
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 921

THROUGH THE CONCEPT OF DATA STRUCTURES, THE SELF-
BALANCING BINARY SEARCH TREE

 Asniya Sadaf Syed Atiqur Rehman1, Avantika kishor Bakale2, Priyanka Patil3

1,2,3Department of Computer Science and Engineering, Prof Ram Meghe College of Engineering and
Management, Badnera

---***--
 ABSTRACT - In the word of computing tree is a
hierarchical data structure which stores information
naturally in the form of hierarchy style. Tree is a most
powerful and advanced data structure. This paper is
mainly focused on self -balancing binary search tree(BST)
also known as height balanced BST. A BST is a type of data
structure that adjust itself to provide the consistent level
of node access. This paper covers the different types of BST
their analysis, complexity and application.

Key words: AVL Tree, Splay Tree, Skip List, Red Black
Tree, BST.

1. INTRODUCTION

Tree data structures are the similar like Maps and Sets,
databases that quickly allows us to maintain a sorted list
of numbers. Tree data structure is a hierarchical DS
which stores the information in the form of hierarchy
style and it provides an efficient operation like insertion
and deletions operation. The introduction of tree by way
of specific application consider the solutions on the
problem of the performing a sequence of access
operation. And a set of selected solutions from a totally
ordered universes. In Tree DS different trees such as
AVL, SPLAY, SKIP LIST, RED-BLACK has its own
balancing methods and applications.

2. LITERATURE REVIEW

Soviet mathematician’s G M Adelson and E M Landis
(AVL) introduced an algorithm to maintain balance in a
binary search tree with an additional property that every
node in the tree has to maintain extra information (a
part from data and pointer) known as balancing factor
that contain a set of algorithms that allows multiple
processor to concurrently update a step list is shared in
memory this algorithm is very simple as compare to
concurrent balancing tree algorithm. Which allow huge
number of reader and many busy writers in skip list of n
element with very little lock contention [1]. Skip list was
invented by William Pugh in 1989. According to W. Pugh
“skip list area probabilistic data structure that seen likely
to supplant balanced tree as the implementation method
of choice for the many apply. Skip list algorithm have
same asymptotic expected time as balanced tree and are
simple. Factor are useless apace.” [2][3] Splay search
tree was invented by Daniel Dominic sleator and Robert
Tarjan in year 1985. Splay tree is a self-balancing binary
search tree with extra property that recently accessed
element is faster to access again. Red black tree is well-

known way of implementing balancing tree as binary
tree they are originally discovered by Bayer and are
nowadays extensively (diseased) in the standard
literature or algorithm Maintaining the invariant of red
black tree through Haskell types system using the nested
data types this give small list noticeable overhead. Many
gives small list overhead can be removed by the use of
existential types [4].

3.1. AVL TREE

 AVL Tree is best example of self-balancing search tree;
this means that AVL Tree is also binary search tree
which is also balancing tree. A binary tree is said to be
balanced if different between the height of left and right.
Descendent in a tree is either -1, 0 or 1. In AVL tree every
node maintain the extra information called as a balance
factor. The formula for calculating the balance factor of
AVL binary search tree is
Balance factor for AVL = height of left sub-tree – height
of right sub-tree

FIG -1: Diagram of AVL Tree

node satisfying the condition of the balance factor,
therefore this tree is called as AVL Tree. Every AVL tree
is binary search tree but all the binary search tree need
not to be AVL tree. AVL tree is also known as height
balancing tree. Consider an example- Let be non-empty
binary tree with TL and TR as it left and right sub-tree.
The height of tree is balance if and only if its satisfied the
following condition.

 I.TR and TL are height balance tree.
 II.HL – HR <= 1 where HL is height of left sub-tree (TL)
and right sub-tree (TR).

 The balance factor of node of binary search tree can
have value 1,0 -1depending on whether the height of
sub-tree is greater less or equal to right sub-tree.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 922

3.1.1 Advantages of AVL tree: Since AVL tree are self-
balancing tree operation like deleting a node inserting a
new node required the less time to be performed this
directly reduced the complexity. Represent the AVL tree

struct AVL node
{
 int info;
 struct AVL node *left, *right;
 int balance-factor;
}

Algorithm for the different operation like insertion and
deletion on the AVL

3.1.2 For insertion: Assumption-assume that tree is a
binary search tree (BST)

Step1. Insert the element into tree using BST in logic
Step 2. check the balance factor for each node
Step3.if the balance factor for each node is either 0, 1, -1
then set it is AVL tree then print processed for the next
operations.
Step4.exit
step5. else set imbalanced need to perform suitable
rotation to perform to make balanced, then will
processed for the next operation.
Step6.stop

3.1.3For deletion

Step1. Start the node where k is stored.
Step2.delete those content of the node
Step3. claim: deleting a node in an AVL tree can be
reduced by leaf. three possible case: When X has no
children then, delete X When X has one child, let X’
become the child of X.
Step4.when X has two children, then find the X’s
successor Z
Step5.deleteZ

3.2 SPLAY SEARCH TREE

Splay search tree was invented by Daniel Dominic
sleator and Robert Tarjan in year 1985.A Splay tree is
another example of self-balancing binary search tree
which have one special property that recently accessed
element is quick to access again it perform same basic
operation like any other BST such as insertion look up
table and remove the 0(log n) amortized time. It is also
used for the many sequence of non-random operation it
also performs well than other search tree even when
specific pattern of sequence is unknown.

