’, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

DEVELOPMENT AND TESTING OF VHDL INTERFACES FOR HIGH SPEED
MEMORY BUFFERING AND DATA TRANSMISSION ON FPGA
DEVELOPMENT KIT FOR HIGH SPEED DIGITIZER

Pragati Gupta, Vikas Kumar Rai

1Student,Dept. of Electronics and communication, SIT,Mathura,India
2Associate Professor,Dept. of Electronics and communication, SIT,Mathura,India

Abstract - High speed physics experiments involve data acquisition and transmission from large number of channels.
Transmission of huge amount of data within a short period of time is a demand of today's world. This paper deals with the
development of VHDL interfaces for high speed memory buffering and data transmission. High speed digitizers sample
and digitize analog signals upto 250 MSPS (mega samples per second). ADC data is processed using suitable signal
processing algorithm. In order to achieve the high data throughput, memory buffering is used. Processed data is
transferred over communication channel using PCI express. This paper deals with the High speed data transfer at 400 MHz
clock on DDR3 memory.

Key Words: External memory interface, qsys(quartus system integration tool), DMA controller, Avalon interfaces,
Memory buffering.

1. INTRODUCTION

High speed digitizers produce large amount of data during data acquisition. Online digital data processing algorithms
requires large amount of data to be buffered till the processing is being carried out. Processed data has to be transmitted
to Data Archiving PC. In order to achieve the high data throughput, memory buffering is used. The scope of this paper is to
transfer (read/write) the high speed data at 400Mhz clock on DDR3 SDRAM. This data is transferred over communication
channel using PCI express.[5]

1.1 Cyclone V FPGA DEVICE:

The Cyclone V GT FPGA development board provides a hardware platform for developing and prototyping low-power, high-
performance, and logic-intensive designs using Cyclone V GT FPGA device. The board provides a wide range of peripherals
and memory interfaces to facilitate the development of Cyclone V GT designs. Design advancements and innovations, such
as the PCI Express hard IP, partial reconfiguration, and hard memory [1]controller implementation ensure that designs
implemented in the Cyclone V GTs operate faster, with lower power.

PCI

Chan

ADC KITEee——

Chan

Bridee

Fig -1: Block Diagram of the device

© 2018,IRJET | ImpactFactor value: 7.211 | IS0 9001:2008 Certified Journal | Page 2960



’l’ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

1.2 EXTERNAL MEMORY INTERFACE:

DDR3 SDRAM is the third generation of SDRAM. DDR3 SDRAM is internally configured as an eight-bank DRAM and uses an
8n pre-fetch architecture to achieve high-speed operation. The 8n pre-fetch architecture is combined with an interface that
transfers two data words per clock cycle at the /0 pins. A single read or write operation for DDR3 SDRAM consists of a
single 8n-bit wide, one-clock-cycle data transfer at the internal DRAM core and eight corresponding n-bit wide, one-half
clock cycle data transfers at the [/0 pins.[4]

UNIPHY: It is a physical layer of the external memory interface. It converts the double data rate interface of high speed
memory devices to a full rate or half rate interface for use within an FPGA.

1.3 Avalon Interface specifications:

Avalon interfaces simplify the system design by allowing to easily connection in the components in FPGA. The Avalon
interface family define interfaces appropriate for streaming high speed data, reading and writing registers and memory,
and controlling off-chip devices. System interconnect is a high-bandwidth structure for connecting components, and that
allows us to connect IP cores to other IP cores with various interfaces.[8] We are using Avalon streaming interface, Avalon
memory mapped interface and Avalon conduit interface, Avalon clock and Avalon reset interface.

1.4 DMA Controller:

The direct memory access (DMA) controller core with Avalon interface performs bulk data transfers, reading data from a
source address range and writing the data to a different address range. An Avalon Memory-Mapped (Avalon-MM) master
peripheral, such as a CPU, can offload memory transfer tasks to the DMA controller. While the DMA controller performs
memory transfers, the master is free to perform other tasks in parallel. [4]

The DMA controller transfers data as efficiently as possible, reading and writing data at the maximum pace allowed by the
source or destination. The DMA controller is capable of performing Avalon transfers with flow control, enabling it to
automatically transfer data to or from a slow peripheral with flow control (for example, UART), at the maximum pace
allowed by the peripheral.

