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Abstract - LZW (Lempel Ziv Welch) and AH (Adaptive 
Huffman) algorithms were most widely used for lossless data 
compression. But both of these algorithms take more memory 
for hardware implementation. We discuss about the design of 
the two-stage hardware architecture with Parallel dictionary 
LZW algorithm first and Adaptive Huffman algorithm in the 
next stage. In this architecture, an ordered list instead of the 
tree based structure is used in the AH algorithm for speeding 
up the compression data rate. The resulting architecture 
shows that it not only outperforms the AH algorithm at the 
cost of only one-fourth the hardware resource but it is also 
competitive to the performance of LZW algorithm (compress). 
In addition, both compression and decompression rates of the 
proposed architecture are greater than those of the AH 
algorithm even in the case realized by software. The 
performance of the PDLZW algorithm is enhanced by 
incorporating it with the AH algorithm. The two stage 
algorithm is discussed to increase compression ratio with 
PDLZW algorithm in first stage and AHDB in second stage.  
 
Key Words:  PDLZW, AHDB, Verilog HDL language, Xilinx 
ISE 9.1, Synopsys   
 

1. INTRODUCTION  
 

Data transmission and storage cost money. The more 
information being dealt with, the more it costs. In spite of 
this, most digital data are not stored in the most compact 
form. Rather, they are stored in whatever way makes them 
easiest to use, such as: ASCII text from word processors, 
binary code that can be executed on a computer, individual 
samples from a data acquisition system, etc. Typically, these 
easy-to-use encoding methods require data files about twice 
as large as actually needed to represent the information. Data 
compression is the general term for the various algorithms 
and programs developed to address this problem. A 
compression program is used to convert data from an easy-to-
use format to one optimized for compactness. Likewise, an 
uncompression program returns the information to its 
original form. 

A new two-stage hardware architecture is proposed that 
combines the features of both parallel dictionary LZW 
(PDLZW) and an approximated adaptive Huffman (AH) 
algorithms. In the proposed architecture, an ordered list 
instead of the tree based structure is used in the AH 
algorithm for speeding up the compression data rate. The 
resulting architecture shows that it outperforms the AH 
algorithm at the cost of only one-fourth the hardware 

resource, is only about 7% inferior to UNIX compress on the 
average cases, and outperforms the compress utility in some 
cases. The compress utility is an implementation of LZW 
algorithm. 
 

2. PDLZW Algorithm 
 
The major feature of conventional implementations of the 
LZW data compression algorithms is that they usually use 
only one fixed-word-width dictionary. Hence, a quite lot of 
compression time is wasted in searching the large-address-
space dictionary instead of using a unique fixed-word-width 
dictionary a hierarchical variable-word-width dictionary set 
containing several small address space dictionaries with 
increasing word widths is used for the compression 
algorithm. The results show that the new architecture not 
only can be easily implemented in VLSI technology due to its 
high regularity but also has faster compression rate since it 
no longer needs to search the dictionary recursively as the 
conventional implementations do. 
 
Lossless data compression algorithms include mainly LZ 
codes [5, 6]. A most popular version of LZ algorithm is called 
LZW algorithm [4]. However, it requires quite a lot of time to 
adjust the dictionary. To improve this, two alternative 
versions of LZW were proposed. These are DLZW (dynamic 
LZW) and WDLZW (word-based DLZW) [5]. Both improve 
LZW algorithm in the following ways. First, it initializes the 
dictionary with different combinations of characters instead 
of single character of the underlying character set. Second, it 
uses a hierarchy of dictionaries with successively increasing 
word widths. Third, each entry associates a frequency 
counter. That is, it implements LRU policy. It was shown that 
both algorithms outperform LZW [4]. However, it also 
complicates the hardware control logic. 
 
In order to reduce the hardware cost, a simplified DLZW 
architecture suited for VLSI realization called PDLZW 
(parallel dictionary LZW) architecture. This architecture 
improves and modifies the features of both LZW and DLZW 
algorithms in the following ways. First, instead of initializing 
the dictionary with single character or different 
combinations of characters a virtual dictionary with the 
initial │Σ│ address space is reserved. This dictionary only 
takes up a part of address space but costs no hardware. 
Second, a hierarchical parallel dictionary set with 
successively increasing word widths is used. Third, the 
simplest dictionary update policy called FIFO (first-in first-
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out) is used to simplify the hardware implementation. The 
resulting architecture shows that it outperforms Huffman 
algorithm in all cases and about only 5% below UNIX 
compress on the average case but in some cases outperforms 
the compress utility. 
 

