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Abstract - A novel scheme is presented for real-time 
prediction of rotor angle stability status. The scheme is 
activated following a large disturbance and operates by 
obtaining a set of two rotor angles for each generator. Each 
set of two rotor angles sampled is decomposed using the fast 
Walsh-Hadamard transform resulting in two Walsh 
coefficients. The absolute value of each coefficient is obtained 
and the maximum of the two is selected.  The selected absolute 
maximum values, one for each generator, are then summed 
and fed into a trained support vector machine which predicts 
the stability status. The scheme was tested using the IEEE 39-
bus system.  It successfully predicted the stability status of all 
two-hundred and four test cases.   

Key Words:  Power system transient stability, Rotor 
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1. INTRODUCTION  

Although modern power systems have been designed to 
withstand various power system disturbances, there are 
instances that severe disturbances may lead to system 
instability. A severe disturbance may be a sudden loss or 
application of a large load, loss of generation, or a major fault 
on a system [1], [2]. During normal operations of a 
generator, the output electric power from the generator 
produces an electric torque that balances the mechanical 
torque applied to the generator rotor shaft. The generator 
rotor, therefore, runs at a constant speed. When a fault 
reduces the amount of power transmitted, the electric 
torque that counters the mechanical torque is also reduced. 
If the mechanical power is not reduced during the period of 
the fault, the generator rotor will accelerate with a net 
surplus of torque input. The situation can lead into an 
unstable condition, where one or more generators rotate at 
speeds different from the other generators of the system. 
Such an unstable condition is referred to as loss of 
synchronism or an out-of-step (OS) condition [1], [2]. OS 
conditions may result in torsional resonance and pulsating 
torques that are severely harmful to generator-turbine shaft. 
When OS conditions occur, it is imperative that all 
asynchronous generators are isolated to avoid widespread 
outages, flashovers, and equipment damage [3]. 

Emergency control strategies such as out-of-step 
blocking and tripping, fast-valve control of turbines, dynamic 
braking, use of superconducting magnetic energy storage 
system, system switching, modulation of high voltage direct 
current (HVDC) link power flow, and load shedding are 
employed to mitigate the effect of cascading system failures 
[4].   The effectiveness of the aforementioned control actions 
is improved with early detection or prediction of transient 
instability [5]. In view of that, researchers have come up 
with various techniques for transient instability detection 
and prediction. 

Several of the transient instability detection and 
prediction schemes, which exist in the literature, use various 
power system input data that can be captured via phasor 
measurement units (PMUs) and global positioning system 
(GPS). They also employ various signal processing and 
decision-making tools [4]-[14]. For example, rotor angle and 
multilayer perceptron neural network have been used in [4], 
post-fault voltage and support vector machine have been 
combined in [13], [14]. Albeit significant successes have 
been chalked in transient instability detection and 
prediction, there is still room for improvement in the areas 
of simplicity, reliability, speed of operation and practical 
realization. For example, the work presented in [10] requires 
10 -12 input data samples per generator which makes the 
volume of data required for large systems huge and 
consequently delays the response time of the scheme. The 
work in [11] also requires a relatively long period of up to 
2.5 seconds after fault clearance to decide as to whether the 
system will be stable or not. The schemes proposed in [13], 
[14] use predetermined templates which make their 
performance prone to changes in system conditions. The 
technique presented in [6] also uses a predetermined 
stability boundary for each generator. To apply this scheme 
to a real system with many generators, extensive dynamic 
simulations to establish the stability boundaries are 
required.   

