

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 128

Distributed & Collaborative Software Engineering

Rutvik ManishKumar Patel

Graduate Student, Department of Computer Science, California State University Sacramento, California, USA
---***--

Abstract - This paper introduces us to two of the
most important and highly researched topics of the
modern era-distributed and collaborative software
development. Distributed software development
deals with the development of large software
projects, developed across different locations and
environments having several teams working on
some task of it. Whereas while working on large
software project distributed over multiple locations,
it is important to develop integration and co-
operation among the various teams, developing
shared understanding regarding various modules.
This is how collaborative and distributive
development works in order to develop large
software projects at low cost by utilizing modern
technologies like multi-programming and multi-
processing. This paper discusses the benefits, issues
and challenges faced by distributed and
collaborative software systems.

Key Words: Distributed System, Collaborative
development

1. INTRODUCTION

Distributed software engineering means working
on a distributed system that is a large computer
based system where data is operated and
processed over different processors or completely
different systems at multiple locations. These
systems may work with different computer
languages, operating systems and hardware
environment. It is the responsibility of the
integrating team to collaborate various modules to
develop a product independent of any particular
environment. Distributed systems are of three
types. Figure-1 clearly depicts the 3 types of
systems.

1. Distributed software and hardware
2. Distributed User
3. Distributed User and Software, Hardware

Collaborative techniques generally are used to
remove the limitations caused due to human
errors. While working on a huge project, we
require several people for fast and better
outcomes. However while working collaboratively,
we are not always able to keep track of what
everyone is working on and also the human
language is quite ambiguous. As a result, it leads to
errors, duplication of work. Hence it is important
to have a single architecture and design.

2. BENEFITS OF DISTRIBUTED SYSTEMS

According to researchers, using a distributed
system for development of a software project has
the following advantages. Since most of the
computer systems in the modern world are
distributed, it is important to consider the
following aspects.

1. Sharing of Resources:-

All the various kinds of resources located across
the entire network of computers are shared with
each other. This includes all the hardware and
software resources that are disks, memory,
printers, files, etc.

2. Widely Accepted:-

Distributed systems are developed using some
standard set of protocols which means they are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 129

open systems. Hence we can use software and
other resources developed by multiple vendors for
our distributed system.

3. Scalable:-

Distributed systems are scalable. It means that we
can add new resources as per our needs.
Resources like computers, memory can be added
to cope up with the changing requirements of our
system as specified by the client. However
scalability highly depends on the network capacity
which may not be adequate sometimes. Also
various other issues are faced wile scaling of
distributed systems but that is another topic.

4. Concurrent:-

Concurrent operation of various processors is
possible at the same time. It means that more than
one module or process may be running on
different computers but on the same network at
the same time. The processes may communicate
with each other.

5. Fault Tolerable:-

It is an important aspect of distributed software
that is generally not supported by normal software
or systems. Distributed software can tolerate some
amount of failures- both hardware and software
since it has several computers available which
means that data can be easily replicated from one
machine to other to provide regular services to the
user. However when there is a network
degradation, then the system is unable to provide
service.

As a result of these advantages, distributed
systems have largely replaced the normal single
processor systems.

3. DISADVANTAGES OF DISTRIBUTED SYSTEM

1. Highly Complex:-

In terms of organization and testing, distributed
systems are more complex than the single
processor systems. Hence it becomes difficult to

measure performance of such systems. In Single
processor systems, performance depends on
speed of a single processor while for distributed
systems it depends on the bandwidth of the
network and speed of execution of all the
processors included in the network.
Also resource handling and transferring resources
from one system to another is another issue which
directly affects the performance of the system.
Hence high amount of bandwidth and resources
are required to maintain the performance of the
system.

2. Security and Safety:-

The distributed system consists of data and
information that can be accessed from more than
one computer. Hence we can say that it is an
interdependent system. To apply security policies
to interdependent system is a tough task and has
to be handled carefully. Also the data can be highly
sensitive. Increased traffic is another problem
which leads to compromise of privacy. Hence due
to various problems it becomes very difficult to
maintain the integrity of the system and prevent
the system from threats such as eavesdropping,
denial of service attack, degraded performance,
etc.