2.1 Dictionary Design Considerations 
 
The dictionary used in PDLZW compression algorithm is one 
that consists of m small variable-word width dictionaries, 
numbered from 0 to m - 1, with each of which increases its 
word width by one byte. That is to say, dictionary 0 has one 
byte word width, dictionary 1 two bytes, and so on. These 
dictionaries: constitute a dictionary set. In general, different 
address space distributions of the dictionary set will present 
significantly distinct performance of the PDLZW compression 
algorithm. However, the optimal distribution is strongly 
dependent on the actual input data files. Different data, 
profiles have their own optimal address space distributions. 
Therefore, in order to find a more general distribution, 
several different kinds of data samples are: run with various 
partitions of a given address space. Each partition 
corresponds to a dictionary set. For instance, the 1K address 
space is partitioned into ten different combinations and 
hence ten dictionary sets. An important consideration for 
hardware implementation is the required dictionary address 
space that dominates the chip cost for achieving an 
acceptable compression ratio. 

2.2. Compression processor architecture 
 
In the conventional dictionary implementations of LZW 
algorithm, they use a unique and large address space 
dictionary so that the search time of the dictionary is quite 
long even with CAM (content addressable memory). In our 
design the unique dictionary is replaced with a dictionary set 
consisting of several smaller dictionaries with different 
address spaces and word widths. As doing so the dictionary 
set not only has small lookup time but also can operate in 
parallel.  
 
The architecture of PDLZW compression processor is 
depicted in Figure 1. It consists of CAMs, an 5- byte shift 
register, a shift and update control, and a codeword output 
circuit. The word widths of CAMs increase gradually from 2 
bytes up to 5 bytes with 5 different address spaces: 256, 64, 
32, 8 and 8 words. The input string is shifted into the 5-byte 
shift register. The shift operation can be implemented by 
barrel shifter for achieving a faster speed. Thus there are 5 
bytes can be searched from all CAMs simultaneously. In 
general, it is possible that there are several dictionaries in 
the dictionary set matched with the incoming string at the 
same time with different string lengths. The matched 
address within a dictionary along with the dictionary 
number of the dictionary that has largest number of bytes 
matched is outputted as the output codeword, which is 
detected and combined by the priority encoder. The 
maximum length string matched along with the next 

character is then written into the next entry pointed by the 
update pointer (UP) of the next dictionary (CAM) enabled by 
the shift and dictionary update control circuit. Each 
dictionary has its own UP that always points to the word to 
be inserted next. Each update pointer counts from 0 up to its 
maximum value and then back to 0. Hence, the FIFO update 
policy is realized. The update operation is inhibited if the 
next dictionary number is greater than or equal to the 
maximum dictionary number. 
 

 
 

Fig- 1 PDLZW Architecture for compression 
 

The data rate for the PDLZW compression processor is at 
least one byte per memory cycle. The memory cycle is 
mainly determined by the cycle time of CAMs but it is quite 
small since the maximum capacity of CAMs is only 256 
words. Therefore, a very high data rate can be expected. 

 
2.3 PDLZW Algorithms  
 
Like the LZW algorithm proposed in [17], the PDLZW 
algorithm proposed in [9] also encounters the special case in 
the decompression end. In this paper, we remove the special 
case by deferring the update operation of the matched 
dictionary one step in the compression end so that the 
dictionaries in both compression and decompression ends 
can operate synchronously. The detailed operations of the 
PDLZW algorithm can be referred to in [9]. In the following, 
we consider only the new version of the PDLZW algorithm. 

