Five
strategic points ofintervention thatplanners, public officials,and other community stakeholders can use to foster opportunities
forsolarenergy use and evaluate solar developmentopportunities.

Alongterm prediction of future load is helpful in better operation of power systems and its economical utilization. A number of
algorithms have been suggested for solving this problem. In soft computing techniques neural networks and combined
Fuzzy Logic, for long term load forecasting is proposed. The output load obtained is corrected usingacorrection factor from
neural networks, which depends on the previous set of loads, number of customers etc. The data is taken for the three years
and the results are obtained for the fourth year. Itis further validated using the actual data from an electrical company.

2. Concentrating Solar PowerSystems

Concentratingsolarpower (CSP)systemsusemirrorstofocuslightandheatacontainedsubstancesuchasmolten salts or water to
create steam. These mirrors may be arranged as a trough focusing the light on a substance trav-ellingthroughatube, orasadish
focusingthelightonasinglepoint. The heatfromthatsubstanceisharnessedto drive a mechanical engine, which subsequently
drives an electric generator.
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Fig.1 Parabolictrough concentrating solar power (CSP) collectors capture the sun’s energy with large mirrors thatreflect and
focus the sunlight onto a linear receiver tube

Unlike PV systems, CSPsystemsare generallyonlycommerciallyviableonalargescale, typically forlargeindustrial facilitiesorasa
wholesale electricity generator for utilities larger than 100 megawatts (MW) in capacity. In order to meet this large scale, CSP
systems require a significant amount of land, normally five to 10 acres per MW. Furthermore, CSP systems, like all thermal
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power plants, uselarge amounts of water. Perhaps the primary benefit of CSP systems over PV systems in utility applications is
that CSP systems can store energy more efficiently. While PV electricity production drops off substantially in the late afternoon
and early evening, when electricity useis still high, the thermal energy collected by a CSP system can be stored for extended
periods of time, allowing it to generate electricity as the sunsets.

3. Interconnection

Interconnection refers to the technical and procedural requirements necessary to safely, reliably, and efficiently connect an
electricity-generating system (e.g.,a PV system) to the electricity grid. In order for a PV system to net meter, ratherthanrelyon
batteriestostoretheelectricity,thesystemmustbeinterconnected. Theinterconnection process sets forth guidelines and criteria
in order to allow electricity to flow from the PV system outinto the grid. Traditionally, utilities (regardless of the type) owned
generation facilities and thus had control over the how producers connectedtotheirelectricitygridsystems.Interconnection
procedures run counter to this established method by allowinga potentially large number of electricity-generating systems to
interconnect at various points along a grid. Without established interconnection procedures, the cost of studying the
potential impacts of connecting to the grid could overwhelm the cost of a PV system. Therefore, it is critical that utilities use
well- established guidelines and best practices to facilitate the interconnection of PV systems in order to safely and
efficiently allow and capture the benefits of PV generation.

4. Plan Making

The second strategic point of intervention for communities looking to promote solar energy use through planningis plan making.
Communities adoptlocal plans in order to chart courses for more sustainable and livable futures. Plannersand publicofficials
then use these plans to inform decisions that affect the social, economic, and physical growth and change of their communities.
Giventhepotentialeconomicandenvironmentalbenefitsoflocalsolarde-velopment, itis no wonder that an increasing number of
cities and countries are addressing solar energy use in their plans.

Solar in the comprehensiveplan

Comprehensive plans arenamed as such because they coverabroad range of topics of communitywide concern. All states either
allow orrequire local governments to prepare comprehensive plans, and many states require local developmentregulationsto
be in conformance with an adopted comprehensive plan. While enabling laws vary from state to state, common topics for plan
elements (i.e., chapters or majorsections) include land use, transportation, housing, economic development, and community
facilities. In recent years an increasing number of cities and counties have added elements addressing sustainability, natural
resources, or energy to their comprehensive plans. Thecomprehensive planisthelegal foundationthatlegitimizeslocalland-use
regulations. Assuch, itisimportant for planauthorsto establisha policy foundation inthe comprehensive plan for development
regulations that affect solar energy use. Ideally, the local comprehensive plan is a primary guide not only for updates to
development regulationsbutalso for the creation oflocal capitalimprovements plans, which detail planned capital expenditures
over a multiyear period. By extension, comprehensive plans with goals, objectives, policies, and actions that support solar
development can pave the way for future public facility construction or rehabilitation and private development projects
that incorporate passive solar design or solar energy systems.