All the operation which is performed on binary
search tree are combined with one basic operation called
splay in the term “splaying” is related to rearranging the
element of C tree so the element is placed at the root of
tree. The term splaying, we are tree rotation in a specific
fashion to bring the element to top alternatively, a top-

down algorithm can combine the search and recognize
the tree into single phase [5].

FIG -2: Diagram of Splay Tree

3.2.1 Advantages

 The importance of the splay tree depends on the fact
that it is self-optimizing in which recently access element
is move root where they are quick to access again which
is directly reduces the time require to access this reduce
time complexity. This is very beneficial for many
practical applications such as (locality of reference) and
particularly useful for implementing cache and garbage
collection algorithm. Advantage include Average case
performance is efficient than other BST. Small memory
to store any book keeping data.

3.2.2 Disadvantage

The most significant disadvantages of splay search tree
are its height is liner for example –after accessing all n
element in non-decreasing or order of tree. The time
required is equal to worst case time. This means that
actual cost of an actual cost of an operation is high
however the “amortize” (in computer science amortize
analysis is method for analysing the algorithm
complexity 1) access cost of worst case is O (log n) also
the expected access cost is can be reduced to O (log n) by
using randomized variant [2]. The representation of
splay tree can be changed even when they are accessed
in read only manner this reduces its importance while
using in purely functional programming due to this it
also used in very limited ways to implement priority
queue. It performs the 4 types of operation

1.Join
2.Split
3.Insertion

3.2.2.1Join: Assumption –assume that P and Q are the
two BST, such that all the element of P Are Q them the
following step can be used to for them use to a single
tree. Splay tree largest it element in P this become the
root of P has a no right child. Set right child of new root
to Q.

 3.2.2.2. Split: splay X now it is in the root tree to left
contain all element smaller than X and tree to right
contain all element larger them X.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 923

3.2.2.3 Insert: To insert the new element in X. Insert X
with a normal b. When element is inserted apply splay
tree result newly inserted node is the root of tree.

3.3 SKIP LIST

In the world of computation quick search within an
ordered sequence of element. Instant or fast search is
only made possible by maintaining a linked hierarchy of
sequence with each successive subsequence .skipping
our fewer element their pervious one search start in the
infrequent subsequence until two consecutive element
have learn found one longer one smaller or one may
equal to element searched for through this link hierarchy
these two element link to next element of infrequent or
sparest subsequence where searching is continued until
finally we are searching in the complete sequence. The
element is skipped over may be chosen probabilistically
or deterministically with more common form. skip list is
built in the form of layer. The bottom most layer is an
ordinary order link list each top layer where an element
in layer I appear in 1 in top most 1-p Element in the all
the list. the skip list also includes log1\p of n list. A
search for target element begin the head element in list
and start processing horizontally until the current
element is greater than or equal to target of current
element is equal to target .it is found. if it is greater than
target or search reach the end of link list the procedure
is respected after recurring to previous element and
dropped down vertically to the next list. the maximum
number of step in each list is 1\p which can be seen by
tracing the search path backword form the target until
search at element that appear in the next higher list or
reached to the current list. The maximum expected cost
of search is log 1\p n which o (log n) Where p is any
constant value. Through the implement of skip list. The
element used for the skip list contain more than one
pointer so they can easily participate in many list.

3.4 Red-black tree

The concept of each node of binary has an extra bit in the
red-black tree that bits are offer interpreted as the red or
black of the node the colour lists are used to ensure that
the tree remain approximately balanced during insertion
and deletion [6]. A red-black tree is self-balancing binary
tree where each node satisfies the following condition
are Every node has a colour either red or black. There
should not be two adjacent red nodes (a red node cannot
have a red parent or red child) Every path from root to
null node has same number of black node. Need of red-
black tree: many of the binary search tree, each
operation taken 0(h) times where h is the height of BST
the cost of these operations becomes 0(h) for skewed
binary tree. It we ensure that height of tree remains
0(log n) after every operation then we can ensure an
upper bound of 0(log n) for all these operations the
height of red black is always 0(log n) where n is the
number of node in BST. a red-black tree maintains a
balance in the following manner: consider a simple

example of understand balancing is a chain of three
nodes is not possible in the red black tree. We can try
any combination of colour and see all of them satisfy the
red.