 

2.4 PDLZW Compression Algorithm: 
 
As described in [9] and [12], the PDLZW compression 
algorithm is based on a parallel dictionary set that consists 
of m small variable-word-width dictionaries, numbered from 
0 to m-1 , each of which increases its word width by one 
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byte. More precisely, dictionary 0 has one byte word width, 
dictionary 1 two bytes, and so on. The actual size of the 
dictionary set used in a given application can be determined 
by the information correlation property of the application. 
To facilitate a general PDLZW architecture for a variety of 
applications, it is necessary to do a lot of simulations for 
exploring information correlation property of these 
applications so that an optimal dictionary set can be 
determined. The detailed operation of the proposed PDLZW 
compression algorithm is described as follows. In the 
algorithm, two variables and one constant are used. The 
constant max_dict_no denotes the maximum number of 
dictionaries, excluding the first single-character dictionary 
(i.e., dictionary 0), in the dictionary set. The variable 
max_matched_dict_no is the largest dictionary number of all 
matched dictionaries and the variable matched_addr 
identifies the matched address within the 
max_matched_dict_no dictionary. Each compressed 
codeword is a concatenation of max_matched_dict_no and 
matched_addr. 
 
Algorithm: PDLZW Compression 
 
Input: The string to be compressed. 
Output: The compressed codewords with each having log2K 
bits. Each codeword consists of two components: 
max_matched_dic_no and matched_addr, where K is the total 
number of entries of the dictionary set. 
 
Begin  
 
1: Initialization.  
1.1: string-1= null. 
1.2: max_matched_dic_no =max_dict_no. 
1.3: update_dict_no = max_matched_dict_no 

update_string= Ø {empty}. 
2: while (the input buffer is not empty) do 
2.1: Prepare next max_dict_no +1characters for searching. 
2.1.1: string-2 = read next. 
(max_matched_dict_no +1) characters from the input 
buffer. 
2.1.2: string = string-1 || string -2. 
{Where || is the concatenation operator} 
2.2 Search string in all dictionaries in parallel and set the 
max_matched_dict_no and matched_addr. 
2.3: Output the compressed codeword containing 
max_matched_dict_no || matched_addr. 
2.4: if (max_matched_dict_no < max_dict_no and 
update_string ≠ Ø ) then 
add the update_string to the entry pointed by UP 
[update_dict_no] of dictionary [update_dict_no]. 
 {UP [update_dict_no] is the update pointer associated with 
the dictionary} 
2.5 Update the update pointer of the dictionary 
[max_matched_dict_no + 1]. 
2.5.1 UP [max_matched_dict_no + 1] = UP 
[max_matched_dict_no + 1] + 1 

2.5.2 if UP[max_matched_dict_no + 1] reaches its upper 
bound then reset it to 0. {FIFO update rule.} 
2.6: update_string =extract out the first 
(max_matched_dict_no + 2) 
Bytes from string; 
update_string_no= max_matched_dict_no + 1 . 
2.7: string -1= shift string out the first 
(max_matched_dict_no + 1) bytes. 
End {End of PDLZW Compression Algorithm.} 
 

2.5 PDLZW Decompression Algorithm: 
 
To recover the original string from the compressed one, we 
reverse the operation of the PDLZW compression algorithm. 
This operation is called the PDLZW decompression 
algorithm. By decompressing the original substrings from 
the input compressed codewords, each input compressed 
codeword is used to read out the original substring from the 
dictionary set. To do this without loss of any information, it 
is necessary to keep the dictionary sets used in both 
algorithms, the same contents. Hence, the substring 
concatenated of the last output substring with its first 
character is used as the current output substring and is the 
next entry to be inserted into the dictionary set. The detailed 
operation of the PDLZW decompression algorithm is 
described as follows. In the algorithm, three variables and 
one constant are used. As in the PDLZW compression 
algorithm, the constant max_dict_no denotes the maximum 
number of dictionaries in the dictionary set. The variable 
last_dict_no memorizes the dictionary address part of the 
previous codeword. The variable last_output keeps the 
decompressed substring of the previous codeword, while the 
variable current_output records the current decompressed 
substring. The output substring always takes from the 
last_output that is updated by current_output in turn. 
 
Algorithm: PDLZW Decompression 
 
Input: The compressed codewords with each containing 
log 2 K bits, where is the total number of entries of the 
dictionary set. 
Output: The original string. 
 
