
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 905

Aspect-Oriented Software Development for Real-Time and Internet

Applications

Ogbonna J. C.1, Nwokoma F. O.2, Nwala K. T.3, Nwandu I. C.4

1,3Reseacher, Dept. of Computer Science, Clifford University Owerrinta, Abia State Nigeria
2,4Reseacher, Dept. of Computer Science, Federal University of Technology Owerri, Imo State Nigeria

---***---

Abstract - Software development evolution has introduced
a number of useful software development methods. Efficient
modularization of program artifacts that cut across multiple
locations during software development called crosscutting
concerns have been a major drawback for these software
development methods including the almighty Object-Oriented
Software Development method. Concerns like recovery,
synchronization, logging, encryption, authentication,
authorization, validation, verification, caching, transaction
processing, monitoring, error detection and correction,
optimizations etc are common and cut-across many modules.
That is to say that the source codes for these concerns are
duplicated in so many modules. In the case of Object-Oriented
Software Development method, these concerns are not
captured as an aspect but their source codes duplicated across
multiple object methods because of the encapsulation
principle. These crosscutting concerns reduce the reusability,
maintainability and adaptability of software products, hence
the need for a software development method called Aspect-
Oriented Software Development (AOSD) that gives a better
modularization implementation in software development
which are used for the composition of the program
components more especially to the Object-Oriented Software
Development method.

Key Words: Aspect-Oriented Software Development,
Software Modularization, Software Evolution, Joinpoint,
Advice, Aspect, Crosscutting Concerns, Weaving.

1. INTRODUCTION

Aspect-Oriented Software Development (AOSD) is an
attractive software development model that aimed at
complementing and improving a wide variety of modern
development approaches such as Object-Oriented approach,
Model-Driven Development approach etc. In addition, AOSD
offers a wide variety of advanced and unique program
development and modularization mechanisms (Albahar,
2015). Research has shown that the development of
software applications through aspect-oriented software
development mechanisms improves the implementation
structure of a software application which has significant
influence on a number of important software attributes
(Albahar, 2015). AOSD mechanisms improve the quality of
software development lifecycle by reducing the complexity

and increasing the reusability of a software product, which
in turns results in better software development.

AOP is based on the idea that computer systems are better
programmed by separately specifying the various concerns
(properties or areas of interest) of a system and some
description of their relationships, and then relying on
mechanisms in the underlying AOP environment to weave or
compose them together into a coherent program (Elrad,
Filman, & Bader, 2001a). These concerns include Security
(verification, validation, authentication, authorization, etc),
Quality of Service (performance, reliability, and availability),
etc.

The major benefit of an aspect-oriented approach is that it
supports the separation of concerns, and they include a
definition of where they should be included in a program, as
well as the code implementing the crosscutting concern. You
can specify that the crosscutting code should be included
before or after a specific method call or when an attribute is
accessed (Sommerville, 2011a).

Assume we have a requirement that user authentication is
required before any change to personal details is made in a
database. We can describe this in an aspect by stating that
the authentication code should be included before each call
to methods that update personal details. Subsequently, we
may extend the requirement for authentication to all
database updates. This can easily be implemented by
modifying the aspect. We simply change the definition of
where the authentication code is to be woven into the
system. We do not have to search through the system
looking for all occurrences of these methods. We are
therefore less likely to make mistakes and introduce
accidental security vulnerabilities into our program
(Sommerville, 2011b).

1.1 The Principle of Separation of Concerns

The principle of separation of concerns (Sommerville,
2006, 2011b) states that:

 Software should be organized so that each program
element does one thing and one thing only.

 Each program element should therefore be
understandable without reference to other elements.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 906

 Program abstractions such as subroutines,
procedures, objects, etc. support the separation of
concerns.