A comprehensive review of some existing schemes 
carried out in [15] suggested bus voltage trajectories and 
generator rotor angle trajectories as the most appropriate 
inputs for transient instability detection.  Rotor angle is a key 
parameter in the fundamental equation governing rotor 
dynamics. However, the use of rotor angle as input 
parameter was not encouraged in the past owing to practical 
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difficulties associated with its measurement and utilization 
[5], [13]. However, in recent work, researchers comprising 
engineers from Schweitzer Engineering Laboratories, Inc. 
and San Diego Gas & Electric successfully installed and 
commissioned a rotor angle measurement system on the 
generators of a 740 MVA combined cycle plant [16]. This 
breakthrough in capturing rotor angle data has offered a 
tremendous boost to the use of rotor angles as input 
parameter for power system studies.  

In this paper, a novel scheme for predicting transient 
stability status is presented. The proposed scheme has one 
or more of the following advantages over several existing 
rotor angle stability prediction schemes [4], [6], [13], [14]:  

(i). It uses data captured in a very short time window. 

(ii). It requires minimal training data. 

(iii).It does not require predetermined templates. 

(iv). Its implementation does not require complex 
computations. 

The scheme uses generator rotor angles captured at the 
rate of 60 samples per second as input parameter. This 
sampling rate is the same as that used in [16]. It is also a 
typical reporting rate of phasor measurement units [17].  

For each generator, a set of two rotor angles, all captured 
within the first 36ms (i.e. 2ms trigger delay time + sampling 
time of first two samples at 60 samples per second) 
following a fault clearance, are required. The fast Walsh-
Hadamard transform (FWHT), a signal processing tool, is 
applied to decompose each set of rotor angles. This results in 
a set of two Walsh coefficients for each generator. The 
absolute value of each coefficient is obtained and the 
maximum of the two extracted. These extracted maximum 
absolute Walsh coefficient values, one for each generator, are 
then summed and fed into a trained support vector machine 
which predicts the stability status of the system. The SVM 
produces an output of +1 if a disturbance will lead to 
transient stability and an output of -1 if transient instability 
will arise. 

Some researchers perceive machine learning techniques 
including SVM as black-box type decision making tools [6]. 
This perception is erroneous. SVMs like other machine 
learning techniques are based on sound mathematical 
principles. Their outputs can be mathematically determined 
from given inputs. This has been demonstrated in this paper. 

The rest of the paper is organized as follows: Section 2 
discusses the use of rotor angle as input parameter; Section 
3 explains the fast Walsh-Hadamard transform. In Section 4, 
the use of support vector machine as decision making tool is 
explained. Section 5 presents the proposed scheme while 
Section 6 presents the test system used and simulations 

done. Test results of the proposed scheme are presented in 
Section 7. Conclusions drawn are highlighted in Section 8. 

2. ROTOR ANGLE AS INPUT PARAMETER  

The transient stability of a power system following a severe 
disturbance depends on the deviations in angular positions 
of the rotors of the synchronous machines. The time 
responses of rotor angles to a severe disturbance obtained 
over a period, typically 3 to 5 seconds, following the 
disturbance enable us to infer the transient stability status. 
Hence, the rotor angle becomes a natural input parameter 
for transient instability detection and prediction [18].  

One drawback that hinders the use of rotor angles as an 
input parameter is that in a multi-machine system, the rotor 
angles need to be expressed relative to a common reference. 
This reference cannot be based on a single generator, since 
any instability in the reference generator makes the relative 
angles meaningless. To overcome this difficulty, the concept 

of system centre of inertia (COI) angle, coδ  is used to obtain 

a reference angle [13]. Many researchers would not 
encourage the use of rotor angles in algorithms in the past 
because the COI values, in practice, need to be continuously 
updated using real time measurements [13]. These updates 
require extra pre-processing, which gives rise to significant 
errors.  

In the rotor angle measurement system installed and 
commissioned by engineers of Schweitzer Engineering 
Laboratories, Inc. and San Diego Gas & Electric on the 
generators of a 740 MVA combined cycle plant, no reference 
angle value is required [16]. This project, accomplished by 
these engineers, has been the chief motivation behind the 
use of rotor angles as input parameter in this work. 