Solar in subareaplans

Subareaplansareplansthatincludegoalsandobjectivesforadiscretegeographicareawithinajurisdiction.Some common types
of subarea plans include plans for specific sectors, neighborhoods, corridors, or special districts, such as transitstationareas,
redevelopmentareas,orareasdesignated forhistoric preservation. These plansmay coverawiderange oftopicsrelevanttothe
planarea, essentially functioningas smaller-scale comprehensive plans, or they may be strategicin nature, focusing on asubset of
topics with special urgency. The limited extent of subarea plans has both advantages and disadvantages. Because
comprehensive plans can seem abstract or diffuse to residents, business owners, or institutions that identify more with
specific neighborhoods than with a city as a whole, planners often have an easier time identifying and engaging key
stakeholders when a plan has clear implications for these stakeholders’ homes, businesses, and shared public spaces. The
other clear potential advantage of subarea plans is that these plans can be more specific about how goals and objectives
apply to individual parcels of land. On the flip side, strong emotions can lead to a loss of objectivity, making it difficult for
communities to prioritize scarce resources. When considering the limited extent and greater specificity of subarea plansin the
contextofplanningforsolarenergyuse,planauthorshaveopportunitiestodiscusstheneighborhood- orparcel-levelimplications
of policies and actions aimed at increasing adoption of solar technologies. Subarea plans can provide greater detail about
preferred locations for solar installations and go into more depth about the regulations, incentives, and potential competing
interests that may either support orinhibitlocal solar market growth.
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5. The power audit

Here is a sample power audit. Notice the "No." column. This shows how many of those appliances typically are operating at
thesametime. Thisisimportant.Ifyouhave 12 ceilinglights,butonaverage, only fiveareturnedonat once, you'd enter 5, not 12,
in the "No." column to get an accurate estimate of the typical load. The "Total KW" columnis simply the KW load multiplied by
the quantity in the "No." column. Notice the "Hours on per day" and "KWH per day” columns. Estimatehowmanyhours per day
eachapplianceisused.Multiplythe "totalload"KWby thesehourstogetthe total power (KWH) used by thatapplianceinatypical
day.Example: In Table 1, the five 26W ceiling fixtures together draw 130W (0.13 KW), and all five are estimated to be turned
on for 8 hours each day. Multiplying 0.13 KW by 8 hours yields a daily power consumption of 1.04 KWH.

Table 1: Sample power audit

Total | Hours
KW KW |On per| KWH per
Appliance No. | (Load) | (Load) | Day Day
Ceiling light, two 13W CFLs
apiece 5 0.026 0.13 8 1.04
Desktop computer 1 0.175 | 0.175 4 0.7
45" LCD television 1 0.22 0.22 5 1.1
Well water pump 1 1.3 1.3 0.2 0.26
Refrigerator 1 0.275 | 0.275 4 11
Microwave 1 1.8 1.8 0.1 1.8
Washing machine 1 0.3 0.3 0.1 0.03
Total
solar 3.31 KWH
load: per day
4.2 KW

Inthisaudit, thetotal solarloadis 4.2 KWifall thelisted appliancesare operatingatthe sametime. Thisisaworst- case condition,
but one for which the inverter should be sized, and is a factor in determining the number of solar panels. This auditshows that
3.31 KWH are consumed per day. The KWH per day value affects how many arteries you will need, and is another factor in
determining the number of solar panels.

6. Panel interconnections

PV panels come with short (3' or 4") positive and negative cables permanently attached to a junction box thatis wired tothe
internal solar cells.Each cablehasapolarized industry-standard compatible connector. Connectorsare used throughoutthe solar
industry to interconnect PV panels. They are polarized (male and female), so it is possible to connect a positive cable only to a
negative cable for series wiring, or to a panel-mounted positive connector of the opposite gender (e.g., on a combiner box).
Connectors are weatherproof, and have latches to ensure a positive connection that won't pull loose. You will need longer
cables toreach the combiner box (below) thanare supplied with PV panels. Extension cables are available for this purpose,and
howtousethemisexplainedinthesectionon the combiner box.