Separating concerns into independent elements rather
than including different concerns in the same logical
abstraction is good software engineering practice. By
representing cross-cutting concerns as aspects, these
concerns can be understood, reused, and modified
independently, without regard for where the code is used
(Sommerville, 2011b). For instance, user authentication such
as password authentication, physical authentication (smart
cards, digital certificates etc), biometric authentication
(signature analysis devices, fingerprints, retina eye scans and
voice analysis devices etc), each can be refactored into an
aspect and can be automatically woven into a given program
wherever that particular authentication is required.

1.2 Aspect-Oriented Software Development
Terminology

The following are some of the terminology used in an
aspect-oriented software development.

 Advice: The code implementing a concern

 Aspect: Aspect is a program abstraction that defines
a Crosscutting Concern. It includes the definition of a
Pointcut and the advice associated with that
concern.

 Join Point: Join Point is an event in an executing
program where the advice associated with an aspect
may be executed.

 Pointcut: Pointcut is a statement, included in an
aspect, which defines the Join Points where the
associated aspect advice is to be executed.

 Weaving: Weaving is the incorporation of advice
code at the specified Join Points by an aspect weaver.

2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT
EVOLUTION

Software development techniques need to continuously
evolve to cope with the ever dynamic software requirements
(Team, 2018). The first law of software evolution states that
“A program that is used must be continually adapted else it
becomes progressively less satisfactory” (Mens, Mens, &
Tourwé, 2004).

This need for software to evolve continuously poses
important challenges for software engineers. Advanced
automated software engineering techniques and tools are
needed to improve software evolution support.

An essential problem with software development is the
tyranny of the dominant decomposition (Elrad, Filman, &
Bader, 2001b; Jonckers, 2009; Mei & Gent, 2004;
Mussbacher, Amyot, & Weiss, 2007; Suvée, Vanderperren, &

Jonckers, 2003). No matter how carefully a software system
is decomposed into modular units; there will always be
concerns (typically non-functional ones) that cut across the
chosen decomposition. The code of these crosscutting
concerns will necessarily be spread over different modules,
which has a negative impact on the software quality in terms
of comprehensibility, adaptability and evolvability (Mens et
al., 2004)

Aspect-oriented software development (AOSD) is a solution
to this problem. In order to capture crosscutting concerns in
a localized way, a new abstraction mechanism (called an
aspect) is added to existing programming languages (e.g.
AspectJ for Java, AspectC++ for C++ etc). As a result,
crosscutting concerns are no longer distributed over
different modules. This means that the software is easier to
maintain, reuse, evolve and understand (Mens et al., 2004).

2.1 Cross-Fertilization

For aspect-oriented software development to be successful
current software programs require being translated to their
aspect-oriented equivalent with a continual rephrasing. For
the size of industrial software, automated support is required
for three important activities which are aspect mining, aspect
introduction and aspect evolution (Team, 2018). Given the
size and complexity of industrial software systems, this must
be achieved with as much automated support as possible as
shown in Figure 1. An automated support is needed for three
essential activities:

 Aspect Mining: Aspect Mining techniques are used
to identify the relevant concerns in the source code.

 Aspect Introduction: Aspect Introduction
techniques are used to define the appropriate
aspects for any of the identified concerns, in order to
translate the software into the equivalent aspect-
oriented version.

 Aspect Evolution: Aspect Evolution techniques
enable evolvability of aspect-oriented software
products.

Fig -1: Aspect-Oriented Software Evolution Cross-

fertilization

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 907

3. IDENTIFYING CROSSCUTTING CONCERNS

The separation of concerns is a key principle of software
design and implementation. It means that you should
organize your software so that each element in the program
(class, method, procedure, etc.) does one thing and one thing
only. You can then focus on that element without regard for
the other elements in the program. You can understand each
part of the program by knowing its concern, without the
need to understand other elements. When changes are
required, they are localized to a small number of elements
(Sommerville, 2011a).