3. FAST WALSH-HADAMARD TRANSFORM 

The Walsh-Hadamard transform (WHT) is used in a wide 
variety of scientific and engineering applications [19]. It is 
employed in image processing, speech processing, filtering, 
and power spectrum analysis. It is very useful for reducing 
bandwidth storage requirements and spread-spectrum 
analysis [20].  However, WHT has limited application in 
power system studies and has hardly been used for power 
system transient stability studies.  

WHT is a real orthogonal transform. Its 
implementation starts from the Hadamard matrix, H which is 
real and symmetric. H is defined recursively as [21]: 

   
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H                                (1) 

where k is a scaling factor which may be chosen to be √2 so 
that H1 becomes orthogonal. 
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where  indicates the Kronecker product.  The dimension of 

matrix nH  is 
nn 22  .  The integer n is obtained from the 

length, N of the signal vector being processed as follows: 

Nlogn 2                                (3) 

For example, for a signal vector of length 4=N , 2=n  and if 

k is omitted or k = 1, the Hadamard matrix will be given as 
[21]: 
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If the length, N of the signal vector is less than a power of 2, 
its length is padded with zeros to the next greater power of 
two before processing [20].  The Hadamard matrix H can be 
used to define an orthogonal transform, called Hadamard 
ordered Walsh-Hadamard transform (WHT). The WHT of 
signal vector x is given as [21]: 

Hxw                                (5) 

where is the N-point signal vector to 
be transformed and is its WHT 
spectrum vector. The elements of the spectrum vector w are 
commonly referred to as Walsh coefficients. 

It is important to note that WHT can be carried out by 
additions and subtractions alone. For an array of size N, 
where N is an integer power of two, the total number of 

arithmetic operations to compute WHT is 2N  [21]. To 

reduce the number of computations and hence improve the 
speed of computing Walsh coefficients, a fast algorithm 
known as Fast Walsh-Hadamard transform (FWHT) is 
employed [21]. The FWHT reduces the number of 

computations from 2N  to NlogN 2 . The FWHT is a divide 

and conquer algorithm that recursively breaks down a WHT 

of size N into two smaller WHTs of size 2N .  It is based on 

matrix factoring or matrix partitioning technique [22].  

 

 

 

4. SUPPORT VECTOR MACHINE 

Support vector machine (SVM) is an extremely powerful 
machine learning algorithm that focuses on classifying data 
[20], [23]. SVMs are inherently two-class classifiers. The 
main idea of a support vector machine is to construct a 
hyperplane as the decision surface in such a way that the 
margin of separation between two data categories is 
maximized. SVMs can be used when the data to be classified 
has two classes. They separate the data into two categories, 
namely positive (+1) and negative (-1).  Figure 1 illustrates 
these definitions, with + indicating data points of type 1, and 
– indicating data points of type –1 [24].   

 

Fig -1: Data points of SVM 

SVMs can provide good generalization performance on 
pattern classification problems even though they do not 
incorporate problem-domain knowledge. This attribute is 
unique to SVMs [23].  

In addition to using separating hyperplanes, SVMs use 
support vectors to aid in data classification. Support vectors 
are points that are closest to the separating hyperplane; 
these points are on the boundary of the slab separating the 
two classes of data [20]. The building of a support vector 
machine hinges on the following two mathematical 
operations: (a) nonlinear mapping of an input vector into a 
high-dimensional feature space that is hidden from both the 
input and the output, and (b) construction of an optimal 
hyperplane for separating the features discovered in (a) 
[23]. 

 Figure 2 shows the general architecture of a SVM [23]. 
The input layer consists of the input signal vector. In the 
hidden layer, an inner-product kernel is computed between 
the input signal vector (x) and support vector (si). The linear 
outputs of the hidden layer neurons are summed in the 
output neuron. The output neuron has a bias.  

