
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 851

NRU Cache Replacement Policy for Multicore Processors using

Multi2Sim

Vikram Bharadwaj1, Vineet Kachapur2

1,2Student, Dept. of Computer Science and Engineering, Sir M Visvesvaraya Institute of Technology,
Bangalore, India

---***---

Abstract:- Cache replacement policy is a major design
parameter of any memory hierarchy. The efficiency of the
replacement policy affects both the hit rate and the access
latency of a cache system. The higher the associativity of the
cache, the more vital the replacement policy becomes. The
memory system does not consist of a single cache, but a
hierarchy of caches. If each cache in the hierarchy decides
which block to replace in an independent manner, the
performance of the whole memory hierarchy will suffer,
especially if inclusion is to be maintained. For example, if the
level 2 cache decides to evict an LRU(Least Recently Used)
block, one or more blocks at level 1, possibly not LRU, can be
evicted, therefore affecting the hit rate of level 1 and the
overall performance. In this Project we study the comparative
Analysis of cache behavior by varying the cache policy for L1
and L2 cache. We see a detailed analysis about the Hit Rate
and Miss Rate together as the Hit Ratio by varying the
Associativity of the Cache, the number of Sets in the Cache and
also the number of Cores and Threads in the simulated CPU.

Key Words: Cache, Replacement Policy, LRU (Least
Recently Used), Memory, Hierarchy, Hit Rate, Miss Rate,
Associativity.

1. INTRODUCTION

A multicore processor is a single computing component with
more than one central processing units (called cores), which
read and execute program instructions. In the single core
processor, a series of requests for memory locations is send
to the cache, where each request appears after the last one
has been served. The time by the cache to serve the request
depends on whether the memory location is present in the
cache (a cache hit) or not (a miss occurs and the location is
fetched from the main memory. If the cache is full, the
memory location already in the cache gets evicted to make
space for the new memory location. Which memory location
(or block) is to be evicted is decided using the cache
replacement policy, mainly LRU. We have compiled a set of
results by running 2 benchmark suites: PARSEC 3.0 and
Splash 2. We are using Multi2Sim, a CPU simulator, to
emulate our specific requirements without actually
physically implementing them. Multi2sim gives us the
detailed simulation report on running a benchmark which
includes the simulation time, real time, Instruction per Cycle
(IPC), Cycles, Hits and Misses.

1.1 Existing System

Local replacement policies keep track of blocks behaviour
within each cache set in order to be able to choose a victim
block when a replacement is needed. The replacement policy
gets its own information from accesses to its cache. However,
a replacement policy Pi at cache Li can indirectly affect the
behaviour of the replacement policy Pj at another cache Lj
through a cache miss. This is because pi affects the number of
cache misses in Li and whether the victim block is dirty or
not. The problem is that both of these factors also affect the
replacement policy behaviour of the cache below Li in the
hierarchy. Therefore, the communication between the
replacement policies of two caches in the hierarchy is
established only after a cache miss. This limited connection
between caches in terms of replacement policies may lead to
much inefficiency.

The current system will give an idea of how the normal
scheduling algorithms work and their efficiencies with
respect to the system in which it is been put into.

1.2 Proposed System

The proposed system is a Not Recently Used (NRU)
algorithm. The NRU replacement policy favours keeping
pages in the memory that have been recently used. This
algorithm works on the following basic principle: When a
page is referenced, a referenced bit is set. Similarly, when a
page is modified (written to), a modified bit is set. NRU
Cache Replacement Policy is been written and been
integrated with the simulator and Benchmarks are executed
and analysed against the results from the default LRU/FIFO
cache replacement policies.

2. IMPLEMENTATION

Implementing a new Replacement Policy in Multi2Sim is
pretty straightforward, but at the same time is a bit tedious
too. Since we have to make changes to the “Cache.cc” file, we
will be adding “NRU” as the new element in the enum. The
algorithm is added and necessary changes to the code are
done, and Multi2Sim is compiled again, once successfully
compiled, we run the “make” on Multi2Sim.

The application will start without any errors and we are now
ready to run the benchmarks and test the results against the
already existing Replacement Policies.

For the first setup, we will Change the replacement policy in

L1private cache and L2 shared cache to default LRU, and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 852

compare it against the implemented NRU policy. Here, the

parameter under study is he Hit Ratio of shared L2 cache vs

varying associativity of the L2 cache. The number of Sets is

kept a constant for the L2 Cache at 512, for varying

Associativity, and the benchmarks used are PARSEC 3.0and

Splpash2. It is observed that having NRU in both L1 private

cache and L2 shared cache produces consistent better Hit

Rates when compared to the default LRU, as depicted in the

graph below (Chart -1).