System performance may be a concern because users want
to have a rapid response from a system; some stakeholders
may be concerned that the system should include particular
functionality; companies who are supporting a system may
be concerned that it is easy to maintain. A concern can
therefore be defined as something that is of interest or
significance to a stakeholder or a group of stakeholders. It is
easier to trace concerns, expressed as a requirement or a
related set of requirements, to the program components that
implement these concerns. If the requirements change, then
the part of the program that has to be changed is obvious
(Sommerville, 2011b).

3.1 Types of Stakeholder Concerns

There are a number of concerns depending on their
type/category:

 Functional Concerns (Primary functional
concerns): Functional concerns are related to the
specific functionality to be included in a system. For
example, in a mobile banking application, specific
functional concerns could be: Transfer Fund, Check
Account Balance, Buy Airtime, QR Payment, etc.

 Non-Functional Concerns (Secondary functional
concerns): These features are used to add extra
functionalities to the functional concerns that are
being integrated into the core system. For example,
in a mobile banking application, non-functional
concerns could be: keeping a log of all the
transactions, statement of account, synchronization
etc.

 Quality of Service (QoS) Concerns: QoS concerns
are related to the non-functional behaviour of a
system. These include characteristics such as
performance, reliability (including error checking),
and availability.

 Policy Concerns: Policy concerns are related to the
overall policies that govern the use of a system.
Policy concerns include security and safety concerns,
and concerns related to business rules.

 System Concerns: System concerns are related to
attributes of the system as a whole, such as its
maintainability or its configurability.

 Organizational Concerns: Organizational concerns
are related to organizational goals and priorities.
These include producing a system within budget,
reusing existing software tools, maintaining the
reputation of the organization, etc.

 Infrastructure Concerns: These add functional
capabilities to support the implementation of the
system on some platform. For instance, Android, IOS,
and Windows Phone Mobile Banking Apps might
have different specific platform functionalities.

3.2 The Separation of Concerns

Large-scale industrial software applications are inherently
complex, and a good separation of concerns within the
application is therefore indispensable. Unfortunately, recent
insight reveals that the current means for separation of
concerns, namely functional decomposition or object-
oriented programming, are insufficient. No matter how well
large applications are decomposed using current means,
some functionality, typically called “crosscutting concerns”,
will not fit the chosen decomposition. As a result,
implementations of such crosscutting concerns will be
scattered across the entire system, and become entangled
with other code. In this case, the consequences for
maintenance of the system and its future evolution are
obviously dire (Bruntink, Van Deursen, & Tourwe, 2004).

Aspect-oriented software development is an improved
means for separation of concerns. Aspect-oriented
programming languages add an abstraction mechanism
(called “aspect”) to existing (object-oriented) programming
languages. This mechanism allows a developer to develop
crosscutting concerns in a modular way. In order to use this
new feature and make the code easier to maintain, existing
applications written using traditional programming
languages should be evolved into aspect-oriented
applications (Bruntink et al., 2004). That is to say that
scattered and tangled code implementing crosscutting
concerns should be identified, and afterward refactored into
aspects.

One proposed approach to managing complex behavioural
models is to separate crosscutting concerns from the main
behaviour by using aspect-oriented modelling. A
crosscutting concern applies throughout multiple locations
in the software, and may be crucial to the reliability,
performance, security, or robustness of the system
(Lindström, Offutt, Sundmark, Andler, & Pettersson, 2017).

Figure 2 shows a Security Concern handled by code in one
class. This is a good modularity.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 908

Fig -2: Security Concern handled by code in one class

Figure 3 shows Security Concern handled by code in two

classes related by inheritance (i.e. Class9 extends Class6).
This is a good modularity.

Fig -3: Security Concern handled by code in two classes

related by inheritance

In a Real-Time and Internet Application, cryptography
plays an important role in data security during data
transmission. That is to say that during data transmission, all
confidential data should be encrypted before transmission so
that:

 The data cannot be accessed by unauthenticated and
unauthorized persons (Confidentiality).

