
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1318

INTRODUCTION TO COMPILER AND ITS PHASES

Prajakta Pahade1, Mahesh Dawale2

1,2Computer science and Engineering, Prof. Ram Meghe College of Engineering and Management, Badnera,
Amravati, Maharashtra, India.

--***---
ABSTRACT:- Do you know what actually the compiler is?
How the compiler works? In order to know everything
about the compilers, let us have a introduction in this
review paper. We know that all software which runs the
computer system is written in some particular
programming language. But, the computer can
understand only the Low Level Language i.e of the form 0’s
and 1’s. The input given to the computer is in High Level
Language and need to convert into the required machine
language. It needs to be translated into the required form
before getting executed. The software systems that do this
compilation or translation is nothing but called as the
process of compilation.

In this paper, we are going to learn about what actually a
compiler is, how it works and is phases in short.

KEYWORDS: Compiler, Translation, Source code,
Programming language, software, high level
language.

1. INTRODUCTION:

The concept of compilers was introduced by an
American Computer Scientist Grace Brewster Murray
Hopper in 1952, for A-0 programming Language. The
FORTRAN Team which was led by John Backus is
credited for introducing first complete compiler in 1957.
A compiler converts the source code into binary
instructions for architecture of processor by making it
less portable. A cross compiler can generate binary code
for user machine which has different processor with
code compilation. It is a computer software that
transforms computer code which is written in one
language into another programming language. They are
similar to translators which support digital devices,
primarily computers. It is likely to perform many
operations such as pre-processing, lexical analysis,
parsing, semantic analysis (syntax-directed translation),
conversion of input programs to an intermediate
representation, code optimization and code generation.

1.1 TYPES OF COMPILER:

Fig 1. Types of Compiler.

In order to convert the source code into machine
language code, the compiler has the types as described
below:

i) NATIVE CODE: The compiler used to compile a source
code for same type of platform only [1].

ii) CROSS COMPILER: The compiler used to compile a
source code for different kinds of platforms

iii) SOURCE TO SOURCE COMPILER: The compiler that
takes high-level language code as input and output
source code of another high level language only.

iv) ONE PASS COMPILER: compiles whole process in a
single pass[1].

v) THREADED CODE COMPILER: It replace string by
appropriate binary code.

vi) INCREMENTAL COMPILER: It compiles only changed
lines from source code and update object code.

vii) SOURCE COMPILER: It converts source code high
level language in assembly language only.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1319

1.2 WORKING OF COMPILER:

Fig 2. Working of Compiler

To know about the working of compiler, it is quite
complicated to know about it. The executable code may
be a sequence of machine instructions which is directly
executed by CPU or it may be intermediate
representation which is interpreted by virtual
machine[2]. The data or the program is available in the
high level language. But the computer understands only
the low level language i.e language of the form 0’s and
1’s[2]. So, compiler is used to convert that source
language into the machine language. The compiler
converts that source language into the binary form which
is understood by the machine and then later execution
takes place.

2. PHASES OF COMPILER:

Compiler operates in phases. Each phase transform the
source program from one representation to another.
There are six phases of compiler as shown in Fig. Symbol
table and error also interact with these phases. They are
described with the help of example position=initial +
rate * 60 as follows.

1. Lexical Analysis: It is a first phase of compiler
also known as scanner because it scans the source code
as stream of characters and convert it into meaningful
sequence of characters which is called as lexemes. It
generate the tokens with the help of lexemes as
<token_name, attribute_value> where token name is
abstract symbol used during syntax analysis and
attribute value points to entry in symbol table for this
token. It separates characters of source language into
groups called as tokens that logically belong together[3].
The lexical analyzer of the e.g is written as
<id,1><=><id,2><+><id,3><*><60>. Here, the
characters can be mapped into following token passed.

i) Position is a lexem mapped into token <id,1>, where id
is abstract symbol standing for identifier and 1 points to
symbol table entry.

ii) Assignment symbol<=> is a lexem mapped into token
with no attribute value.

iii) Initial is a lexem mapped into token <id,2>, where 2
points to symbol table entry.

iv) Plus is a lexem mapped into token <+>.

v) Rate is a lexem mapped into token <id,3>, where 3
points to symbol table entry.

vi) Multiplication is a lexem mapped into token <*>.

vii) 60 is a lexem mapped into token <60>.