Begin  
 
1: Initialization. 
1.1: if ( input buffer is not empty) then 
current_output= empty; last_output= empty; 
addr= read next log2 k codeword from input buffer. 
{where codeword = dict_no || dict_addr and || is the 
concatenation operator.} 
1.2 if (dictionary[addr] is defined ) then  
current_output = dictionary[addr]; 
last_output= current_output; 
output = last_output; 
update_dict_no= dict_no[addr] + 1 
2: while (the input buffer is not empty) do 
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2.1: addr= read next log2k bit codeword from input buffer.  
2.2{output decompressed string and update the 
associated dictionary.} 
2.2.1: current_output= dictionary[addr]; 
2.2.2: if(max_dict_no update_dict_no) then 
add (last_output || the first character of current_output) to 
the entry pointed by 
UP[update_dict_no] of dicitionary [update_dict_no]; 
2.2.3: UP[update_dict_no] =UP[update_dict_no] + 1 . 
2.2.4: if UP[update_dict_no] reaches its upper bound then 
reset it to 0. 
2.2.5: last_output =current_output; 
Output= last_output; 
update_dict_no= dict_no[addr] + 1 
End {End of PDLZW Decompression Algorithm. } 

 
3. Two Stage  Architecture 
 
The output code words from the PDLZW algorithm are not 
uniformly distributed but each codeword has its own 
occurrence frequency, depending on the input data statistics. 
Hence, it is reasonable to use another algorithm to encode 
statistically the fixed-length code output from the PDLZW 
algorithm into a variable-length one. As seen in figure 4.3 
because of using only PDLZW algorithm for different 
dictionary size sometimes the compression ratio may 
decrease as dictionary size increase for particular address 
space. This irregularity can also be removed by using AH in 
the second stage. Up to now, one of the most commonly used 
algorithms for converting a fixed-length code into its 
corresponding variable-length one is the AH algorithm. 
However, it is not easily realized in VLSI technology since the 
frequency count associated with each symbol requires a lot 
of hardware and needs much time to maintain. 
Consequently, in what follows, we will discuss some 
approximated schemes and detail their features. 
 
Algorithm: AHDB 
 Input: The compressed codewords from PDLZW 
algorithm.  
Output: The compressed codewords.  
 
Begin  
 
1: Input pdlzw_output;  
2: while (pdlzw_output!= null) 
2.1: matched_index =search_ordered_list(pdlzw_output); 
2.2: swapped_block 
=determine_which_block_to_be_swapped(matched_index); 
2.3: if (swapped_block!=k) then 
2.3.1:swap(ordered_list[matched_index],ordered_list[point
er_of_swapped_block]);  
2.3.2: pointer_of_swapped_block= 
pointer_of_swapped_block + 1;  
2.3.3: reset_check(pointer_of_swapped_block); {Divide the 
pointer_of_swapped_block by two (or reset ) when it 
reaches a threshold.} 

 else  
2.3.4: if( matched_index!=0 ) then 
Swap(list[matched_index],list[matched_index - 1] ) ;  
2.4: Input pdlzw_output; 
End {End of AHDB Algorithm. } 

 
3.1 Performance of PDLZW + AHDB 
 
As described previously, the performance of the PDLZW 
algorithm can be enhanced by incorporating it with the AH 
algorithm, as verified from Fig. 4.3. The percentage of data 
reduction increases more than 5% in all address spaces from 
272 to 4096. This implies that one can use a smaller 
dictionary size in the PDLZW algorithm if the memory size is 
limited and then use the AH algorithm as the second stage to 
compensate the loss of the percentage of data reduction. 
From both Figs. 4.3 and 4.4 , we can conclude that 
incorporating the AH algorithm as the second stage not only 
increases the performance of the PDLZW algorithm but also 
compensates the percentage of data reduction loss due to the 
anomaly phenomenon occurred in the PDLZW algorithm. In 
addition, the proposed scheme is actually a parameterized 
compression algorithm because its performance varies with 
different dictionary- set sizes but the architecture remains 
the same. Furthermore, our design has an attractive feature: 
although simple and, hence, fast but still very efficient, which 
makes this architecture very suitable for VLSI technology. 
The performance in percentage of data reduction of various 
partitions using the 368- address dictionary of the PDLZW 
algorithm followed by the AHDB algorithm is shown in 
Tables VI and VII. The percentage of data reduction and 
memory cost of various partitions using a 368-address 
dictionary PDLZW algorithm followed by the AHDB 
algorithm is depicted in Table VIII. To illustrate our design, 
in what follows, we will use the PDLZW compression 
algorithm with the 368-address dictionary set as the first 
stage and the AHDB as the second stage to constitute the 
two-stage compression processor. The decompression 
processor is conceptually the reverse of the compression. 
Counter part and uses the same data path. As a consequence, 
we will not address its operation in detail in the rest of the 
paper. 
 