 The data cannot be altered during data transmission
(Integrity).

 The sender cannot deny the authenticity of his/her
signature on a message he/she originated (Non-
repudiation).

Figure 4 shows a Cryptography Concern handled by code
that is scattered over almost all classes. This is a bad
modularity.

Fig -4: Cryptography Concern handled by code that is
scattered over almost all classes

At the same time, figure 5 shows Cryptography Concern

handled by Aspect-Oriented Programming, which is a good
modularity.

Fig -5: Cryptography Concern handled by Aspect-Oriented

Programming

3.3 Scattering and Tangling Crosscutting Concerns

 The implementation of a concern is scattered if its

code is spread out over multiple modules (code
duplication). The concern affects the
implementation of multiple modules and its
implementation is not modular.

 The implementation of a concern is tangled if its
code is intermixed with code that implements other
concerns (i.e. code in one region addresses multiple
concerns). The module in which tangling occurs is
not reliable.

 Scattering and tangling often go together, even
though they are different concepts (Malekzad,
2013).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 909

4. ASPECT WEAVING

Weaving of aspects is normally done by executing the
advices defined in the aspect at a resolved join point
(Suganantham, Babu, & Raju, 2017).

Figure 6 and figure 7 shows the Transfer Fund concerns of a
mobile banking application and Load Airtime concerns of the

same mobile banking application respectively. In each case,
we can see the crosscutting concerns that cut across
‘Transfer Fund’ and ‘Load Airtime’ modules; and in Figure 8,
an Aspect-Oriented Software Development strategy is used
to capture these concerns as Aspects, and finally uses an
Aspect Weaver to weave the aspects into their respective
Join Points.

Fig -6: Transfer Fund Concerns

Fig -7: Load Airtime Concerns

Fig -8: Real-Time and Internet Application Aspect Weaving

Examples of contexts where advice can be woven into a
program include the following contexts:

 Before a specific method executes

 After a method call

 When one of the properties of an object is modified
(Event Handler)

5. ASPECT-ORIENTED SOFTWARE DEVELOPMENT
FRAMEWORKS

Some of the tools and frameworks used for the development
of software products using AOSD method include the
following:

 AspectJ (Eclipse Foundation, n.d.), is a seamless
aspect-oriented extension to the Java programming
language that clean modularization of crosscutting
concerns, such as error checking and handling,

+GetLoadAirtimeData
+EncryptLoadAirtimeData
+AuthenticateUser
+CheckUserAccountBalance
+CheckUserLoadAirtimeLimit
+LogTheTransaction
+DebitUserAccount
+AsyncWithTheDestinationTELCOPaymentAPI

Load Airtime

+GetTransferData
+EncryptTransferData
+AuthenticateUser
+CheckUserAccountBalance
+CheckUserTransferLimit
+LogTheTransaction
+DebitUserAccount
+AsyncWithTheDestinationBankPaymentAPI

Transfer Fund

Aspect

Weaver

GetTransactionData Aspect

EncryptTransactionData Aspect

AuthenticateUser Aspect

CheckUserAccountBalance Aspect

…

CheckUserTransactionLimit Aspect

…
…
…

Transfer Fund

…
…
…

Load Airtime

…
GetTransactionData Code

EncryptTransactionData Code
AuthenticateUser Code

CheckUserAccountBalance Code
CheckUserTransactionLimit Code
TranactionLog Code
DebitUserAccount Code
AsyncWithTheDestinationPaymentAPI Code
….
…

Transfer Fund

…
GetTransactionData Code

EncryptTransactionData Code
AuthenticateUser Code

CheckUserAccountBalance Code
CheckUserTransactionLimit Code
TranactionLog Code
DebitUserAccount Code
AsyncWithTheDestinationPaymentAPI Code
….
…

Load Airtime

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 910

synchronization, context-sensitive behaviour,
performance optimizations, monitoring and logging,
debugging support, and multi-object protocols.