The tokens in programming language include:

keyword such as do, if, for, while...etc.

Identifier such as x, y, z....etc.

Operator symbol such as <, >, +, -, /, =.

Punctuation symbol such as (,), {, }, paranthesis or
commas.

The output of Lexical Analyser is passed to the next
phase i.e Syntax analysis.

 2. Syntax Analysis: It is also known as parsing as it
generates parse tree from the token produced. It checks
whether the expression made by tokens follow the
syntax or not. The interior node of tree represent string
of token i.e operation and children represents the
arguments of operations [3]. The syntax tree is as follows:

The above fig tells that * has higher precedence so it
should be performed first than +. The grammar is used to
prove whether given statement in language is legal or not
and hence is also called as context free grammar leading
to formation of abstract syntax tree[3].

Fig 3. Syntax analysis form

3. Semantic Analysis: It uses syntax tree and
information to check source program. It checks whether
the parse tree to be constructed follows the rules of
languages or not[3]. Type information saves it in either
the syntax tree or symbol table for subsequent use
during intermediate code generation. It also keeps track

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1320

to identify their types and expressions whether
identifiers are declared before it is used or not[3].

Fig 4. Semantic analysis form

4. Intermediate Code Generator: After semantic
analysis, compiler generates intermediate code from the
source code. It represents as abstract machine for target
machine. If B is in between high level language and
machine language, intermediate code which is to be
generated is such as it makes easier to translate into
target machine code. It may construct one or more
intermediate representation which can have variety of
array[4]. This representation has two important
properties.

➢ It should be easy to produce.

➢ It should be easy to translate into target
machine.

An intermediate form also called three address code
consist of sequence of assembly like instructions with
these operands per instruction is used acting each
operand like a register.

The intermediate code for the given expression is as
follows.

 t1=inttofloat(60)

 t2=id3*t1

 t3=id2+t2

 id1=t3

5. Code optimization: It attempts to improve
intermediate code to perform better (faster) target code
result. Other objectives may be desired such as shorter
code consuming less power. A simple code generation
algorithm followed by this phase is reasonable way to

generate good target code. The optimiser can convert
integer to float[3]. It must follow three rules as:

i) The o/p code must not change the meaning of
program.

ii) Optimization should increase speed of program with
less resource.

iii) It should itself be fast and should not delay overall
compilation process.

It is written in code optimisation form as follows:

 t1=id3*60.0

 id1=id2+t1

6. Code Generation: It also keeps track of idea. It takes
input or intermediate representation of source program
and maps it into target language. It is the final phase of
compiler. It generates object code of some lower level
programming language[3]. Assembly language, the code
generated by code generator has following meaningful
minimum property to carry exact meaning of source
code. If target language is machine code registers or
memory location then intermediate instructions are
translated into sequence of machine instruction that
perform some tasks[3]. The intermediate might get
translated into machine code.

 LDF R2, id3

 MULF R2,R2,#60.0

 ADDF R1,R1,R2

 STF id2,R1

Fig 5. Phases of Compiler

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1321

3. TOOLS OF COMPILER:

 A programming tool is a computer program
which is used by the software developers to create,
debug, maintain and to support other programs and
applications. The basic tools such as source code editor
or compilers are used continuously. The tools for
compiler designing are

Yacc and Lax

i) Yacc: It stands for Yet Another Compiler-Compiler as it
associates with writing compiler which is a computer
program specially for UNIX operating system developed
by Stephen C. Johnson. It is a Look Ahead Left-to-Right
parser generator which generates parser trying to make
syntactic sense of source code specially LALR parser. It
produces only a parser for syntactic analysis. It requires
external lexical analyser to perform first tokenization
stage which follows parsing stage later. It is officially
known as parser. It is used to analyse structure of input
stream and operate of big picture by checking its syntax.