3. Management:-

Distributed systems are heterogeneous in nature.
End systems differ from each other as each of
them have different capacities. Resource
management is always and will be a issue for
distributed systems since they are at different
locations. Routing management issues will occur
at network layer. Synchronization of thousands of
computers is difficult to manage and handle.
Current techniques like semaphores, monitors,
process calls, message passing, etc. are not very
handy.
In case of failure it becomes very difficult to
recognize and handle it as different machines
operate on different operating systems. It may
cause unexpected performance issues in other
machines.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 130

4. Quality of Service:-

The Quality of Service delivered to the end users
will highly depend on the type of the process
executed and the workload processor which
executes it. Performance, reliability and
availability are important points to be considered
to ensure good quality of service.

5. Transparent:-

The main goal of a distributed system is to ensure
transparency of the services provided by the
system. The transparency depends on how well
the system manages to hide the inner complexity
and distribution of workload.

6. Testing:-

To perform testing of an entire distributed system
is a very challenging task. The first issue that
needs to be addressed is that which module
should be tested first and which after. We need to
be very precise in forming the sequence of
modules to be tested otherwise loops may start
forming. Also it is very important to test each
component separately as well as the entire system
after that. There may occur some redundant
testing as well.

7. Task Allocation:-

Allocating tasks to different processors to evenly
distribute the workload is very important since
unreliable task allocation may produce uneven
workload, crashing of system or downgraded
performance.

4. DISTRIBUTED SYSTEM ARCHITECTURES

In this paper, we discuss two types of
architectures for distributed system to overcome
the designing issues that prevail within the
underlying hardware and software components.
The two types of architectures discussed here are:-

1. Client-Server Architecture:-

Here the distributed system is considered as a
service and the users of the distributed system are
considered as clients, hence the name client-
server.

In this type of model the client is usually aware of
all the services that are available by different
systems. Although they do not need to worry
about the other clients that are existing and using
the same services. Hence we can view two
different processes here-the client and the server.
1:1 mapping between the server process running
and the processors is not necessary.

Figure-2 depicts a model based on the client
server architecture.

Figure-2: Client-Server Architecture

It is very important aspect to develop a logical
structure of the software being developed using
client-server architecture. Generally we partition
the structure into 3 layers to follow a designing
approach.

Presentation:-The first layer is the presentation
layer and it will present information and data to
the user and allow the user to interact with the
system.

Application Processing:-It allows deployment the
logic involved in the software.

Data Management:-This layer is concerned with
management and performing various database
operations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 131

The two-tier architecture that consists of clients
and servers can be classified in two different types
of models

Thin-Client:-In this type of model, all the
operations related to data and processing of
applications is done by the server that is the
distributed system, while the user only works at
the layer of presentation.

Thick-Client:-Here the system will only manage
the data. The client does all the other work like
working out the logic and interacting with the
software.

Example of this kind of a model is ATM machine.
Two-tier architecture is a simple form of
architecture. Depending on the complexity of
application, we can extend our system to three tier
as well as multi-tier framework

2. Distributed Object Architecture:-

Unlike the previous one, here we do not have any
distinction between the system and its users. The
system is treated as an object or a set of objects
that interacts with the user. In client-server model,
clients have to be aware about the services that
are provided by various systems as they need to
contact the servers directly for that. This kind of
approach is not very scalable and flexible. A better
approach is to keep no distinction between the
client and server and treat each of them as objects.
Objects are distributed across the entire network.
If they want to communicate, they need to use
middleware. It is also known as request broker
and acts as a medium of communication between
objects and also a medium to remove or add
objects.

No distinction is required here between thin and
thick clients as in case of client-server approach
and it provides a very scalable and flexible
approach.