 AspectC++ project, according to (Xerox
Corporation, n.d.), is a set of C++ language
extensions that extend the AspectJ approach to
facilitate aspect-oriented programming with C/C++.

 XWeaver is a tool for aspect oriented programming
for C/C++ and Java applications. The weaving
process is especially designed to be compatible with
the needs of applications that, like on-board
applications, must undergo a qualification process.
The XWeaver tool is built as a command line tool
and a Plug-in for the Eclipse platform and is
provided with a complete set of documentation and
a large number of sample aspect programs
(XWeaver, n.d.) .

 JBoss-AOP is a framework for Organizing Cross
Cutting Concerns, and is a 100% Pure Java Aspect-
Oriented Framework usable in any programming
environment. JBoss-AOP is not only a framework,
but also a prepackaged set of aspects that are
applied via annotations, pointcut expressions, or
dynamically at runtime. Some of these include
caching, asynchronous communication, transactions,
security, remoting, and many more (JBoss AOP, n.d.).

 AspectWerkz language has been moving closer and
closer to that of AspectJ. The key difference is that
whereas AspectJ uses a syntax that complements
Java as defined in the original JLS (Java Language
Specification), AspectWerkz supports both
annotation and XML based styles of development. In
addition, AspectWerkz has focused largely on close
integration of load-time weaving into J2EE
application environments while AspectJ has focused
more on (static) compilation and weaving, runtime
performance, and tools support (AspectWerkz, n.d.).

 JAC (Java Aspect Components) a framework for
Aspect-Oriented Programming in Java, is an open-
source software developed by the AOPSYSTM
company with the collaboration of the LIP6, the
CEDRIC, and the LIFL laboratories; and is a direct
application of Renaud Pawlak's PhD Thesis
(ObjectWeb Consortium, 2005).

 LOOM.NET project aims to investigate and promote
the usage of Aspect Oriented Programming (AOP) in
the context of the Microsoft .NET framework.

 Nanning Aspects is a simple and scalable Aspect
Oriented Framework for Java based on dynamic
proxies and aspects implemented as ordinary Java-
classes.

 CLAW is a .NET a dynamic weaver implemented in
C++ and using the Common Object Model (COM)
to extend the CLR (Common Language Runtime) by
linking in to the profiling mechanism supplied
with the runtime. With this mechanism, it is

possible to add a new method at runtime, inject
new CIL (Common Intermediate Language,
originally known as Microsoft Intermediate
Language (MSIL)) code at runtime for an existing
method body, relocate methods from one type to
another, and recompile existing methods
(Blackstock, 2004).

 Aspect.NET implementation is based on
Microsoft Phoenix state-of-the-art multi-targeted
optimizing infrastructure for developing compilers
and other language tools, in particular,
comfortable for creating and editing .NET
assemblies. The weaver uses Phoenix IR for
scanning target applications and weaving aspects
(Safonov, Gratchev, Grigoryev, & Maslennikov, 2006)

6. CONCLUSION

In this paper, we have reviewed Aspect-Oriented Software
Development (AOSD), which is a software development
paradigm that complements Object-Oriented Software
Development (OOSD) and other approaches to software
engineering by providing a different way of thinking about
the development process of software products. The key unit
of modularity in OOSD is the class, whereas in AOSD the unit
of modularity is the aspect. AOSD enable the modularization
of concerns such as transactions that cut across multiple
objects. The idea of separating concerns that underlies AOSD
is important and thinking about the separation of concerns is
a good general approach to software engineering. Research
has shown that the development of software applications
through aspect-oriented software development mechanisms
improves the implementation structure of a software
application, improves the quality of software development
lifecycle by reducing the complexity and increasing the
reusability and maintainability of software products.

REFERENCES

[1] Albahar, M. A. (2015). Aspect Oriented Software

Engineering, (4), 29–31.