The interim output, O  of a support vector machine can be 

computed as [24]: 

                     (6) 

where x is the input vector, si is the support vector, b is the 
bias, and wi is the weight vector. The function k(x, si) is a 
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kernel of x and si. The weight and bias values are obtained in 
the training phase. A linear kernel, meaning dot product, was 
used in this work because the data appeared to be linearly 
separable after preprocessing. Other possible kernel 
functions are quadratic, polynomial, Gaussian or radial basis 
function, and multilayer perceptron [24].    

SVMs are trained with input-output pairs to give targets 
of either +1 or -1. An output of 1+ is given when 0O  while -

1 is recorded when 0O  . In this work, the SVM was trained 

to produce a target of +1 for a condition that will lead to 
transient stability and -1 for a condition that will lead to 
transient instability. The training was done using the 
sequential minimal optimisation method [20]. The training 
data used is given in section 7. 
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Input vector
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Linear outputs
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Bias, b

Fig -2: General architecture of support vector machine 

5. PROPOSED TRANSIENT STABILITY STATUS 
PREDICTION SCHEME 

Figure 3 shows a flowchart of the proposed technique. The 
scheme is activated upon the tripping of a line or bus 
following a disturbance. For each generator, a set of two 
rotor angles are captured at a sampling rate of 60 samples 
per second. The two rotor angles were enough to give 
accurate prediction results. The fast Walsh-Hadamard 
transform (FWHT) is employed to decompose this set of two 
rotor angles for every generator. Each set of two rotor angles 
when decomposed yields a Walsh coefficients vector that has 
two elements w1 and w2 called the Walsh Coefficients. The 
absolute value of each Walsh coefficient is obtained and the 
maximum of the two is then extracted. All the extracted 
maximum absolute Walsh coefficient values, one for each 
generator, are summed and used as input to a trained 
support vector machine which predicts the stability status of 
the system. The scheme ends its operation after a final 
decision has been made and resets for the next operation. 

The procedure of operation is outlined as follows: 

(i). For every generator i, form the rotor angle vector, 

i :  

 T,i,ii , 21 δ
  

N,...,,i 21
 

         (7) 

where N is the number of generators of the system 
and 1,i  

and 2,i are the two rotor angles of 

generator i sampled. 

(ii). Obtain the Walsh coefficients vector iw for every 

generator rotor angle vector as follows: 

ii Hδw =  
N,...,,i 21                (8) 

(iii). For each vector iw having elements wi,1 and wi,2 

obtain absolute values of the elements and extract 
the maximum of the two: 

          21ofmax. ,i,imax,ai w,ww    N,...,,i 21          (9) 

(iv). Obtain the input to the support vector machine, x by 
summing the maximum absolute Walsh coefficient 
of all generators as follows: 




N

i
max,aiwx

1

           (10) 

(v). Feed input signal x  into trained SVM and determine 

the stability status, t from SVM output, O as follows: 

                               stableissystemtO  10       (11) 

                            unstableissystem1t0O     (12) 

Start

For each generator, form the rotor angle 
vector

Obtain the Walsh coefficients vector of 
each generator rotor angle vector 

Add obtained maximum elements

Feed obtained sum into SVM

Is output of SVM       ?

Stable case

Yes

Unstable case

No

End End

0

For each Walsh coefficient vector, obtain 
the absolute values of the elements and 

extract the maximum of the two

 

Fig - 3: Flowchart of proposed scheme 
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6. TEST SYSTEM AND SIMULATIONS 

The IEEE 39-bus test system was used to test the proposed 
scheme. This test system, also known as the New England 
test system, is a very popular test system for transient 
stability studies. Several researchers have used it for their 
work [4], [6], [13], [25] for these main reasons: it is a model 
of a practical system; and it can be modeled and simulated 
using several non-commercial versions of simulation tools. 
The system consists of 10 generators, one of which is a 
generator representing a large system. Data for its model 
were obtained from [26]. The system is shown in Figure 4.  