3.2 PROPOSED DATA COMPRESSION 
ARCHITECTURE 
 
In this section, we will show an example to illustrate the 
hardware architecture of the proposed two-stage 
compression scheme. The proposed two-stage architecture 
consists of two major components: a PDLZW processor and 
an AHDB processor, as shown in Fig. 6. The former is 
composed of a dictionary set with partition {256, 64, 32, 8, 
and 8}. Thus, the total memory required in the processor is 
296 B (= 64×2 + 32×3 + 8×4 + 8×5) only. The latter is 
centered around an ordered list and requires a content 
addressable memory (CAM) of 414 B ( =368 × 9B 
).Therefore, the total memory used is a 710-B CAM. 
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3.3 PDLZW Processor 
 
The major components of the PDLZW processor are CAMs, a 
5-B shift register, and a priority encoder. The word widths of 
CAMs increase gradually from 2 to 5 B with four different 
address spaces: 64, 32, 8, and 8 words, as portrayed in Fig. 6. 
The input string is shifted into the 5-B shift register. Once in 
the shift register the search operation can be carried out in 
parallel on the dictionary set. The address along with a 
matched signal within a dictionary containing the prefix 
substring of the incoming string is output to the priority 
encoder for encoding the output codeword pdlzw_output, , 
which is the compressed codeword output from the PDLZW 
processor. This codeword is then encoded into canonical 
Huffman code by the AHDB processor. In general, it is not 
impossible that many (up to five) dictionaries in the 
dictionary set containing prefix substrings of different 
lengths of the incoming string simultaneously. In this case, 
the prefix substring of maximum length is picked out and the 
matched address within its dictionary along with the 
matched signal of the dictionary is encoded and output to the 
AHDB processor.  
 
In order to realize the update operation of the dictionary set, 
each dictionary in the dictionary set except the dictionary 0 
has its own update pointer (UP) that always points to the 
word to be inserted next. The update operation of the 
dictionary set is carried out as follows. The maximum- length 
prefix substring matched in the dictionary set is written to 
the next entry pointed by UP the of next dictionary along 
with the next character in the shift register. The update 
operation is inhibited if the next dictionary number is 
greater than or equal to the maximum dictionary number. 
 

3.4 AHDB Processor 
 
The AHDB processor encodes the output codewords from 
the PDLZW processor. As described previously, its purpose is 
to recode the fixed-length codewords into variable-length 
ones for taking the advantage of statistical property of the 
codewords from the PDLZW processor and, thus, to remove 
the information redundancy contained in the codewords. 
The encoding process is carried out as follows. The 
pdlzw_output, which is the output from the PDLZW 
processor and is the “symbol” for the AHDB algorithm, is 
input into swap unit for searching and deciding the matched 
index, , from the ordered list. Then the swap unit exchanges 
the item located in n with the item pointed by the pointer of 
the swapped block. That is, the more frequently used symbol 
bubbles up to the top of the ordered list. The index 
ahdb_addr of the “symbol” pdlzw_output of the ordered list is 
then encoded into a variable-length codeword (i.e., canonical 
Huffman codeword) and output as the compressed data for 
the entire processor. The operation of canonical Huffman 
encoder is as follows. The ahdb_addr is compared with all 
codeword_offset : 1, 9, 18, 31, 101, 154, 171, and 186 
simultaneously, as shown in Table IV and Fig. 6, for deciding 

the length of the codeword to be encoded. Once the length is 
determined, the output codeword can be encoded as 
ahdb_addr- code_offset + first_codeword. For example, if 
ahdb_addr=38 from Table IV, the length is 8 b since 38 is 
greater than 31 and smaller than 101. The output codeword 
is: 38-31+44=001100112 As described above, the 
compression rate is between 1–5 B per memory cycle. 
 