[2] AspectWerkz. (n.d.). AspectJ and AspectWerkz to Join
Forces. Retrieved from
http://www.eclipse.org/aspectj/aj5announce.html

[3] Blackstock, M. A. (2004). Aspect Weaving with C # and .
NET. Retrieved from
https://www.researchgate.net/profile/Michael_Blackst
ock/publication/228949568_Aspect_Weaving_with_C_a
nd_NET/links/544166060cf2e6f0c0f61c80.pdf

[4] Bruntink, M., Van Deursen, A., & Tourwe, T. (2004).
Identifying Cross-Cutting Concerns in Embedded C Code.
European Research Consortium for Informatics and
Mathematics, (58), 39–41.

[5] Eclipse Foundation. (n.d.). AspectJ project. Retrieved
July 23, 2018, from http://eclipse.org/aspectj

http://www.eclipse.org/aspectj/aj5announce.html
https://www.researchgate.net/profile/Michael_Blackstock/publication/228949568_Aspect_Weaving_with_C_and_NET/links/544166060cf2e6f0c0f61c80.pdf
https://www.researchgate.net/profile/Michael_Blackstock/publication/228949568_Aspect_Weaving_with_C_and_NET/links/544166060cf2e6f0c0f61c80.pdf
https://www.researchgate.net/profile/Michael_Blackstock/publication/228949568_Aspect_Weaving_with_C_and_NET/links/544166060cf2e6f0c0f61c80.pdf

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 911

[6] Elrad, T., Filman, R. E., & Bader, A. (2001a). Aspect-
oriented programming: Introduction. Communications
of the ACM, 44(10), 29–32.

[7] Elrad, T., Filman, R. E., & Bader, A. (2001b). Aspect-
Oriented Programming. Communications of the ACM,
44(10), 28–32.
https://doi.org/10.1145/317665.317679

[8] JBoss AOP. (n.d.). JBoss AOP: Framework for Organizing
Cross Cutting Concerns. Retrieved September 18, 2018,
from http://jbossaop.jboss.org/

[9] Jonckers, V. (2009). Aspect Oriented Software
Development. Vrije Universiteit Brussel.

[10] Lindström, B., Offutt, J., Sundmark, D., Andler, S. F., &
Pettersson, P. (2017). Using mutation to design tests for
aspect-oriented models. Information and Software
Technology, 81, 112–130.
https://doi.org/10.1016/j.infsof.2016.04.007

[11] Malekzad, M. (2013). Aspect Oriented Software
Development. PUCSD. Retrieved from
https://www.slideshare.net/mmalekzad/aspect-
oriented-software-development-16283495

[12] Mei, T. M., & Gent, H. P. (2004). Software Evolution and
Aspect-Oriented Programming. In Scientific Research
Network on Foundations of Sotware Evolution.
Retrieved from http://prog.vub.ac.be/FFSE

[13] Mens, T., Mens, K., & Tourwé, T. (2004). Aspect-Oriented
Software Evolution. ERCIM News, 58, 36–37.

[14] Mussbacher, G., Amyot, D., & Weiss, M. (2007).
Visualizing Early Aspects with Use Case Maps. In
Transactions on aspect-oriented software development
III (pp. 105–143). Springer, Berlin, Heidelberg.

[15] ObjectWeb Consortium. (2005). The JAC Project.
Retrieved September 18, 2018, from http://jac.ow2.org/

[16] Safonov, V., Gratchev, M., Grigoryev, D., & Maslennikov,
A. (2006). Aspect .NET—aspect-oriented toolkit for
Microsoft .NET based on Phoenix and Whidbey. .NET
Technologies.

[17] Sommerville, I. (2006). Aspect-oriented Software
Development. In Software Engineering (8th ed.).

[18] Sommerville, I. (2011a). Aspect-oriented software
engineering. In Software Engineering (9th ed., pp. 565–
590).