Transient stability analysis of the test system was 
performed using the PSS®E software. A detailed dynamic 
model which includes prime mover and excitation system 
dynamics was used. Several fault simulations were obtained 
by varying the following: 

(i)   Fault location, 

(ii)  Fault duration, 

(iii) System loading,  

(iv) Network topology, and 

(v)  Generator availability. 

As regards fault location, bus and line faults at different 
locations were simulated. Fault durations were also varied 
by starting with short durations which resulted in transient 
stability and extending them gradually until instability 
occurred. The loading conditions simulated were base load, 
80% of base load, 90% of base load, 110% of base load and 
120% of base load. The effect of shutting down a generator 
due to low loading conditions or for purposes of 
maintenance was also considered. For example, for a loading 
level of 80% base load, generator 10 (G10) was removed 
from circuit before disturbances were applied. Additionally, 
the effect of changes in network topology was investigated 
by considering N-1 contingency.  For example, for some of 
the simulations, the line between bus 18 and bus 17 was 
removed before the application of faults.  

A total of 208 fault simulations were done to obtain 104 
cases of transient stability and 104 cases of transient 
instability. Rotor angle data from two cases of transient 
stability, and two cases of transient instability, representing 
1.92% of data generated, were used to train the SVM.  The 
remaining 98.08% of the data generated (102 cases of 
instability and another 102 cases of stability) were then used 
to test the proposed scheme. The training data of 1.92% is 
very low when compared with the training data of 75% used 
for some stability status prediction schemes existing in 
literature [13], [14]. The large volume of test data, generated 
under varying system conditions, was necessary to ascertain 
the robustness of the proposed scheme.  

The following criterion was used to determine the 
stability status of the system following a simulated 
disturbance: A system was seen as being transiently unstable 
if the rotor angle difference between any two generators 
exceeded 180 degrees within a typical study period of 3 
seconds following fault clearance, otherwise, the system was 
seen to be stable [18].  

The rotor angle data used for training and testing the 
SVM were sampled allowing for a trigger delay time of 2 ms 
after fault clearance. The sampling and analysis of data were 
done using the MATLAB software. 

 

Fig - 4:  IEEE 39-bus Test System 

7. RESULTS AND ANALYSIS 

7.1 Structure of support vector machine 

Table 1 shows the data used to train the SVM. The structure 
of of the SVM after training is presented in Table 2. 

Table -1: Training data for S VM 

Input(x) 114.7374 145.2864 275.8693 281.6902 

Target(t) 1 1 -1 -1 
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Table -2: SVM structure after training 

 

For the above SVM which has a scalar input data, two 
support vectors, and has its input data shifted and scaled, the 
interim output, O given by (6) becomes 

       bxwswsk)x(O  shift2211        
(13) 

The constants in the equation are as defined in the above 
table.  Substituting in values results in the following 
classifying equation for the test system: 

( ) ( ) 094703985204015290= .-.-x.-xO              (14) 

The stability status of all the 102 cases of instability and the 
102 cases of stability when tested on the trained SVM were 
all correctly predicted. Thus, the overall prediction accuracy 
of the scheme proved to be 100%.  

To further illustrate the performance the scheme, four 
representative cases are presented. The cases are: (i) a 
stable case (Case 1) and an unstable case (Case 2) for a pre-
fault condition with all generators in service at base loading, 
and (ii) a stable case (Case 3) and an unstable case (Case 4) 
for a pre-fault condition with only nine generators in service 
at 80% base loading. 

7.2Performance of scheme with all generators in service 
at base load 

(a) Rotor angle trajectories for Cases 1 and 2 

Figure 5 shows time responses of rotor angles for the case of 
transient stability (Case 1). The fault was applied on the line 
between buses 6 and 7 of the test system at base loading. 
The fault was applied at s.t 10 and the line tripped 

at s.t 20 . Figure 6 shows time responses of rotor angles for 

the unstable case (Case 2). The system and fault conditions 
were the same as those for Case 1 except that the fault 
duration was extended by 0.3 seconds to make the system 
transiently unstable.  

