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Abstract - In this paper, a singular system identification 

procedure based on Strong equivalency is proposed for a 
constrained robot singular model. In fact, since constrained 
robot model is considered as a singular system, it requires to 
be transformed to an equivalent form before applying 
identification on it. This equivalent model plays an 
important role in the identification algorithm, since an 
inappropriate equivalency causes large identification error 
and sometimes identification divergence. The Strong 
equivalency applied in this paper keeps the important 
dynamics of the robot model while reducing the number of 
singular system’s initial conditions. The Recursive Least 
Square identification algorithm is also applied in the next 
step on the Strong equivalent system. Indeed, Recursive 
Least Square identification procedure based on strong 
equivalent model is implemented for the first time for this 
constrained robot singular model, and can be generalized to 
all constrained robot models of this kind. Performance of 
this method on the robot is also validated by illustrating the 
simulations results of the technique on a robot singular 
model.  According to the results, the model identification 
error convergence is improved significantly and also the 
output tracking is more satisfactory compared to the 
previous identification techniques for the constrained robot 
model.  

Key Words:  Singular system identification, 
constrained robot, Strong equivalency, Recursive Least 
Square identification. 

1. INTRODUCTION  

Robot manipulators are widely being used in various 
industrial engineering areas and therefore, robot systems 
studies are under a significant attention by the scholars. 
Robot arm movement can be considered constrained or 
unconstrained. Unconstrained case happens when the 
robot arm moves in a free space without interacting with 
the environment. Constrained motion of robot case 
happens when the robot end-effectors interact 
mechanically with the environment. However, in practical 
tasks, the mechanical interactions of the robot arm with 
the environment or with the object being manipulated 
need to be considered. Therefore, in manufacturing 
environment, the constrained robot model is of greater 
importance than the unconstrained model [1]. 

Indeed, constrained robot model identification and 
estimation is regarded as an important issue in robotics 
since the robot parameters are not easily available (they 
are not usually provided by the robot manufacturers) and 
they are not directly measurable in practice due to the 
structural complexity and payload of robot manipulators 
[2], [3]. A large number of theoretical and experimental 

algorithms are done to deal with the identification of robot 
model parameters in this area and they resulted with 
different levels of accuracy. Although, in most of these 
algorithms, some dynamics of the robot are neglected in 
the process which is the main drawback of these 
approaches. So, considering that the constrained robot 
model is a singular model, the identification approach is 
regarded as a singular identification method.  

Singular systems identification is of immerse interest 
among researchers, since these systems describe the 
dynamics of extensive number of systems such as power 
systems, electrical networks, chemical processes, 
economical systems, robotic systems, mathematics, neural 
networks, etc [4-8]. As a matter of fact, singular systems 
(also known as generalized state space systems) present a 
larger class of systems than the normal state space 
systems, and therefore singular theoretical properties had 
been studied as an active research topic by many 
researchers in the last decades, in [9-11]. Indeed, 
investigations on singular systems are being performed in 
two main areas; differential-algebraic equations theory of 
singular systems, and singular systems control theory. As 
far as the main focus in this paper is the singular 
equivalency and identification of robots, the researches in 
the singular systems theory are emphasized.  

Actually, singular equivalency is considered as a crucial 
issue in singular systems studies, because the first step in 
all techniques dealing with this kind of systems is to find 
and equivalent regular state space model for them. 
Singular equivalency has been introduced as reduction 
methods for several years. These reduction methods have 
been widely studied in theory of singular matrices in [12]. 
Later, Polak introduced an algorithm to reduce a 
differential system to a linear time independent state form 
[13]. Moreover, Fettweis, Desoer and Dervisoglu explained 
a method for reducing the state equation of algebraic - 
differential systems in circuit theory [14], [15]. In parallel, 
Luenberger proposed an algorithm for the state equation 
reduction of singular discrete systems. Besides, [16-22] 
have made great progress in the field of controllability, 
observability and stability of singular systems [23]. All the 
studies mentioned used the regular theory to attain a 
result. The drawback of the regular theory is that it keeps 
the original system’s dynamics and ignore the infinite 
impulse modes of the system. Neglecting the infinite 
modes is an important shortcoming for the constrained 
robot singular model, whereas it owns important infinite 
modes that by neglecting them, the system would be 
identified with low accuracy. Based on Strong equivalency 
model developed in [24], the singular identification 
through Least Square or any other on-line algorithms is 
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improved significantly. This is also proved in another 
study on an electrical singular system in [23]. 