Figure-3: Distributed Object Architecture

5. AGILE PRINCIPLES FOR DISTRIBUTED
SOFTWARE FEVELOPEMENT

Distributed systems are inevitable in the field of
software development. As the scope and
requirements of a project increases, it becomes
necessary to scale up the project and hence
distributed systems come into the picture. Agile
methods divide tasks into short phases of work
and support frequent reshaping and adaptation of
plans. Agile practices advance improvement
iterations, open collaborative effort, also, handle
flexibility for the entire duration of the life cycle of
the undertaking.

Adjusting these practices in a circulated
environment can help appropriated advancement
tackle the difficulties of social contradictorily,
initiative battle and absence of trust. This section
discusses the use of agile practises in the field of
distributed software development.

Some of the standard agile policies and practises
that need to be implemented within your system
are as following.

1. Fast and uninterrupted delivery of useful

application or software.

2. Progress is constantly measured by continuous
availability of the prototype model of working
software.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 132

3. Flexibility in requirements.

4. Co-operation and mutual understanding

between developers, managers, business heads
and consumers.

5. Proper selection and involvement of project

members who can always be relied upon.

6. Technical problems should be continuously

handled.

7. Simple.

8. Face-to-Face conversation is the most relied

upon form of communication.

9. Well-organized.

10. Adaptive to the varying situations.

11. Remote Collaboration to enable shared file

storage using web services or messenger
services.

12. Manage proxy servers over distributed

systems.

6. GOALS OF COLLABORATIVE SOFTWARE
ENGINEERING

Various goals have been set throughout the entire
life-cycle of software development.

Define scope and ability of project:-

Developers along with the clients and other fund
providers or stakeholders should discuss what
they really want the product to do and their
requirements from the product. Without such
discussions, the project may not proceed forward
as planned.

Single design and architecture Model:-

Software designers must make sure that everyone
has agreed upon and can relate to a single
architecture model.

Management of Dependencies:-

It includes the phase where the process is sub-
divided among various modules and each module
is assigned a date of formation. Also the modules
are prioritized and their dependencies are stated
as per their needs and availability. Controlling and
assessing various modules is included here.

Error Identification and Solving:-

Blunders and ambiguities are conceivable in all
software products, and numerous methodologies
are created to discover and record their presence.
The collaborative procedures available are
investigations and surveys, where various
individuals are united so that their numerous
points of view can distinguish errors, and their
inquiries can surface ambiguities. In testing, where
one gathering makes tests to reveal mistakes in
programming created by people is a collaborative
mistake gathering method. Clients also work
together in the ID of mistakes, whether in express
beta testing programs, or through typical use,
when they submit bug reports. Bug frameworks
license specialists to save issues, and deal with the
procedure of determining them.

Recording memory of employees:-

In a long term collaborative venture, individuals
may come and go. Collaboration also includes
recording what those individuals knew, so that
current employees can benefit from this
information now, and later on.

Change logs, are a type of storage memory used in
collaborative development. Process models
additionally save memory, portraying practices for
the most effective method to create applications.

With the upcoming of new technologies, software
developers are not holding back and have started
to adapt new communication mediums for
collaborative project.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 133

7. COLLABORATIVE TOOLS

Four different types of tools are available for
collaboration in software engineering.

Model Collaboration:-

Software engineering consists of various phases
like the requirements, design, architecture, test
cases, end product, etc. Model based collaboration
allows us to create a separate and unique model
for all the different phases involved in the process.
It allows to represent the work done in a more
user friendly way.

Collaborative tools available for the requirement
phase are e-Requirements, Requisite-Pro, Raven-
Flow, etc. Designing tools follow a UML based
approach and Argo-UML, Gliffy are a few
examples. Testing involves various features like
granting access to the prototype of model to the
users and record bugs experienced by them. One
such other approach is to allow multiple user to
test the different functionalities of the software
and record their feedback and comments. Tool for
the same is bug tracking tool. A tool called XLinkit
allows to create traceability links among various
modules.