Fig 6. Yacc Tool

ii) Lex: It is a computer program that generates lexical
analysers which is commonly used with yacc parser
generator. It is originally written by Mike Lesk and Eric
Schmidt. It reads an input stream which specifies lexical
analyser and output the source code by implementing
lexer in C programming language. It has a structure
similar to yacc file which are divided into three sections
separated vy lines containing two percent signs as
follows,. The definition section define macros and
imports header file written in C. The rules section
associates with regular expression pattern with c
statements. The c code section contains C statements and
functions that are copied to generate source file. In large
programs, it is convenient to place this code in a separate
file linked in at compile time.

Fig 7. Lex Tool

4. FEATURES:

i) Error Handling: No one can able to write code in a
single step. People make the mistakes and these mistakes
are handled by the compiler. A compiler is able to run
through translation process which spots the mistake in
source code and it reports all the errors in the form of
report. Then the programmer goes back and fixes the
problem in the source code.

ii) Error checking is not perfect: The compiler will check
the error but will report where it is not there and hence
we can say that error checking is not perfect. This
happens due to assumption made to the initial code[8].

iii) Executable file: The o/p of compiler is creation of
executable file. It contains entire machine code running
on CPU once the executable file has been loaded into
main memory.

iv) Code optimisation: Compiler translates source code
into machine code but the source code gets translated
into machine code in many different ways. It makes the
software to run faster and occupy less memory.

v) Makes source code independent: We know that
machine code is CPU specific. Most programmers
produce software using high level language. Company is
paying to the programmer to produce code for different
purposes[8].

5. ADVANTAGES AND DISADVANTAGES:

Every particular thing has advantages and disadvantages.
The advantages of compilers are as follows:

i) Self-Contained and Efficient: It is the major advantage
that it is self-contained units which are always ready to
get executed due to already compiled into machine
language binaries. It has no second application or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1322

package that user has to keep up-to date. If program is
compiled for Windows, A precompiled package can run
faster than interpreter compiling source code in real
time.

ii) Hardware Optimization: The compiling of program
can increase its performance. User send specific options
to compilers regarding details of hardware the program
will be running on. This allows the compiler to create
machine language code which makes the most efficient
use of the specified hardware, as opposed to more
generic code. This allows advanced users to optimize the
performance of a program on their computers.

The disadvantages are as follows:

i) Hardware Specific: A source code is translated into a
required machine language using compiler. For a
programmer or software company which tries to get a
product out to the widest possible audience, this means
maintaining multiple versions of the source code for the
same application.

ii) Compile Times: It compiles source code into machine
code. The small programs, that many new programmers
code take less amounts of time to compile, larger
application suites can take more amounts of time to
compile. When programmers are free but wait for the
compiler to finish, this time can add up especially during
the development stage.

CONCLUSION:

In this paper, we learnt the basics about compiler which
includes the working about how compiler plays a role in
translating the source code into the required machine
language. We came to know about the phases of
compilers and the types of compilers along with its
characteristics and tools used for programming
languages.

REFERENCES:

1. Shamali Kokare, Divya Chauhan, Jyoti Mishra, Aarti
Sakore, Prof. Manisha Singh, “Review Paper on Online
Java Compiler”, International Research Journal of
Engineering and Technology (IRJET), Volume: 04 Issue:
03, Mar -2017.

2. Ch. Raju1, Thirupathi Marupaka2, Arvind
Tudigani3,"Analysis of Parsing Techniques &

Survey on Compiler Applications", IJCSMC, Vol. 2, Issue.
10, October 2013,

3. Charu Arora, Chetna Arora, Monika Jaitwal,
“RESEARCH PAPER ON PHASES OF COMPILER”, © 2014
IJIRT | Volume 1 Issue 5| ISSN : 2349-6002.

4. Prof. Rajesh Babu, Prof. Vishal Tiwari, Prof. Jiwan
Dehakar, “Parsing and Compiler design Techniques for
Compiler Applications”, International Journal on Recent
and Innovation Trends in Computing and
Communication ISSN: 2321-8169, Volume: 3 Issue: 2 449
– 453.