Chart -1: Hit Ratio vs Associativity for L1 and L2 Cache
(LRU vs. NRU).

For the next observation, we compare all the default
replacement policies, namely LRU, FIFO and RANDOM with
NRU, for Instructions per Cycle (IPC) and the Hit Rate. In
computer architecture, Instructions per Cycle (IPC) is one
aspect of a processor’s performance: the average number of
instructions executed for each clock cycle. The graphs
presented below (Fig -1) are plotted by executing the
benchmarks Cholesky and Barnes For the most part, in both
benchmark programs that are tested, IPC for FIFO and
Random always remain consistently less than LRU and NRU.
Thus, the two main policies that are to be considered are LRU
and NRU. As we can see from the graphs obtained above, NRU
policy outperforms LRU in both the benchmarks with a
higher IPC for all tested Associativity values (8-128).

Thus, we can say, NRU performs better for these set of
benchmarks than LRU, FIFO and Random, from the above
obtained graphs.

The performance of cache memory is frequently measured in
terms of a quantity called hit ratio. The CPU refers to memory
& finds the word in cache, it is said to produce a hit. If the
word is not found in cache, it is in main memory and it counts
as miss. Thus, the Hit Ratio of a Cache is given by:

Hit Ratio = (Number of Hits) / (Total Number of
Accesses to that Cache)

The 2 graphs presented below (Fig -1) are plotted by
executing the benchmarks Swaptions and Black Scholes. The
replacement policies LRU, FIFO and Random show similar
results for both the benchmarks tested. All 3 of them have
respective constant values for the most part while running
the second benchmark (Blackscholes), while NRU
outperforms all the 3. Although the values have varied during
the execution of Swaptions, it is consistently lesser than the
Hit Ratios offered by NRU.

Thus, we can say, NRU performs better for these set of
benchmarks than LRU, FIFO and Random, from the above
obtained graphs.

Fig -1: IPC/Hit Rate vs. Associativity for different

benchmarks, for LRU, FIFO, NRU and RANDOM
replacement policies.

From the following observations, it is clear that the proposed
algorithm/policy, Not Recently Used (NRU), outperforms the
default replacement policies when we compare the IPCs and
the Hit Rates, the two critical parameters required to
measure the performance of a replacement policy.

3. CONCLUSION

We have proposed an algorithm, NRU, which can outperform
LRU replacement policy for most of the benchmarks
programs which is simulated using Multi2sim simulator. The
results we got were better than that of LRU policy. According
to our results, Random performs worst in multicore
processor and IPC remains constant for all values of
associativity if number of sets is kept constant. FIFO on the
other hand does not fall in a specific category. In fact, it is
almost same as that of LRU at times or even is almost same
as Random in some of the benchmarks. NRU has proved to
be better than LRU, which is the most reliable and the best
shared cache replacement policy, and also overcomes some

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 09 | Sep 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 853

of the drawbacks of LRU such as, NRU checks whether the
block is a “dirty” block or not. We hope, in future the project
does reach its intended audience and bring a fresher
perspective in this domain.

ACKNOWLEDGEMENT

We make a humble attempt to thank by expressing in words
our profound sense of gratitude to those who have helped us.
We express out immense gratitude to Prof K R Kini,
Principal, Sir M Visvesvaraya Institute of Technology.

We wish to thank Prof Dilip K Sen, HOD of Department of
Computer Science and Engineering.

We owe deep sense of gratitude to Mrs. Sowjanya Lakshmi
A, Assistant Professor, Department of Computer Science and
Engineering.

We dutifully express our thanks to Mrs.Sheela Katavathe,
Associate Professor, Department of Computer Science and
Engineering.

REFERENCES

[1] Suraj Sharma, Babu Lal “An Effective Cache Replacement

Policy for Multicore Processors”. NIT Rourkela for CSE
Department, May 2013.

ethesis.nitrkl.ac.in/5526/1/212CS1087-14.pdf

[2] InformIT – The Not Recently Used Replacement Policy.

[3] W. Wong and J.-L. Baer, “Modified LRU policies for
improving second level cache behavior, “in Sixth
International Symposium on High-Performance
Computer Architecture (HPCA - 6), 2000.

[4] T. Puzak, A. Hartstein, P. Emma, and V.Srinivasan.
“Measuring the cost of a cache miss”, in Workshop on
Modelling, Benchmarking and Simulation (MOBS), 2006.

[5] www.multi2sim.org

AUTHORS

Vikram Bharadwaj,
Computer Science and Engineering
from Sir M Visvesvaraya Institute
of Technology, Bangalore.

Vineet Kachapur,
Computer Science and Engineering
from Sir M Visvesvaraya Institute
of Technology, Bangalore.