[19] Sommerville, I. (2011b). Software Engineering (9th ed.).
Pearson Education.

[20] Suganantham, S., Babu, C., & Raju, M. (2017). A
Quantitative Evaluation of Change Impact Reachability
and Complexity Across Versions of Aspect Oriented
Software. International Arab Journal of Information
Technology, 14(1), 42–52. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
85007575619&partnerID=40&md5=77c66e8467e120c
4adda2ccfe89c2989

[21] Suvée, D., Vanderperren, W., & Jonckers, V. (2003).
JAsCo : an Aspect-Oriented approach tailored for
Component Based Software Development. In
Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development (pp. 21–29).
ACM.

[22] Team, A. (2018). The Evolution of Aspect-Oriented
Software Development. Retrieved July 18, 2018, from

http://aosd.net/the-evolution-of-aspect-oriented-
software-development-aosd/

[23] Xerox Corporation. (n.d.). The Home of AspectC++.
Retrieved July 23, 2018, from http://www.aspectc.org/

[24] XWeaver. (n.d.). The XWeaver Project. Retrieved
September 18, 2018, from https://www.pnp-
software.com/XWeaver/

BIOGRAPHIES

Ogbonna James Chinyere obtained his B.Tech.
and M.Sc. degrees in Computer Science from
Federal University of Technology Owerri (FUTO)
in 2009 and 2016, respectively. He is an academic
staff of Computer Science Dept., Clifford
University Owerrinta, Abia State. His research
interests include Mobile Computing, Information
Security, Database Management Systems, and
Software Engineering. He is a member of Nigeria
Computer Society (NCS).

Nwokoma Francisca Onyinyechi obtained a
National Diploma in Computer Science from Abia
State Polytechnic Aba in 2005; B.Tech. and M.Sc.
in Computer Science from Federal University of
Technology Owerri in 2010 and 2016
respectively. She is an academic Staff of
Computer Science Depts., FUTO. Her research
interest includes Data Communication and
Networking, Software Engineering, and Human
Computer Interaction. She is a member of IEEE.

Nwala Kenneth Tochukwu obtained a Bachelor
of Science (B.Sc.) and a Master of Science (M.Sc.)
in Computer Science from Babcock University,
Nigeria in 2011 and 2016 respectively. He is an
academic staff of Computer Science Dept., Clifford
University Owerrinta, Abia State.. His research
areas include Human Computer Interaction,
Networking, and Telecommunications. He is a
member of Nigeria Computer Society (NCS).

Nwandu Ikenna Caesar obtained a Bachelor of
Science (B.Sc.) from University of Benin, Nigeria
and a Master of Science (M.Sc.) from Federal
University of Technology Owerri, Nigeria all in
Computer Science. He is currently working on his
Ph.D at Federal University of Technology Owerri,
Nigeria. His research areas include Software
Engineering Operations Research and Data
Communication.

https://doi.org/10.1145/317665.317679
http://jbossaop.jboss.org/
https://doi.org/10.1016/j.infsof.2016.04.007
https://www.slideshare.net/mmalekzad/aspect-oriented-software-development-16283495
https://www.slideshare.net/mmalekzad/aspect-oriented-software-development-16283495
http://prog.vub.ac.be/FFSE
http://jac.ow2.org/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007575619&partnerID=40&md5=77c66e8467e120c4adda2ccfe89c2989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007575619&partnerID=40&md5=77c66e8467e120c4adda2ccfe89c2989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007575619&partnerID=40&md5=77c66e8467e120c4adda2ccfe89c2989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007575619&partnerID=40&md5=77c66e8467e120c4adda2ccfe89c2989
http://aosd.net/the-evolution-of-aspect-oriented-software-development-aosd/
http://aosd.net/the-evolution-of-aspect-oriented-software-development-aosd/
http://www.aspectc.org/
https://www.pnp-software.com/XWeaver/
https://www.pnp-software.com/XWeaver/

