
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

        Volume: 05 Issue: 07 | July 2018                    www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |        Page 2147 

 

 

A novel Channel Estimation for Massive MIMO Systems using 

Sparse compressive sensing 

Sivangi Ravikanth1, T.chalam2, K.Rajagopal3 

1,2,3 Asst. Prof., CVR College of Engineering, ECE Dept, Hyderabad, India 
-----------------------------------------------------------------------***------------------------------------------------------------------------  
Abstract: Aiming at a massive multi-input multi-output 
(MIMO) system with unknown channel path number, a 
sparse adaptive compressed sensing channel estimation 
algorithm is proposed, which is the block sparsity adaptive 
matching pursuit (BSAMP) algorithm. Based on the joint 
sparsity of sub channels in massive MIMO systems, the 
initial set of support elements can be quickly and 
selectively selected by setting the threshold and finding 
the maximum backward difference position. At the same 
time, the energy dispersal caused by the non orthogonality 
of the observation matrix is considered, and the estimation 
performance of the algorithm is improved. The 
regularization of the elements secondary screening is 
deployed, in order to improve the stability of the 
algorithm. Simulation results show that the proposed 
algorithm can quickly and accurately recover massive 
MIMO channel state information with unknown channel 
sparsity and high computational efficiency compared with 
other algorithms. 

Keywords: 5G; massive MIMO; compressive sensing; 
sparsity adaptive; channel estimation 

 Introduction  

Massive MIMO (multiple-input multiple-output) 
technology is one of the key technologies of next-
generation mobile cellular networks, which can form a 
massive antenna array by providing a large number of 
antennas at the cell base station. It will greatly improve the 
channel capacity and spectrum utilization and has become 
a hotspot in the field of wireless communications in recent 
years [1]. In a massive MIMO system, precise channel state 
information (CSI) is critical, which is directly related to the 
system signal detection, beam forming, resource allocation 
and so on. The number of base station antennas in massive 
MIMO systems has reached hundreds of thousands, which 
greatly deepens the complexity of system data processing. 
Therefore, in order to make full use of the potential 
advantages of massive MIMO technology, the more 
efficient and low complexity channel estimation 
algorithms are worthy of further study. Massive MIMO has 

various merits over the conventional MIMO. First, it uses a 
large number of antennas at the BS due to which the 
simplest coherent-combiner and linear-precoder can be 
used for signal processing such MF or ZF. Second, 
increasing the number of antennas increases the system 
capacity substantially using the channel-reciprocity 
features and without increasing feedback-overhead. Third, 
the reduced power benefits in the uplink/downlink 
(UL/DL) provide the feasibility to shrink the cell-size, 
which can be used in micro and Pico-cells. 

In massive MIMO systems, accurate Channel State 
Information (CSI) is required to utilize the full potential of 
MIMO systems. However, such accurate CSI is not available 
in real communication environment [4]. With the 
increasing number of antennas, the receiver has to 
estimate more channel coefficients, which effectively 
increases the pilot overhead, computational complexity 
and reduces the overall throughput of the system. This is a 
challenging issue which has been addressed in  

[3–6].  Massive MIMO channel has sparse characteristics 
which can be utilized for computationally-efficient channel 
estimation. Classical channel estimation methods include 
least-square (LS) algorithm, minimum mean-squared error 
(MMSE) algorithm and linear minimum mean square error 
(LMMSE) and so on. The actual radio channel has certain 
multi-sparseness .In recent years, a large number of 
researchers applied compressive sensing to the pilot-aided 
channel estimation.Research shows that compressed 
channel estimation achieves better performance based on 
the same number of pilots in sparse channels. 

2. Sparse Multipath Channel Model 

In a base station (BS) equipped with M transmitting 
antenna MIMO systems, the transmitting end sends 
orthogonal frequency-division multiplexing (OFDM) 
signals, and the length of each OFDM signal transmitted by 
each antenna is N, where 

 P(0 < P < N) carriers are selected as the pilot for channel 
estimation, and the channel length L. The pilot pattern of 
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the ith transmit antenna is p(i), I = 1, 2, ..., M, where, 
p(i)∩p(j) = Φ, If i ≠ j. After the channel is transmitted, the 
receiving end receives the pilot signal corresponding to 
each antenna as y(p(i)), i = 1, 2, ..., M. Abbreviate y(p(i)) as 
y(i), the basic channel model can be expressed as: 

     y(i) = D(i)F(i)h(i) + m(i), i = 1, 2, L, M        (1) 

among them, D(i) = diag{p(i)} is a diagonal array of 
selected pilot patterns, m(i) is a Gaussian White 