In this regard, the parameters identification of the 
constrained robot singular model is performed in this 
paper using Recursive Least Square algorithm as the 
identification method and Strong equivalent model as the 
equivalency approach. The objective is to show that the 
minimum estimation error and the best tracking of the 
parameters are obtained. The results of applying the 
proposed approach on the constrained robot model are 
found satisfactory in comparison with the previous robot 
identification methods. Moreover, by using the proposed 
approach for this model, the difficulties in singular 
identification are handled to some degrees.  

The rest of the paper is organized as follows: in section 
2 the constrained robot model and its specifications are 
presented. Section 3 describes the Strong equivalency 
approach for singular systems. The Recursive Least Square 
estimation algorithm is briefly explained in section 4, and 
section 5 contains the proposed method simulations and 
numerical results on the constrained robot model. 
Eventually, the work is finished by the conclusion in 
section 6.  

2.CONSTRAINED ROBOT MODEL AND ITS 
SPECIFICATIONS 

Without considering friction and other disturbances, 
the dynamics of an n-link constrained rigid robot 
manipulator can be described as follows: 

 ( ) ̈   (   ̇)   ( )                                              (1)                                                                                                       

In the above equation,      denotes the vector of 
generalized displacements in robot coordinates,      
denotes the vector of generalized constraint forces in 
robot coordinates, and      denotes the vector of 
control inputs in robot coordinates.  ( )       is the 
symmetric positive definite manipulator inertia matrix, 
 (   ̇)     is the vector of centripetal torques and 
 ( )     is the vector of gravitational torques. It is 
assumed that the robot is non-redundant and equipped of 
joint position and velocity sensors and a force sensor at its 
end-effector [25-27].  

From a proper definition of matrix  (   ̇),  ( ), and 
 (   ̇) in equation (1), the following equation is attained. 

  ( ̇     )                                                             (2)                                                                                                

So,  ̇     is a skew-symmetric matrix. 

The dynamic equation (1) can be expressed as linear in 
terms of a suitable selected set of robot and load 
parameters. 

 ( ) ̈   (   ̇)   ( )   (   ̇  ̈)                                (3)                                                                                                

where  (   ̇  ̈)      and      are the vectors 
including the unknown manipulator and load parameters.  

Also, a positive constant   exists in the following 
equation. 

     ( )            
                                                              (4)                                                                                                                            

such that    is the     identity matrix. Matrix    ( ) 
exists and is positive definite and bounded.  

Because of the existence of the impulsive modes in the 
model, the robot system is considered as a singular 
system. One robot arm model can be linearized around the 
operating point, to get the following linear singular state 
space general formulation as its model representation.  

 ( ) ̇( )   ( ) ( )   ( ) ( )   ( )                (5)                                                                                          

 ( )   ( ) ( )   ( ) 

In the above equation,  ( ) is the output vector of length  . 
 ( ) is a vector of system state variables with dimension  , 
and  ( ) is an   dimensional vector of input.   ,  ,  ,   are 
real matrices, considering that   is the singular matrix.   
is also the regression parameter vector of unknown 
parameters of the system matrices.  ( ) and  ( ) are 
process and output noises that are not considered in this 
work.  

The impulsive modes cause dependent state space 
equations. Dependent states generate a big trouble in 
identification process because this will result in initial 
conditions in the algebraic differential equations and it is 
required to estimate the initial conditions throughout the 
identification procedure. Thus, estimating the initial 
conditions randomly may result in high identification 
error or even divergence. 

3.STRONG EQUIVALENCY 

To overcome the problem of initial conditions 
mentioned in the previous section, the number of initial 
conditions can be reduced; in other words, the number of 
dependent state equations can be reduced. For this aim, 
the original model needs to be transformed to an 
equivalent reduced model in the first step before applying 
identification algorithm. So, this section is mainly focused 
on describing the Strong equivalency approach on a 
singular system.  

Most of the singular equivalency methods reduce the 
model to an equivalent model without considering the 
infinite dynamics of the model. Since most of these 
approaches are developed based on the regular theory, 
they are not the most efficient equivalencies to be chosen 
for the singular model [12-22]. Based on these 
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approaches, the singular system is transformed to the 
following equation [23].  