Grid-tie considerations

Grid-tied means being connected to the grid and capable of selling excess solar energy to the electric utility. A grid- tied inverter
sends AC power produced from arenewable source (e.g.,solar,wind, hydro) to the grid via the input cable. Normally we think of
aninverter putting AC power onits output cable torunappliances, butin this caseit puts it on its inputcable.

Power System OperationPlanning

Given the unit-commitment and dispatching of the conventional generators assessed in the sale/purchase session of the energy
market,and giventheforecastofloadandrenewable PVand wind power,assessmentofthebalancing reserve involves:

1. Uncertainty evaluation based on the load demand, the wind and solar power generation and the generation supplied by
thermal units;
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il. Probabilistic combination of the abovementioned uncertainties and consequential evaluation of the needed balancing
reserve to match the demand for a given confidence level of 95%.

Regarding the confidence level of 95%, this value was considered taking into account other international experiences;in
any case, this parameter can be changed maintaining the same methodological approach proposed here. Under a set of
operational conditionssuchascompositionofgenerators,generatorcharacteristics,automatic generationcontroland economic
load dispatch, an operator plans a generation schedule typically for the nextday. In the schedule, start and stop timing and
generation level of each generator are decided to fit the predicted demand of various levels during the day. The operation
plan of a power system, called as unit commitment, is a result of large-scale optimization planning considering economy,
stability and security of the power system operation. The economy is mainly dependent on the operational cost of each
power plantincluding fuel costand generation efficiency of a thermal unit. The operational stability is mainly related to the
total capability of all generators to change its output. The security is ensured through the reserved generation units which may
workina sudden increase of demand or in a sudden loss of generation due to a generation failure. If there is not enough
balancing capability in a power system, it may be necessary to curtail the variable PV generation to secure the stability of
the system operation, evenifitreduces the economy ofthe system. Inthe contextof operation planning, the natural variation of
PV generation increases the requirement demand-and-supply balancing capability of a power system whichresultsinpartial
operation of some power plants. Theuncertainty of PV generationrequires additional operation of generationunitswithlower
economy in preparation for the event of reduced PV generation. These changes bring about the reduced economy of the
existing generators and the increase of stresses of the generators there are many countries where electricity is traded in a
power market. The trades are made for various, short or long time frames. In the competitive circumstances, the plan of
unit commitment is decided partiallyinthe market.Intheunitcommitmentincludingthepowermarketoperation, PVforecast
playsacrucial roleto decide the performance ofa power system operation. Inthe power system operation planning,inorderto
keeptheviabilityoftheanalysis, weneedtoincludethe parameterssuchasmaintenancescheduleofpowersystem elements.

Power System AugmentationPlanning

In years, demand and generation mix changes in a power system. In order to reduce CO2 emission in the energy sector, it is
widely recognized that energy demand will increase as economy grows in general, the existing power demand will reduce
through energy efficiency, much of energy demand will be electrified, and more energy will be supplied by variable renewable
generation, which leads to a larger power demand and supply structure with a highershare of variable renewable generation
including PV. In the current practices of power system augmentation planning, a planner, following criteria such as economy,
reliability, environmental, stability and security, optimize the future power system. When a power system augmentation is
planned including RE such as PV, itis usually aimed to find the optimum path to integrate RE into a power system. In order to
develop such a future power system, the power system augmentation planning must have the new functionalities so as to
accommodate substantial variable renewable generation, while satisfying the existing planning criteria and constraints. The
impacts of PV penetration on the power system come with the variation and limited predictability of PV generation, and the
reduction of the operational amount of dispatch able generators. In the power system augmentation planning, the
parameters which are used in the operation planning are necessary to estimate the operational performance of each
augmentation scenarios. In the augmentation planning, the time horizon is the most important parameter. A major thermal
generation needs several years of legal procedures and construction period. The distributed generatorsalsoneedlongtime
forbeingproperlydisseminated. Theaugmentationplanningusuallyhas 10 to 20 years of studyperiod.