Process Based:-

Such tools allows to have a pre-organized
structure for various phases to be carried out
within a large software project. It defines the
sequence, prioritizes them, assigns different roles
to different engineers involved in the process,
monitors their progress and hence reduces time
for co-ordination, integrity, etc. Examples are
Marvel, Endeavours, etc.

Awareness Tools:-

Every member of the software developing team is
assigned his own workspace where he carries out
his work related to a specific module. The
workspace allows developer to work in a more
fruitful way as it is independent of other members.
However it does not allow engineers to work in a
parallel way with coordination. Augur is an

awareness based tool that spreads awareness
regarding the work done by different engineers in
the working environment and hence allows them
to work in coordination without any conflicts.

Infrastructure Collaboration:-

The goal of various infrastructure technology
based tools is to coordinate the work of software
tools by creating repositories for control
integration, data integration, awareness among
various tool activities, etc.

8. INTEGRATING DESKTOP & WEB BASED

ENVIRONMENTS

Researchers have shown that collaborative
development can benefit largely by moving
applications to the web. Web applications support
large amount of integration, user interaction by
use of rich programming languages such as
JavaScript, AJAX.

The support of a desktop like user friendly
interface in the newly arrived Web 2.0 and
integration of data among various sites has started
a new paradigm in software engineering. Web
based software development tools provide various
APIs and designing formats but they cannot fully
replace desktop based IDEs. However bug tracking
and test cases are better on web based but
compiling, debugging of software is yet more
secure on the desktop based IDEs. Hence we need
to create an open working environment where in
both the services can interact with each other
seamlessly and use best features of each of them to
develop better software.

9. CONCLUSION

Distributed software development is inevitable as
the world is moving towards use of big data, cloud
computing which requires high computational
powers. As much as advantages it offers, it is not
yet completely safe and performance oriented.
There are issues and challenges which need to be
handled for an error free, high performance
approach. Agile practises offer a high degree of
advantage by conveying early, improving

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 134

communication and permitting the business to
react rapidly by changing the product. Attempting
to disseminate an improvement venture in an agile
way is not very simple and will include bargains
however the points of interest are awfully
numerous. To the degree that forwards in
software engineering group joint effort can lessen
inadvertent troubles characteristic in the
coordination of vast groups of individuals, and can
better influence the exceptional abilities and
capacities of every group part, new work around
there will enhance the profitability and nature of
software undertakings.

REFERENCES

[1] J. C. Carver, “First International Workshop on
Software Engineering for Computational Science &
Engineering,” Computing in Science & Engineering,
vol. 11, no. 2, pp. 7–11, 2009.

[2] H. Rhinow, E. Koeppen, and C. Meinel,
“Prototypes as Boundary Objects in Innovation
Processes,” in Design Research Society
2012:Bangkok. Conference Proceedings, vol. 4.
DRS, 2012, pp. 1581–1590.

[3] Issues in Testing distributed component -based
systems, Sudipto Ghosh,Aditya P. Mathur, Software
Engineering Research Centre,West Lafayette,
March 1999.

[4]Scheduling Problems for a Class of Parallel
Distributed Systems,Hiroshi Tamura, Futoshi
Tasaki, Masakazu Sengoku and Shoji
ShinodaNiigata Institute of Technology, Japan ,
Faculty of Engineering, Niigata University, Japan,
IEEE 2005.

[5] Sureshchandra, Kalpana Shrinivasavadhani,
Jagadish ,” Adopting Agile In Distributed
Development”, Global Software Engineering, 2008.
ICGSE 2008 , page(s): 217-221

[6] S. McConnell, "Lifecycle Planning," in Rapid
Development:Taming Wild Software Schedules
Redmond, WA: Microsoft Press, 1996.

[7] R. Grinter, "Systems Architecture: Product
Designing and Social Engineering," in ACM
Conference on Work Activities Coordination and
Collaboration (WACC'99), San Francisco,
California,1999,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

