
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2013

Pulkit Sharma1, Namita Goyal2

1Student, Department of Information Technology, Maharaja Agrasen Institute of Technology, New Delhi, India
2Asst. Prof., Department of Information Technology, Maharaja Agrasen Institute of Technology, New Delhi, India

--***---

Abstract - Login Systems have become pretty advance with
single login using token (Sign in with Google, Facebook have
come up and most of the people use it instead of making new
passwords for every application because it goes beyond human
limits to remember all the passwords. With my project, I
researched about how to setup login system using session ID
and during my research I found a relatively new way to use
bcryptjs – a JavaScript library of famous bcrypt (C++) to
generate new type of session IDs, their possible use cases, and
how they can also stand along with present authentication
systems for which high security is slightly overkill. This
research or methodology is not tested for scenarios including
e-commerce or any application which requires real money
transaction. This is tested with rather simple, beginner-phase
applications which don’t require world’s best security. Also,
this paper doesn’t account for database security in general
which can be attacked outside the scope of application. This is
strictly according to login system where user logs in to an
application using username password and how his login
session can be maintained without a session id in particular,
creating a custom session id in particular.

Key Words: bcryptjs, hash, customHash, salt,
customString

1. INTRODUCTION

Login Systems, from their very beginning, are intended to
provide the rightful users access to their account, usually on
the web. This concept is derived from real life scenarios like
card-based entry systems in buildings, fetching cash from
ATM, etc. Usually what happens is when a user enters his
login credentials, majorly username and password, then
these are transported to a server which is listening for such
logins, captures the credentials, checks it with database
match, matching the username and then password, if match
found then a session ID is generated by the system and it is
stored in cookies, and on every request those cookies are
transported in the header so that authentication takes place
at all points. While making a login system, and researching, I
found out about localStorage and sessionStorage which were
introduced in HTML5, it made somethings very clear and
easy for the web developers. localStorage and sessionStorage
are a part of Web Storage API introduced with HTML5
standards which grants 5MB of storage on client machine for
websites to store some data, every domain is provided its
own localStorage and sessionStorage so it is not accessible,
that is, another domain cannot access different domain’s
Storage. But it can be accessed via JavaScript so using it with

well written frameworks like Angular or libraries like React
which have optimization and background checks for memory
leakage or external JavaScript injection. If anyone is making
their own application from scratch then they have to take
care of any potential JavaScript injection avoidance because
JavaScript can access Web Storage API. With that out of the
way, let’s talk about session ids.

1.1 Saving Passwords

Not a long time ago, passwords were saved in the
database as plain texts, which means if anyone manages to
get access of the database, then there is nothing stopping the
hacker to use that information for malicious purposes. Then
emerged the need to save passwords in such a way which, if
intercepted, cannot be deciphered by end user. That said,
hashing was used as method to store passwords in to
database. Now before saving passwords to database, first
they are hashed using a salt and slow hash method or
algorithm, and then after generating hash, that hash is saved
in the database so that if anyone intercepts the database all
he/she will get is a hash, and just like hashes are built, they
can be generated but deciphering them back to plain text is so
difficult or unfeasible that it is considered impossible.
Hashing algorithms use a salt, which is a string of random
numbers. On feeding plain text or message and salt into
hashing algorithm, a hash is generated. There are 2 types of
hashing algorithms, fast hash and slow hash. Fast hash
algorithms are those which can be computed very fast, but
because they can be computed very fast, they are vulnerable
to rainbow table attacks also. Examples are SHA1, SHA256
and SHA512. They are generally not used for purposes of
hashing a password. For hashing a password, slow hashing
algorithm is used which is relatively difficult to crack because
it is slow to generate the hash. bcrypt and scrypt are good
examples of slow hashing algorithms. So saving hashed
passwords is now considered a secure way to store
passwords, and hashes generated via a slow hash.

1.2 Bcryptjs

bcryptjs is a version of famous C++ library bcrypt purely
written in JavaScript which uses bcrypt slow hashing
algorithm to generate hash. Great thing about bcryptjs is that
it is progressive hashing algorithm, which means when in
future we have more computationally powerful computers,
then to generate more secure hashes we don’t need to
generate new hashing algorithms to match them, but just
increase the number of rounds to generate salt for it,
because higher the number of rounds, more time it takes for

Login System for Web: Session Management using bcryptjs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2014

algorithm to generate salt and more secure hash is
generated. So bcrypt has become a good standard for
moderate security. bcryptjs has 2 major functions that we
are going to use, genSalt(rounds) and genHash(message,
salt). genSalt takes in number of rounds, an integer and
returns asynchronously a salt, and returns a promise, which
on fulfillment returns the salt. Default value for rounds is 10.
genHash takes in 2 arguments, plaintext or message and salt.
It is also asynchronous in nature so it returns a promise
which on fulfillment returns hash, which can then be used
anywhere.

2. ALGORITHM

This Algorithm works in applications that make use of a
Frontend (Client-Side Application) working in collaboration
of Backend (Server-Side Application). Although, this
application works and runs on Backend (Server-Side
Application).

Also, This Algorithm presumes that there is a working
logic in place to match username and password from one
provided by user to one saved at the time of registration. This
strategy/ algorithm starts working as soon as a user is
authenticated by Server-Side Application after matching
credentials.

When a particular user is authenticated, a customHash
will be generated that will be unique to that user. This
customHash will be generated using user’s string type
information like name, email, and concatenating them into a
single long string of length less than or equal to 72 characters.
Characters in the string can be shuffled also to make it even
more secure so that it is difficult to replicate the customHash.