7. Planning: Comprehensive Approaches

Comprehensive planning approaches that integrate transmission, distribution, generation and system performance goals, from
distribution to bulk power system across an entire network, greatly facilitate and reduce the implementation costs of
variable renewable energy integration. The coordination and integration of planning processes helpsregulators prepare for
the potential impacts that variable generation may have on the system and evaluate the available options to optimize
generation and transmission costs. Resource planning takes many different forms around the world. However, the
experience in different countries shows that there are a few practices that can be applied in many different regulatory
contexts. Threekeyprinciplesthathavebeenidentified include:

1. Integratingthe planning of generation, transmission, and system performance
2. Ensuringinstitutions and markets are designed to enable access to physical capacity
3. Building from local and regional planning to better integrate and coordinate information across jurisdictions.

Planning processes that optimize generation, transmission and other resources across an entire network greatly reduce the
need and cost of variability mitigation mechanisms.
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Operation Planning

Undertheincreased variability and uncertainty due to PV and wind generation penetration, in order to preserve reliabilityinan
economic way, it is crucial to improve the predictability and flexibility in the operation of a power system. Given the unit-
commitmentand dispatching of the conventional generators assessed inthe sale/purchase session of the energy market and
given the forecast of load and renewables PV and WIND, the steps of the assessment of the balancing reserveare:

e Theuncertainty evaluation based ontheload demand, the wind and solar power generationand the forced outage risk
of thermal units;

e Theprobabilisticcombination ofthe above mentioned uncertainties and the consequential evaluation on the needed
balancing reserve to match the demand for a given confidence level. Figure 2 depicts the basic flow scheme of the
adopted methodology for the balancing reserve calculation for one day ahead.

MARKET GATE CLOSURE

Forecast of: Load, Wind, Solar PV.
Conventional generation unit commitment &

dispatching)
UNCERTAINTIES EVALUATION & PROBABILISTIC COMBINATION
Forced outage LOAD forecast WIND forecast error SOLAR PV
probability of thermal error (Gaussian distribution) forecast error
power plants (Gaussian distribution) Depending on time (Gaussian distribution)
(non-Gaussian, discrete Depending on weekly horizon Depending on sky
probability density) hour ™= clearness index

Simple Gaussian summation

v h 4

Summation convolution (level of confidence 95%)

§ } } I

REQUIRED POWER BALANCING RESERVE for the specified hourly time horizon of the day a-head

Fig. 2 Flow scheme of the methodology for the evaluation of the hourly balancing reserve.
Augmentation Planning

In the last few decades, the increasing penetration of variable generation technologies - most notably wind and solar - has
required changes in the way the electricity grid is operated. The daily and seasonal variability patterns observed in wind and
solar technologies present a challenge to their efficient integration into existing electrical grids. Given the complexity of
modern grids, it is necessary to employ computational simulation models to fully understand the effects of introducing
increasing variable generation levels, devise effective mechanisms that facilitate their integration, and optimize costs. The
design and complexity of the optimal variable generation integration model will depend on the goals of each study, as well as
the levels of added solar PV capacity. Some of the study components presented in this section may be omitted for studies
looking at shorter time horizons, or relativelylowlevels ofincreased solar PV penetration, for example. Before designingasolar
PVintegrationstudy it’s important to consider its main goals. Examples include:

- Evaluating the costs of integrating variable renewable energy source into the system

- Identifying variable renewable energy integration impacts on grid operation
Measuring the amount of variable renewable energy the existing system can absorb before changes in operation or physical
configuration are needed To address the complexity, the model structure can be divided in elements corresponding to

relatively independent tasks as depicted in Figure ES5. Modularity also helps to scale down the model complexity to match
actualneeds.
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MostsolarPVintegrationstudies willfollowaniterative processwherea few ofthe stepsarerepeated, usingoutputs fromcertain
modulestomodify previousassumptions,orasinputsfor other modules.

Solar + Resource +
Location

Portfolio Development
Scenarios for
conventional and
generation, demand r
and storage
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(Load, Grid, Plants, etc.)
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—
—

Continue Flow

Correct and Iterate

Fig. 3 PV and Wind integration study recommended practices diagram.