Noise with mean 0 and variance σ2, F(i) is a P × L sub-
matrix of a Fourier, corresponding to the 

dimensions N × N discrete Fourier transform (DFT) matrix 
pilot line elements and the first L 

columns, h(i) = [h(i)(1), h(i)(2),..., h(i)(L)]T is the channel 
impulse response (CIR) corresponding to the ith antenna. 
Make A(i) = D(i)F(i), Then, Equation (1) can be further 
expressed as: 

             y(i) = A(i)h(i) + m(i), i = 1, 2, L, M     (2) 

3. Sparse Adaptive Matching Pursuit Algorithm 

3.1. Sparseness Estimation 

Using compressed sensing to solve channel estimation can 
be equivalent to solving the following l0 norm minimum 
problem. 

𝒉   = arg min‖𝒉‖0, subject to ‖𝒚 − 𝑨𝒉‖2 ≤ ε         (3) 

among them ║h║0 is the vector l0 norm of the vector h for 
the number of non-zero elements. 

only the channel impulse response (h) can be restored. 
Among them, spark (A) is the least 

Linearly related column number in matrix .Because of the 
sparseness of the impulse response of the wireless 
communication channel, most of the energy is 
concentrated on a few taps while a small part of the energy 
distribution is below the noise threshold. The number of 
non-zero taps is much smaller than the channel length L. 
Making full use of the sparse characteristics of the channel, 
we can use fewer pilot symbols to get the ideal channel 
estimation effect, so as to improve the spectrum 
utilization. An appropriate amount of pilot overhead 
satisfies Equation (5), so 

𝐾 = {  𝑃/2 ,       𝑃 is even 

          (𝑃 + 1)/2 , 𝑃 is odd                                 (5) 

Based on the above analysis, the number of non-zero taps 
in the channel vector does not exceed K, and at least 𝐿 − 𝐾 
elements can be regarded as noise. Therefore, we first 
estimate the sparseness and then select the elements 
within this range. At higher signal-to-noise ratios, since the 
gain coefficients of the channel taps are higher than the 
noise amplitudes, the restored vector elements are 
arranged in descending order. The difference between 
adjacent elements is then used to determine the number of 
elements selected for this iteration and to further estimate 
the sparsity. The elements that precede the largest 
backward difference are selected for the support set 
because they may carry channel information. 

When the observation matrix satisfies certain conditions, 
the sparse signal restoration problem can be equivalent to 
the following convex optimization problem. Define the 
observation matrix A,the RIP parameter δk is the minimum 
value δ that satisfies Equation  

               (1 − δ)‖𝒉‖𝟐 ≤ ‖𝑨𝒉‖𝟐 ≤ (1 + δ) ‖𝒉‖𝟐        (6) 

When matrix RIP parameters δk < √𝟐−1, the 
reconstruction problem can be transformed into the 
following l1 norm minimum problem. 

𝒉   = arg min ║𝒉║𝟏 , subject to ‖𝒚 − 𝑨𝒉‖𝟐 ≤ ε      (7) 

3.2. Sparse Multipath Channel Estimation 

Aiming at the joint sparseness presented by the massive 
MIMO channel, the transformed 

channel vector is defined as w = [w1T, w2T,..., wLT]T, where 
wi = [h(1)(i), h(2)(i),..., h(M)(i)]T, i = 1, 2, ..., L, the i sub-
block for w. At this point, the non-zero elements in the 
converted channel vector will be concentrated. 
Correspondingly, the received pilot signal is warped z = 
[z1T, z2T... zpT]T. Among them, zi = [y(1)(i), y(2)(i), ..., 
y(M)(i) ]T, i = 1, 2, ..., P. Do the same for noise, n = [n1T, n2T, 
..., nPT]T, where ni = [m(1)(i), m(2)(i), ..., m(M)(i)]T,  

i = 1, 2... P. Considering all transmit antennas, the received 
signal can be expressed as: 

                      z = Bw + n                                       (8) 

among them, B = [B1, B2, ..., BL]; Bi = [a(1)(i), a(2)(i), ..., 
a(M)(i)], i = 1, 2, ..., L is the ith sub-block of matrix B, a(M)(i) is 
the ith column of the matrix A(M). In the case of unknown 
channel sparsity, the compressed sensing is used to 
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estimate w in Equation (8), so multiply both sides of 
equation (8) simultaneously by BH, where BH is the 
conjugate transpose of the matrix B. 