Although without shuffling this system works due to
progressive nature of bcrypt hashing system. While hashing,
message string and salt is provided. Salt generation is
random and is done by genSalt(rounds) function of bcryptjs.
So even if we use same string/message to generate hash, it
will still be unique due to uniqueness of salt+message.

To generate customHash, customString is created by using
user’s string type information like name, email, address, even
recordId, concatenate it and one can even randomize the
character placing but that is optional. Generate Salt using
genSalt(rounds). This returns a promise which on resolution
gives salt, so in callback function use salt and customString to
call bcryptjs’ hash(message,salt) function which returns a
promise which on resolving returns a 60 character long hash.
We will call this hash customHash.

After customHash is generated, save it in database in
customHash field (you must create a customHash field while
making database schema) and send response back to Client-
Side Application with customHash.

On Client-Side Application, save this customHash and
other data in window.localStorage or window.sessionStorage.

Decision depends on whether your application contains any
“Remember Me” prompt which asks user consent to keep
their session alive until they logout. If their consent is yes,
save it in window.localStorage, and if their consent was no,
save it in window.sessionStorage.

Navigation to new authenticated routes will either include
route guards (like Angular, ReactJS) or you will have to code
your own logic to implement auth guard. Auth guard is a
piece of code which is run every time one visits a route. That
piece of code or logic is usually to check with server-side
application or third party whether this session is
authenticated.

On every navigation, client-side application will first check
whether a user’s session is present by checking
window.localStorage’s length, and window.sessionStorage’s
length. If both are 0, then auth guard will stop them from
visiting that link, and redirect them to other link wherever
necessary. But if there are some values, length is not 0, then
send userID, customHash back to server-side application to
find record by userID and then match customHash.

If customHash matches, then server-side gives a green signal
to client-side and navigation is completed, if there is some
discrepancy, then customHash is deleted from Server-Side
application and server-side sends a red signal to client side
and navigation will be redirected to login,
window.localStorage and window.sessionStorage will be
wiped off, and user will be prompted to login.

3. PSEUDO-CODE

 Pseudo code is in broken JavaScript to make it easy to
understand how to use bcryptjs functions and where to
include application specific logic.

// means comment

// Information that will be sent back to Client Side

userInfo = Array

customString = userStringDetail1 + userStringDetail2 +
userStringDetail3 ...

customHash = null;

//Custom Hash generation at the time of login successful.

bcryptjs.genSalt(10).then(function(salt){

bcryptjs.hash(customString,salt).then(function(hash){

customHash = hash;

// customHash Generated

userInfo.push(customHash);

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2015

sendToFrontend(userInfo);

});

});

// Authentication Logic

requestData from Client-Side Application

// UNIQUE ID of user generated by database at the time of
registration

requestData.id

// customHash returned by Client side for authentication

requestData.customHash

userDataFromDatabase = find-in-database(id ==
requestData.id)

if(userDataFromDatabase){

if(userDataFromDatabase.customHash ===
requestData.customHash){

sendToFrontend(user authenticated. allow navigation)

} else {

// If customHash does not match then wipe it off from
database from that user

update-in-database(id == requestData.id, customHash =
null)

sendToFrontend(not authenticated. redirect to login and
wipe off localStorage and sessionStorage)

}

}

Figure 1 : Flowchart explaining generation of
customHash at the time of Login

Figure 2 : Flowchart explaining authentication before
navigation

4. SECURITY

 This Technique is strictly not suitable nor tested for
purposes/application which include e-commerce, or where
one has no control over security assurance/ quality where
application is vulnerable to JavaScript injection. Database
security is pre requisite because this strategy doesn’t involve
relying on trusted third party for storing or doing
cryptographic actions.

 This strategy is useful for purposes/applications where
sensitive information like credit card, banking details are not
stored. Some useful examples can be Blogging website, CMS
without e-commerce, etc.

 This strategy is vulnerable to JavaScript Injection because
although Storage API has maintained standards when it
comes to safety because a domain can only access its 5MB
part of localStorage and sessionStorage so there are no
overlaps. But HTML5 Storage API is accessed by JavaScript,
so if application is prone to JavaScript injection attack then
they will be able to access the storage item, and copying
them into their localStorage or sessionStorage, they will be
able to hijack the session. So application needs to take care
and either use frameworks who implement JavaScript part
by themselves like Angular, avoid using functions that can
run JavaScript code without any restrictions like JavaScript’s
evaluate function; although can be very useful in many cases
but it is prone to JavaScript Injection.

 Hosting the application on https domain also counts
because https uses AES encryption and TLS handshake for
transferring data on the network which makes it safe to use
with e-commerce applications. Then with slight robustness
modifications this strategy can be used with e-commerce
platform, but because this has not been tested, this is just
theoretical and paper does not recommend to use this
strategy to be implemented for any application that deals
with sensitive information like credit card number, bank
details, etc.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 11 | Nov 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2016

5. CONCLUSION

 This type of system of manually generating a session id
gives a developer more control to make process more secure
because password is used just at the point of logging in, after
login everything is handled by the id of the user and
customHash. This system although moderately secure, is not
suitable to use in systems involving sensitive information
like a credit card, or any payments system because it has not
been tested for it. Also, Web Storage API is secure but it is
vulnerable to JavaScript injection. JavaScript injection can be
avoided by various checks and methods but still it is bit risky
to use Web storage API with sensitive information.

REFERENCES

[1] Girish and Shane, BCRYPTJS API documentation, npm,
2017.

[2] Girish and Shane, BCRYPTJS Github, 2017

[3] Independent Blogs like Stack Overflow and Auth0.