In normal operation, hydropower plants support the power grid, and the PV power system outputs active power and reactive
power in accordance with the requirement of the scheduling institute. When the grid is down, the two dual-mode PV units
support the grid alone. Figure 4 shows a photo of the 2 MW PV station.
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Hydro Power Plant 1

Hydro Power Plant 2

Fig. 4 Hydro/photovoltaic hybrid power system

The annual generating capacity of this power system is nearly 3 million kWh; its lifetime generating capacity is nearly 70
millionkWh.Comparedwithtraditionalpowerplants,thehydro/PVhybridpowersystemcansaveabout

24.5 thousand tons standard coal, which saves 64 thousand tons of CO2, 588 tons of SO2, and 172 tons of nitrogen oxide
emissions; the beneficial effect of reducing carbon emissions is obvious.

8. Estimation of solar electricity generation

The solar electricity generation was estimated with the above conditions. The electricity generated annually and monthly is
estimated by assuming a PV system performance ratio, the losses are accounted as follows for a PV system with nominal DC
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power of 1.0 kWp.
i. Estimated losses due to temperature and low irradiance: 9.7%
ii. Estimated loss due to angular reflectance effects: 2.4%
iii. Other losses (cables, inverter etc.):12.0%
iv. Combined PV system losses: 24.2%

Table2:Monthlyand Total Annualelectricityproductionforfixedangle PVsystem,inclination=31deg., orientation=0 degrees
with the aboveconditions.

Month Em in KWh/kWp
Jan 69.1
Feb 84.9
Mar 129
Apr 144
May 167
Jun 166
Jul 175
Aug 172
Sep 147
Oct 118
Nowv 82.8
Dec 65.3

e auon oot

Em: Average monthly electricity production from the given 1 KWp PV system (kWh)

Therefore, it is estimated the AC power electricity production for a PV system will be 1520 kWh/kWp with an estimated
accuracy of +5%.

9. Issues and Solution for PV and other Generation RES Electrification island power system operation approach

In Figure 5, the basic block diagram of Electrification system is presented as it is expected to operate in its final scheme
including Hydrogen production, storage and electricity production associated with Hydrogen. In a real application, the
electrification system should be supported byamonitoringandadecisionsupportsystemthatwill take into account forecasts for
load, weather (solar,wind, etc.) and state of charge of batteries, hydrogen storage, etc. and provide an operation schedule and
strategy for the following minutes and hours.

AC BUS DC BUS
< <

@:D@ = RIS

<:>Exaaﬁdny Pawer fow

—p Hydrogen gas Bow

Fig.5 Basic block diagram of RES and Hydrogen based Electrification system.
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The main components for the management of the overall power system and decision logic are a Data Acquisition system and a
Central Supervisory Control. Additional systems(SCADA), such as dynamic compensation components and adjusting devices for
security necessary for the proper dynamic operation ofthe networkare also considered. The additional systems,dependingon
the architecture of the proposed power system may also include: flywheels, rotary capacitors and additional bi-directional
converters with local storage. Interventions may be also needed to the existing diesel generators of the power station such as:
upgrade or replacement of the engine rpm regulators to comply with the dynamicsupportcharacteristics and communication of
theexistingSCADA26systemofthepower plant with the central monitoring, control and management system. For this purpose,
the central management system given the forecasts for load and RES availability and the state of charge of the battery system
should be able to makea prediction of shortterm RES production andisland system demand, providingappropriate signals for the
managementofpowerproductionandofthecontrollableloads.InFigure 6,alogicblockdiagramfortheforecast, stateestimation
and scheduling of the island electrification system components is presented. As RES units are being generally characterized by
variability in their production, the penetration of RES in the conventional power systems’ generation mixislimited due to
technical constraints introduced by the conventional units. Withlimited control capabilities, operators are obliged to follow
conservative procedures, rejecting part of\ the available resources. To overcome this limitation, advanced management
systemswitheffectivecontrolcapabilitiesneedto be implemented.