FIG – 3: Diagram of Red-Black Tree

4. CONCLUSION

 In this paper we discussed about the various self -
balancing binary tree their algorithm, complexity and
application. The concept of self-balancing BST provide
specific application consider the problem of the
performing a sequence of access operation and set of
selected solution from totally ordered universe. This BST
is now considering experimental software for future
work.

5. REFERANCE

[1] https://epaperpress.com/sortsearch/download
/skiplist.pdf

[2] Pugh, W. (1990). "Skip lists: A probabilistic
alternative to balanced trees" (PDF).
Communications of the ACM. 33 (6): 668.
doi:10.1145/78973.78977.

[3] Munro, J. Ian; Papadakis, Thomas; Sedgewick,
Robert (1992). "Deterministic skip lists" (PDF).
Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms (SODA '92).
Orlando, Florida, USA: Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA. pp.
367–375. doi:10.1145/139404.139478

[4] https://www.researchgate.net/publication/259
413698_Red-black_trees_with_types

[5] https://en.wikipedia.org/wiki/Splay_tree

[6] Red black 1:Cormen, Thomas H.; Leiserson,
CharlesE.; Rivest, Ronald L.; Stein, Clifford
(2001). "Red–Black Trees ".
Introduction to Algorithms (second ed.). MIT
Press.pp. 273–301. ISBN 0-262-03293-7ss

https://epaperpress.com/sortsearch/download/skiplist.pdf
https://epaperpress.com/sortsearch/download/skiplist.pdf
https://www.researchgate.net/publication/259413698_Red-black_trees_with_types
https://www.researchgate.net/publication/259413698_Red-black_trees_with_types
https://en.wikipedia.org/wiki/Splay_tree
https://www.google.com/search?rlz=1C1CHZL_enIN819IN819&q=red+black+1:Cormen,+Thomas+H.;+Leiserson,+CharlesE.;+Rivest,+Ronald+L.;+Stein,+Clifford+(2001).+%26quot;Red%E2%80%93Black+Trees+%26quot;.+Introduction+to+Algorithms+(second+ed.).+MIT+Press.pp.+273%E2%80%93301.+ISBN+0-262-03293-7ss&spell=1&sa=X&ved=0ahUKEwi_l4G-ovffAhUPT30KHRKaAUUQBQgrKAA
https://www.google.com/search?rlz=1C1CHZL_enIN819IN819&q=red+black+1:Cormen,+Thomas+H.;+Leiserson,+CharlesE.;+Rivest,+Ronald+L.;+Stein,+Clifford+(2001).+%26quot;Red%E2%80%93Black+Trees+%26quot;.+Introduction+to+Algorithms+(second+ed.).+MIT+Press.pp.+273%E2%80%93301.+ISBN+0-262-03293-7ss&spell=1&sa=X&ved=0ahUKEwi_l4G-ovffAhUPT30KHRKaAUUQBQgrKAA
https://www.google.com/search?rlz=1C1CHZL_enIN819IN819&q=red+black+1:Cormen,+Thomas+H.;+Leiserson,+CharlesE.;+Rivest,+Ronald+L.;+Stein,+Clifford+(2001).+%26quot;Red%E2%80%93Black+Trees+%26quot;.+Introduction+to+Algorithms+(second+ed.).+MIT+Press.pp.+273%E2%80%93301.+ISBN+0-262-03293-7ss&spell=1&sa=X&ved=0ahUKEwi_l4G-ovffAhUPT30KHRKaAUUQBQgrKAA
https://www.google.com/search?rlz=1C1CHZL_enIN819IN819&q=red+black+1:Cormen,+Thomas+H.;+Leiserson,+CharlesE.;+Rivest,+Ronald+L.;+Stein,+Clifford+(2001).+%26quot;Red%E2%80%93Black+Trees+%26quot;.+Introduction+to+Algorithms+(second+ed.).+MIT+Press.pp.+273%E2%80%93301.+ISBN+0-262-03293-7ss&spell=1&sa=X&ved=0ahUKEwi_l4G-ovffAhUPT30KHRKaAUUQBQgrKAA
https://www.google.com/search?rlz=1C1CHZL_enIN819IN819&q=red+black+1:Cormen,+Thomas+H.;+Leiserson,+CharlesE.;+Rivest,+Ronald+L.;+Stein,+Clifford+(2001).+%26quot;Red%E2%80%93Black+Trees+%26quot;.+Introduction+to+Algorithms+(second+ed.).+MIT+Press.pp.+273%E2%80%93301.+ISBN+0-262-03293-7ss&spell=1&sa=X&ved=0ahUKEwi_l4G-ovffAhUPT30KHRKaAUUQBQgrKAA