 ̇( )    ( )    ( )                                                                 (6) 

 ( )    ( )   ( ) ( )                                                                                                                                        

with        and  ( ) as the polynomial part of G(s). 

Therefore, the reduction method deletes some 
information of the system which generates huge errors in 
the original system identification process.  

By the new Strong equivalency which is based on the 
Canonical Kronecker form of the (    ), this problem is 
settled. The new equivalency is based on the Restricted 
System Equivalency, introduced by Rosenbrock [20]. The 
Canonical Krocker form of (    ) can be described 
based on the non-singular matrices M and N as follows.  

 (    )  [
      

        ̃
]    ,  

    [
  
  
]   ,     [    ]                                                     (7)                                                  

  is the model regular degree of freedom and  ̃ is the 
nilpotent matrix with the singular index equal to     
 . Therefore, the state vector is divided into two parts; 
regular and singular subsystem state vectors respectively, 
as follows.  

 ( )   [
 ( )

 ̃( )
]                                                                               

(8)                                                                                                                                     

The singular system definition (5) is then converted to 
its Laplace form as follows. 

[
      
  

] [
 ( )
 ( )

]=[
  (  )
 ( )

]                                               

(9)                                                                                                                      

From the Restricted System equivalency of [19], 
equation (9) can be converted to equation (10) as the 
equivalent model.  

[

        

        ̃   ̃

  ̃  

] [

 ̅( )

 ̃( )
 ( )

]  [

 ̅(  )

  ̃ ̃(  )
 ( )

]                

(10)                                                                                     

In the above equation,  ̃ and   are the sub blocks of   , 

and  ̃ and   are the sub blocks of   .  

Thus, in this way the original system is divided into 
two sub systems and all the properties of the original 
system are kept in the equivalent system.  

Later, this approach is modified by the Strong 
equivalency, since there is a need to estimate the two sub 
systems parameters separately and it is inconvenient.  

Based on the Strong equivalency, the Laplace 
description of the model (9) can be converted to the 
following model.  

[
  
  

] [
      
  

] [
  
  

]  [
         
    

]        (11) 

In the above equation,        . 

However, this transformation imposes extra 
constraints (Q and R matrices) over the equivalency 
method. This strong equivalency is more convenient 
because this method provides a more integrated model 
rather than two separate sub models as in equation (10), 
and it is a significant superiority of this equivalency in 
identification applications [29].  

In this paper, the Strong equivalency described in this 
section is used in the first step before applying Recursive 
Least Square identification algorithm on the robot system. 

4.IDENTIFICATION 

The well-known Recursive Least Square (RLS) is 
chosen as the identification algorithm in this work. This 
algorithm is an adaptive filter that recursively updates to 
find the coefficients that minimizes the weighted least 
squares cost function. This algorithm is proved to 
converge fast and this is the main reason for adopting it in 
this research. 

Here, the main stages associated with RLS for 
identification of the strong equivalent model of equation 
(11) are described: 

First: Updating the unknown vector of parameters;  

 ̂( )   (   )   ( )( ( )    ( ) (   ))                                                                                            
(12) 

Second: Reconstructing the Gain matrix  ( ); 

 ( )   ( ) ( )   (   ) ( )(    ( ) ̂(   ))                                                                                          
(13) 

Third: Updating the Covariance matrix;  

 ( )   (   )   (   ) ( )(    ( ) (  

 ) ( ))
  
  ( ) (   ))  (   ( )  ( )) (   ))    

(14) 

The parameters summary used in the above algorithm 
are as follows.  

 ̂( )                                              
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 ( )                    

                     

               

In this algorithm, the initial conditions for covariance 
matrix and estimated parameters vector are defined in the 

first stage. Then, P, K, and  ̂( ) are updated in each 
iteration through the above formulations until the 
algorithm converges. Initial conditions of the states are 
also involved in this algorithm, because the error of 
estimation is required to be calculated in each stage 
considering the output values. In the next section, it is 
shown that the results of RLS on the Strong equivalent 
model are satisfactory.  

5.SIMULATIONS AND RESULTS 

The original formulation (1) of the robot manipulator 
is linearized around its operating points through MATLAB 
code and the following model is attained in the form of a 
singular system. Also, consider that the model is attained 
for one arm of the robot [28].  