POWER SYSTEM STATE
FORECASTS TR AT
BATTERY STATE
ISLAND LOAD
DEMAND OF CHARGE
| | SYSTEM
SCHEDULING
HYDROGEN
PRODUCTION CBANCEEX: 24
SCHEDULING OF
1 GENERAT:
LOADS AND
CONTROLLABLE DSM
SOLAR PV LOADS
PRODUCTION SCHEDULE
1
WIND SPEED DEMAND SIDE
DIRECTION. SOLAR MANAGEMENT
GLOBAL HORIZONTAL MEASURES
RADIATION,
TEMPERATURE,
HUMIDITY 1
E AVAILABILITY OF
GENERATION
E UNITS

Fig.6 Block diagram for forecasts, state estimation and scheduling
10. Load Forecasting for Power System Planning using ANFIS

Loadforecastinghasbeenanintegral partintheefficientplanning,operationand maintenanceofapowersystem. Shorttermload
forecastingisnecessaryforthecontroland schedulingoperationsofapowersystemandalsoacts as inputs to the power analysis
functions such as load flow and contingency analysis. Owing to this importance, various methods have been reported, that
includeslinearregression, exponential smoothing,stochasticprocess, ARMA models, and data mining models. Of late, artificial
neural networks have been widely employed for load forecasting. However, there existlarge forecasterrors using ANN when\
there are rapid fluctuations in load and temperatures. Insuch cases, forecastingmethods using fuzzylogicapproach have been
employed. In this paper,an approach forlong term load forecasting problem, using fuzzy logic combined with ANN approach is
proposed.The fuzzy logic technique has been used to classify the data's. The neural network is used to calculate the increment
factor ofload due to other parameters like growth in industries, increase in number of customers etc.

Adaptive Neuro-Fuzzy Method

Adaptive neuro-fuzzy method (or Adaptive neuro-fuzzy inference system, ANFIS) has been became a popular method in
control area. In this section, we give a brief description of the principles of Adaptive neuro-fuzzy inference system (ANFIS).
The basic structure of the type of fuzzy inference system could be seen as a model that maps input characteristics to input
membership functions. Then it maps input membership function to rules and rules to a set of output characteristics. Finally it
mapsoutputcharacteristicstooutputmembership functions,and the output membership function to a single valued output or
a decision associated with the output. It has been considered only fixed membership functions that were chosen arbitrarily.
Fuzzy inference is only applied to only modeling systems whose rule structure is essentially predetermined by the user's
interpretation of the characteristicsofthevariablesinthemodel. However,insomemodelingsituations,itcannotbedistinguish
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what the membership functions should look like simply from looking at data. Rather than choosing the parameters
associated with a given membership function arbitrarily, these parameters could be chosen so as to tailor the membership
functionstotheinput/outputdatainordertoaccountforthesetypesofvariationsinthedatavalues. In such case the necessity of
the adaptive neuro fuzzy inference system becomes obvious. The neuro-adaptive learning method works similarly to that of
neural networks. Neuro-adaptivelearningtechniques provideamethod for the fuzzy modeling procedure to learn information
about a data set. It computes the membership function parameters that bestallow the associated fuzzy inference system to
track the given input/output data. A network- type structure similar to that of a neural network can be used to interpret the
input/output map so it maps inputs through input membership functions and associated parameters, and then through output
membership functions and associated parameters to outputs,. The parameters associated with the membership functions changes
through thelearning process. The computation of these parameters (or theiradjustment) is facilitated by a gradientvector. This
gradientvector provides a measure of how well the fuzzy inference system is modeling the input/outputdata for a given set of
parameters. When the gradient vector is obtained, any of several optimization routines can be applied in order to adjustthe
parameters to reduce some error measure (performance index). This error measure is usually defined by the sum ofthe squared
difference between actual and desired outputs. ANFIS uses a combination ofleast squares estimation and back propagation for
membership functionparameterestimation. Thesuggested ANFIS has several properties:

1. The output is zeroth order Sugeno-type system.
2.1t has a single output, obtained using weighted average defuzzification. All output membership functions are constant.

3.It has no rule sharing. Different rules do not share the same output membership function, namely the number of output
membership functions must be equal to the number of rules.

4.1t has unity weight for eachrule.
11, Simulation results

The electrification systems that achieved the lowest cost of electricity production over a lifetime of 25 years for each primary
load and average wind speed simulation case. As the PV system will have a modular design through the use of several grid
connected inverters, in scenario 3, 4 and 7, 8 the lowest levelized cost of electricity using 2 wind turbines are presented for the
lowprimaryload (3.345 MWh/day) and higher primaryload (5.352 MWh/day) casesrespectively.Itis noted, thattheincreasein
thecostofelectricitywith2 windturbines,inthehigherprimary load case is much smaller than the lower load case.