 

Fig -5: Rotor angle trajectories for a stable condition(Case 
1) 

 

Fig -6: Rotor angle trajectories for an unstable condition  
(Case 2) 

(b) Walsh coefficients for Cases 1 and 2 

For each rotor angle input vector iδ  of machine i, the vector 

length N equals 2. From (3), 1=n . Thus, the appropriate 

Hadamard matrix is H1, which is given by (1). In this work, a 
scaling factor of 2 was used, in accordance with Walsh-
Hadamard transformation in Matlab. In Matlab, the fast 
Walsh-Hadamard transform (FWHT) includes a scaling 
factor that is equal to the length of the input vector [24]. 
Using (8) with a scaling factor of 2, the Walsh coefficients 

1,iw and 2,iw  are given as:  

  



















2,

1,
2,1,

11

11

2

1

i

i
ii ww





           (15) 

From (15), 1,iw and 2,iw  are given as: 

( )211 +
2

1
= ,i,i,i δδw             (16) 

( )212 2

1
= ,i,i,i δ-δw            (17) 

s α  or w b Shift 

Scale 
factor 
(k) 

s1 = -
0.6808 

w1 = 
0.88418 

-
0.0947 

-
204.395
8 

0.0115 

s2 = 
0.8232 

w2 = -
0.88418 
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The scaling factor does not have any effect on the 
performance of the proposed scheme since the sum of the 
maximum absolute Walsh coefficients is scaled by the SVM. 

Table 3 shows Walsh coefficients w1 and w2 obtained for 
each of the 10 generators using the rotor angle data sampled 
from Case 1 (Stable case) and Case 2 (Unstable case). The 
coefficients were obtained using (16) and (17). Table 4 
shows the maximum of their absolute values for each 
generator, for both the stable and unstable cases.  

Table -3: Walsh coefficients for Cases1 and 2 

 

Gen. 

Stable Case Unstable Case 

w1 w2 w1 w2 

1 -22.4732 0.4814 -40.6929 0.9920 

2 5.5511 -1.0540 101.4233 -3.6118 

3 16.0449 -1.3508 119.8042 -3.5702 

4 3.2671 0.2039 -14.6161 0.6786 

5 -1.239 0.2985 -20.1306 0.6022 

6 10.8573 0.0501 -5.7712 0.7862 

7 0.5745 0.2569 -15.6203 0.6019 

8 -1.0525 0.2984 -24.7674 0.9058 

9 5.2993 0.3786 -21.4627 0.8696 

10 -16.1433 0.1300 -59.4304 1.2003 

 
Table -4: Maximum of the absolute values of Walsh 

coefficients for Cases 1 and 2 

 

Gen. 

Maximum Walsh coefficients, max,iw  

Stable case Unstable case 

1 22.4732 40.6929 

2 5.5511 101.4233 

3 16.0449 119.8042 

4 3.2671 14.6161 

5 1.2390 20.1306 

6 10.8573 5.7712 

7 0.5745 15.6203 

8 1.0525 24.7674 

9 5.2993 21.4627 

10 16.1433 59.4304 

 

From Table 4, the sums of the maximums of the absolute 
values of Walsh coefficients using (10) are: 

500282= .xstable ;   7191423= .xunstable  

(c) SVM responses for Cases 1 and 2 

From the classifying equation (14), the outputs of the SVM 
are obtained as follows: 

Case 1 (Stable case) 

( ) 07691.15002.82xO >==  

Hence the stability status 1+=t , which implies system is 

stable. 

Case 2 (Unstable case) 

( ) 04482.3-7191.423xO <==  

Therefore, the stability status 1-t = , which implies system is 

unstable. 