[
 ( )  
  

] [
 ̈
 ̇
]  [

   ( )

 
]                                                                                                                             

(15) 

So, with the aid of Strong equivalency, model of 
equation (15) can be converted to its equivalent form by 
the following process.  

By choosing  ,  ̇,  ̈ as the singular system states, the 
singular system model matrices A, B, C, E are stated as 
equation (16).  

 ( )  [
     

      
      

]          [
 
 
 
]        

[   ]      [
   
   
   

]                                              (16) 

 ( )  [

 
 ̇
 ̈
] 

With the aim of attaining the equivalent model of the 
system, the following calculations for analyzing the modes 
of the system are done.  

     [     ]       [
       
         
      

] 

     [
    
 

]      [

      

    
     
   

] 

So from the above ranks, it is resulted that the 
impulsive modes of the system which arise because of the 
dependent states are neither controllable nor observable. 
These cause problem during the identification because of 
the initial conditions arising.  

From equation (11), the following equivalent model is 
resulted for this system (the suffix SE in the equation (17) 
is short for Strong equivalency). 

   ( )  [
   
      
        

]           [
 
 
 
]      

    [     ]        [
   
    
    

] 

Also, note that in the above equation the state variables 
change; the new state variables are    ̇,    ̈, and  ̇   ̈. 
Therefore, the initial conditions of the state become zero 
in this case, and there is no need to estimate the initial 
conditions value while applying the identification 
algorithm.  

Parameters of the Strong equivalent model are then 
identified through the 3-steo identification algorithm of 
section 4. The number of inputs and outputs used for the 
identification process is 600, with P matrix equal to 1000I. 
The initial states values are chosen as zero regarding the 
Strong equivalency property which is independent of 
initial values.  

The following results are attained for eight model 
parameters estimation. Also, the estimation error results 
are shown in the continuation. 

 

Fig -1: First four model parameters; identified values 
and real values using the proposed method 
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Fig -2: Second four model parameters; identified 
values and real values using the proposed method 

From the results of Fig -1, it can be realized that the 
first four identified parameters of the system converged 
soon after less than 3 seconds to the real values. However, 
by zooming the figure it is obvious that the estimated 
values fluctuate around the real value with very small 
fluctuations and eventually converges exactly to the real 
point after less than 30 seconds. The same thing happened 
also for the second four model parameters in Fig -2. This is 
considered as a significant improvement in robot model 
identification compared to the previous works. Moreover, 
using Strong equivalency in identification process through 
the proposed method, the estimation convergence is 
guaranteed, which is not done in previous studies. Also, 
computation time of the simulations is significantly less 
than identification process using previous singular 
equivalencies.  

 

Fig -3: Estimation error using the proposed method 

 

Fig -4: Model real and identified outputs using the 
proposed method 

According to Fig -3, the estimation error of the system 
output is not even large at the beginning of the 
identification. This estimation error converges to exactly 
zero after around 37 seconds. Also, in Fig -4 the estimated 
system output tracks the real system output with high 
accuracy level. The estimated output even merges with the 
real output after some seconds, at time 35.  

Overall, from the results, it can be realized that the 
estimation error for the robot model is significantly small 
and the identification results are satisfactory. In fact, the 
estimated parameters of the system are attained with a 
high accuracy close to the original parameters very fast.  

6.CONCLUSION 

In this paper, the problem of identification of a 
constrained rigid robot arm is studied. The constrained 
robot is a singular system and therefore the singular 
equivalency method is applied in the first stage of the 
identification algorithm. The proposed method in this 
work is the Strong equivalency combined with the 
Recursive Least Square algorithm. The simulations on the 
robot model are performed in MATLAB and the resulted 
figures proved the efficiency of the proposed approach. 
The benefit of this approach compared to the previous 
identifications on this robot model is that the Strong 
equivalency in this work keeps all the system dynamics 
without any loss of information in the system. Meanwhile, 
the number of non-zero initial conditions is reduced in the 
equivalent model, which is the main objective of all the 
equivalency approaches. Therefore, the estimation 
accuracy is high with low estimation error. Besides, the 
identified parameters of the model and its estimated 
output converged exactly to real values after short 
computation time.  
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