Primary Annual Mumber of | Geni Gen2 Gen3d |Number of] Opersting| Total Net
. Average . Wind Max. Max. Max. | 2¥ Cells | Converter| Dispateh| Initial capital
Loadin | . Seenario| PV (kW) . ; ; ) : cost Present
MWhiday w?nd speed Turbines | Capacity | Capacity | Capacity| of 8 kWh | (kW) | strategy| in Euro (Eurolyr) | Cost in Euro
in misec 330kW/ieach| (kW) (kW) (kW) each
3.345 ] 1 300 1 a0 720 o0 480 300]LF 1,632.000] 116,237] 3,117,805
(1220 2 500 1 ap 220 o0 480 200[LF 1,032,000 06,580 3,167.807
MWhiyear) 3 200 2 an 220 o0 480 200[LF 2,082,000) 123400 3,650,567
4 100 2 an 220 o0 480 300[LF 1,932,000 135850/ 3,888,058
[~ 5.5z ] 5 700 1 o0 220 o0 720 00|LF 2.448,000 105,845 4,051,600
{1953 g 700 1 an 220 o0 84D 200[LF 2,556,000) 187.378] 4,851,325
MWhiyear) 7 500 2 a0 22| o0 600 200[LF 2,640,000] 183,150] 4,881,385
8 500 1 a0 22| o0 600 200[LF 2,040,000) 253704] 5,283,188
. Annual Cost of Total . Battery
Primary - Excess | Unmet| Diesel | Geni | Gem2 | Gen3 | Battery
Loadin | V98 | goonariof EICCCH |Rencwable) o | Load | %% | usedin | operation| operation| operation| Autonomy| T oudt | Battery
MWhiday | ¥ 5Pesd m | mEeson | e [iwnr S0P s | b | fis | fs | b put | Lifeyr
in misec EurokWh in KWhiyr KWhiyr

3.H5 ] 1 0.200 0.225 TQB,E? 0| 91268[ 29601 697 KL M 12 198,?_9? 2
(1220 7 0203 098 10413% O 50368 16193 36| 186 13|  124] Ji56% 2
MWh/year) 3 0234 0952 2190942 | 58,125 18674 367 226 156 124 1354 ﬁl
4 0.235 0932| 2,067,169 Ol 83025 26,711 555 kA 233 124] 162425 20
%5 ] 3 R3] I O O ) I 3 e 5 ) I - s i\‘l
(1953 [ 0199 D915 6E2900 3133 165875 60211 1,099 510 516 13.56] 378,910 20|
MWhiyear) T 0.200 0935 1926926| 2546 127627 46380 BT 391 409 969 272761 2|
3 0212] o857 se040] 3g00] 20118 102,007 1781 eo1] o] aes) 2e03] 2|

Table 3:Selected HOMER simulationresultsaccording to the above assumptions and sensitivity analysis
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LF: Load Following mode, CC: Cycle Charging mode

The optimum PV system capacity, for thelower primaryload (3.345 MWh/day-scenario 1,2, 3,4) for the currentelectricity use,
according tothe simulationis inthe range of 500 to 100 kWp, while all proposed systems have a high renewable fraction higher
than 92% with a levelized cost of electricity production for 25 years in the range 0of 0.200 to 0.235 Euro/kWh. In Figure 7, the
monthlyaverageelectricproductionaccordingtoallgenerator units for scenario 7, as in Table 3 are presented. This scenario is
projected to be the one that represents the most probable caseinenergyload use, while fulfilling the requirements for high RES
penetrationandhigherreliabilityin making use of RES with a competitive electricity production cost.

Monthly Average Electric Production
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Fig.7: Monthly average electricity production for all generating units.

In Figure 8a, b, the power output over the year of the wind turbines and the PV system are presented, in Figure 8c the battery
bank state of charge is presented.
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Fig. 8a: The power output over the year of the wind
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Fig. 8b: The power output over the year of the PV system
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Fig.8c The annual fluctuation of the battery bank state of charge
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