7.2Performance of scheme with nine generators in 
service at 80% base load condition 

(a) Rotor angle trajectories for Cases 3 and 4 

Here, generator 10 (G10) was taken out of service at 80% 
base loading.  Figure 7 shows time responses of rotor angles 
for the case of transient stability (Case 3). The fault was 
applied on the line between buses 26 and 27 of the test 
system. The fault was applied at s.t 10= and the line tripped 

at s.t 20= .  

Figure 8 shows time responses of rotor angles for the 
unstable case (Case 4). The system and fault conditions were 
the same as those for Case 3 except that the fault duration 
was extended by 0.2 seconds to make the system transiently 
unstable. 

 

Fig -7: Rotor angle trajectories for a stable condition   
(Case 3) 
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Fig -8: Rotor angle trajectories for an unstable condition 
(Case 4) 

Walsh coefficients for Cases 3 and 4 

Table 5 shows Walsh coefficients w1 and w2 obtained for 
each of the remaining 9 generators using the rotor angle data 
sampled from Case 3 (Stable case) and Case 4 (Unstable 
case). The coefficients were obtained using (16) and (17). 
Table 6 shows the maximum of their absolute values for each 
generator, for both the stable and unstable cases. From Table 
6, the sums of the maximums of the absolute values of Walsh 
coefficients using (10) are: 

5291160= .xstable ; 9834273= .xunstable  

Table -5: Walsh coefficients for Cases 3 and 4 

 

Gen. 

Stable Case Unstable Case 

w1 w2 w1 w2 

1 -16.4775 0.1556 -40.4046 0.8601 

2 -64.1608 1.8391 -83.6551 1.328 

3 15.1759 -1.6204 -13.9991 0.8236 

4 11.5232 -0.0665 5.5941 0.3362 

5 7.5406 0.0592 1.8693 0.2417 

6 18.6903 -0.229 14.0645 0.3992 

7 7.7743 0.0228 3.1314 0.2044 

8 5.432 0.0111 14.6127 0.1422 

9 13.7545 0.174 96.6526 -3.6045 

 

 

 

 

 

Table 6: Maximum of the absolute values of Walsh 
coefficients for Cases 3 and 4 

 

Gen. 
Maximum Walsh coefficients,    

Stable case Unstable case 

1 16.4775 40.4046 

2 64.1608 83.6551 

3 15.1759 13.9991 

4 11.5232 5.5941 

5 7.5406 1.8693 

6 18.6903 14.0645 

7 7.7743 3.1314 

8 5.4320 14.6127 

9 13.7545 96.6526 

 
(b) SVM responses for Cases 3 and 4 

From the classifying equation (14), the outputs of the SVM 
are obtained as follows: 

Case 3 (Stable case) 

( ) 05761.05291.160xO >==  

Hence the stability status 1+=t , which implies system is 

stable. 

Case 4 (Unstable case) 

( ) 015865.1-9834.273xO <==  

Therefore, the stability status 1-t = , which implies system is 

unstable 

 The two rotor angles captured for each generator 
may all be greater than zero, may all be less than zero, or one 
will be positive and the other negative. For any of these three 
cases, the maximum absolute Walsh coefficient for the ith 
generator, according to (16) and (17), will be given by: 

( )21 +
2

1
= ,i,imax,ai δδw              (18) 

Using (18) to compute the maximum absolute Walsh 
coefficients may reduce further the signal pre-processing 
time. 

8 CONCLUSION 

A rotor angle transient stability status prediction scheme has 
been presented. The input data consists of generator rotor 
angles which can be easily captured and quickly transmitted 
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to a centralized location via PMUs and GPS. The input data is 
captured in a very short time window. The signal processing 
approach is fast, simple and easy to implement. The above 
features facilitate its implementation in real time. Again, the 
volume of training data is low, thus making it practical for 
large systems. Last but not least, its prediction accuracy 
proved to be 100% for the test system used in the study.  
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