 
 

Table 1 Performance Comparison in Percentage of Data 
Reduction for Text file between Compress, PDLZW + AH, 
PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB 

 
 

 
 

Table 2 Performance Comparison in Percentage of Data 
Reduction for Executable file between Compress, PDLZW + 
AH, PDLZW + AHAT, PDLZW + AHFB, AND PDLZW + AHDB 
 

4. Performance  
 
Table 1 and 2 shows the compression ratio of the LZW 
(compress), the AH algorithm, PDLZW+AHAT, PDLZW+AHFB 
, and PDLZW+AHDB. The dictionary  set used in PDLZW is 
only 368 addresses (words) and partitioned as 
{256,64,32,8,8}.From the table, the compression ratio of 
PDLZW + AHDB is competitive to that of the LZW (i.e., 
compress) algorithm in the case of executable files but is 
superior to that of the AH algorithm in both cases of text and 
executable files.  
 
Because the cost of memory is a major part of any 
dictionary- based data compression processor discussed in 
the paper, we will use this as the basis for comparing the 
hardware cost of different architectures. According to the 
usual implementation of the AH algorithm, the memory 
requirement of an N- symbol alphabet set is ( N + 1 ) + 4 ( 2N 
-1 ) integer variables [18], which is equivalent to 2 × {(N +1) 
+ 4(2N-1)} = 4.5kB  where N=256. The memory required in 
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the AHDB algorithm is only a 256-B CAM, which corresponds 
to the 384-B static random-access memory (SRAM). Here, we 
assume the complexity of one CAM cell is 1.5 times that of a 
SRAM cell [21]. However, as seen from Tables I and II, the 
average performance of the AHDB algorithm is only 1.65%= 
((39.50-36.86) + (26.89-26.23)/2)% worse than that of the 
AH algorithm.  
 
After cascading with the PDLZW algorithm, the total memory 
cost is increased to 710-B CAM equivalently, which 
corresponds to 1065 B of RAM and is only one-fourth of that 
of the AH algorithm. However, the performance is improved 
by   8.11%=(39.66%-31.55%) where numbers 39.66% and 
31.55% are from Tables VIII and III, respectively.  
 
5. Results  

The proposed two-stage compression/decompression 
processor given in Fig 5.3 has been synthesized and 
simulated using Verilog HDL. The resulting chip has a die 
area of 4.3× 4.3mm and a core area of 3.3 ×3.3 mm . The 
simulated power dissipation is between 632 and 700 mW at 
the operating frequency of 100 MHz. The compression rate is 
between 16.7 and 125 MB/s; the decompression rate is 
between 25 and 83 MB/s. Since we use D-type flip-flops 
associated with Two Stage Architecture needed gates as the 
basic memory cells of CAMs (the dictionary set in the PDLZW 
processor) and of ordered list (in the AHDB processor), 
these two parts occupy most of the chip area. The remainder 
only consumes about 20% of the chip area. To reduce the 
chip area and increase performance, the full-custom 
approach can be used. A flip-flop may take between 10 to 20 
times the area of a six-transistor static RAM cell , a basic CAM 
cell may take up to 1.5 times the area (nine transistors) of a 
static RAM cell. Thus, the area of the chip will be reduced 
dramatically when full-custom technology is used. However, 
our HDL-based approach can be easily adapted to any 
technology, such as FPGA, CPLD, or cell library 
 

 
 

Fig- 2 Two-stage Architecture for compression 

   

  6. CONCLUSION 

 A new two-stage architecture for lossless data compression 
applications, which uses only a small-size dictionary, is 
proposed. This VLSI data compression architecture 
combines the PDLZW compression algorithm and the AH 
algorithm with dynamic-block exchange. The PDLZW 
processor is based on a hierarchical parallel dictionary set 
that has successively increasing word widths from 1 to 5 B 
with the capability of parallel search. The total memory used 
is only a 296-B CAM. The second processor is built around an 
ordered list constructed with a CAM of 414B ( = 368 × 9B ) 
and a canonical Huffman encoder. The resulting architecture 
shows that it is not only to reduce the hardware cost 
significantly but also easy to be realized in VLSI technology 
since the entire architecture is around the parallel dictionary 
set and an ordered list such that the control logic is 
essentially trivial. In addition, in the case of executable files, 
the performance of the proposed architecture is competitive 
with that of the LZW algorithm (compress). The data rate for 
the compression processor is at least 1 and up to 5 B per 
memory cycle. The memory cycle is mainly determined by 
the cycle time of CAMs but it is quite small since the 
maximum capacity of CAMs is only 64 × 2 B for the PDLZW 
processor and 414 B for the AHDB processor. Therefore, a 
very high data rate can be achieved. 
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