BHz = BH(Bw + n) = (I + BHB − I)w + BHn 

                              =w + (BHB − I)w + BHn          (9) 

among them, I denote ML × ML unit matrix. Due to the 
matrix B, there is no strict orthogonality; therefore, BHB − 
I denote a nonzero matrix with a small elemental value. 
Consider the dispersion of energy caused by the non-
orthogonality of the observed matrix n’ = (BHB − I)w + 
BHn, Then, 

Equation (9) can be expressed as: 

                     BHz = w + n’                                   (10) 

During iteration, define an ML × 1 vector R. 

                     R = |BHr|                                        (11) 

among them, r denotes iterative residuals, its initial value 
is z, |.| represents the absolute value of the elements in 
BHr. Now, define the element in vector T as the sum of the 
squares of each set of M elements in the vector R 

                    𝑻(𝑗) = Σ𝑗×𝑀 |𝑅(𝑖)|2 

                      (𝑗−1)×𝑀+1 , 

     i = 1, 2,….. ML; j = 1, 2,….., L 

According to the analysis in Section 3.1 the upper limit of 
channel sparsity is K. After the first iteration, the last L-K 
elements in Ts are only generated by n’ inSo the energy of 
the next L-K elements is set as the threshold f. The non-
zero tap energy in the channel is greater than the 
threshold f. So in Ts, only elements above this threshold 
are likely to be included in the support set. 

At higher signal-to-noise ratios, since the gain coefficient of 
the channel tap is higher than the noise amplitude, at each 
iteration of the algorithm, Ts of the element amplitude 
produces a larger 

rate of change; then the element before this position has to 
carry channel information. Therefore, calculating the 
maximum backward difference between adjacent elements 
determines the number of elements selected in this 
iteration, and the elements before this position are 
selected for the support set because they may carry 
channel information. In order to further improve the 

accuracy of the selected elements, the regularization 
process based on convex optimization is adopted to ensure 
that the selected element energy is larger than the energy 
of the unselected elements, and the noise is filtered out to 
support the set. 

4. Simulation Results 

The MATLAB simulator is used for the analysis. 

Table 1 mentioned the main simulation setup parameters 
for the proposed system. In the simulation, the system has 
500 transmit antennas, using 64QAM modulation and low-
density parity-check (LDPC) coding (coding efficiency 
5/8). Each transmit antenna sends an OFDM signal with a 
signal length N of 256, with a cyclic prefix length of 64. The 
OFDM signals transmitted by each transmitting antenna 
have 16 pilot symbols, and all the algorithms use the same 
pilot distribution method. The pilot positions are randomly 
distributed and the pilots of different antennas are 
orthogonal to each other. The channel length L is 60, and 
the number of channel multipath is a random integer. The 
multipath amplitude follows the Rayleigh distribution, and 
the multipath positions follow a random distribution. 

 

Figure 1. Comparison of mean square error of each 
algorithm under different signal to noise ratios (SNRs). 
MSE: mean square error; LS: least-square; SP: subspace 
pursuit; OMP: orthogonal matching pursuit; SAMP: 
sparsity adaptive matching pursuit; ASSP: adaptive and 
structured subspace pursuit; BSAMP: block sparsity 
adaptive matching pursuit 
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Figure 2. Throughput comparison of each algorithm with 
increasing SNR. 

5. CONCLUSION 

This paper proposes a BSAMP algorithm with adaptive 
sparsity-based on the joint sparsity of sub-channels in 
massive MIMO systems. The algorithm chooses the 
support elements as the first choice by setting the 
threshold and finding the maximum backward difference 
position. The element is secondarily selected by 
regularization to improve the accuracy of the selected 
elements. The MSE, BER and throughput analysis is 
performed against the SNR and number of pilots. The 
proposed BSAMP algorithm is compared with LS, OMP, SP, 
SAMP, ASSP algorithms, and the corresponding system 
parameters are analyzed for performance evaluations. The 
algorithm complexity analysis was also performed, which 
clearly estimated that the proposed BSAMP algorithm has 
a 0.01284 s average runtime, which is much smaller than 
the other algorithms such as the average runtime of SAMP 
algorithm, which is 93.3930 s and the ASSP algorithm 
which has an average runtime of 15.3610 s. With such a 
computationally-efficient behavior, the proposed BSAMP 
algorithm provides efficient sparse channel estimation 
capability for 5G massive MIMO systems which also 
enables us to deploy it in practical usage scenarios. 
Theoretical analysis and simulation results show that the 
BSAMP algorithm has good channel estimation 
performance, high throughput and low computational 
complexity as compared to other algorithms. This research 
work can further be extended by incorporating the 
proposed BSAMP algorithm in TDD, FDD Massive MIMO 
for Energy Efficiency Analysis versus different 
performance metrics such as the distance between the BS 
and mobile users, antenna element spacing and hardware 
impairments. 
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