1.5 Memory buffering:

A memory buffer register (MBR) or memory data register (MDR) is the register in a computer's processor, or central
processing unit, CPU, that stores the data being transferred to and from the immediate access storage. It contains the copy
of designated memory locations specified by the memory address register. It acts as a buffer allowing the processor
and memory units to act independently without being affected by minor differences in operation.[6] A data item will be
copied to the MBR ready for use at the next clock cycle, when it can be either used by the processor for reading or writing
or stored in main memory after being written.

This register holds the contents of the memory which are to be transferred from memory to other components or vice
versa. A word to be stored must be transferred to the MBR, from where it goes to the specific memory location, and the
arithmetic data to be processed in the ALU first goes to MBR and then to accumulated register, and then it is processed in
the ALU.

2. READ/WRITE DDR3 SDRAM:

Here, we are reading and writing the DDR3 SDRAM by giving the software commands in the NIOS Embedded design suite
using the Eclipse processor.

There are following components required in our NIOS system-
e C(lock.
e DDR3 SDRAM controller with UniPHY.
e Nios Il processor.
¢  On-chip memory.
e JTAG UART.
After creating a qsys system design and instantiation in the Quartus, pin assignment is performed to connect the design to
the hardware for the proper read/write of SDRAM.

© 2018,IRJET | ImpactFactorvalue: 7.211 | IS0 9001:2008 Certified Journal | Page 2961


https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Memory_address_register
https://en.wikipedia.org/wiki/Buffer_(computer_science)
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/Arithmetic_logic_unit

’l’ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

For the configuration of the FPGA we have programmed our design on the FPGA design toolkit using the programmer. The
.sof file which contains the hardware design is programmed on FPGA. Writing a software program in eclipse tool to

write/read DDR3 SDRAM[6]

Analyze system
requiremerts

custorm
e I instruction and
\\,_._._,// Define and generate Systemn custam
Fipse > mn QET3 peripheral logic

cores and

standard \\___________,/

perpheral )

Integrate QBYS systern into DEHEIDP the software W_lth — T
the HDL project the Eclipse software build
~_ “ - tools N~
User C/C+H
U application code

— and custam

Custom Assion pin locations, timing Dowtload software libraries

hardware requirements and other executable to Eclipse N~

madules design constraints system on target hoard

compile hardware design Fun and de\fJug software on
for target hoard target board
Download FPGA desion to Refine softwars and
target hoard hardware

Chart -1: Eclipse EDS system development flow.

Using the eclipse NIOS tool we can easily communicate with the device for the efficient transfer of the data. Here, Chart 1
shows the development flow of eclipse NIOS II tool. After creating a new project in the embedded design suite processor,
we created a software program and generated the board support package (BSP) file. We are accessing the DDR3 by writing
and reading to some specific addresses by giving the commands in the EDS processor. Figure 2 shows the Eclipse console
window for DDR3 read/write on specified addresses.[7]

© 2018,IRJET | ImpactFactorvalue:7.211 | IS0 9001:2008 Certified Journal | Page 2962



‘, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

File Edit Source Refactor Navigate Search Project NiosI Run Window Help

= REHCANSRAERACRSE R RV 3. =R S MR R cR R A
7 Project Explorer 52 = <:==(>| ¢ -~ = 0O €] hello_world.c &2

» 125 hlw_sai & * "Hello World" example.[]

+ 125 hlw _sai_bsp [ddr_newtest]

, & mem testp #include <stdio.h>

#include <io.h>
#include <system.h>
= int main()
{
unsigned int readdata;
printf("Hello from Nigs II!'\n");

s B mem_test_bsp [ddr3_newtest]

+ 125 mem_testsmall

s B mem_testsmall_bsp [ddrd_newtest]
> 125 RDWR

» 125 RDWR,_bsp [ddr3_newtest]
TOWR_32DIRECT(MEM_IF_DDR3 EMIF_@ BASE, @x@1, @xf1234567);

readdata= IORD_32DIRECT(MEM_IF_DDR3_EMIF_B_BASE, @x81);
printf ("read data %8x\n", readdata);

IOWR_32DIRECT(MEM_IF DDR3 EMIF @ BASE, 0x02, @xTl234666);
readdata= IORD_32DIRECT(MEM_IF_DDR3_EMIF_B_BASE, @x82);
printf ("read data ¥8x\n", readdata);

IOWR_32DIRECT(MEM IF DDR3 EMIF @ BASE, 0xB3, @xfl234555);

4

" P Nios I Console 37 =
RDWR Nios IT Hardware configuration - cable: 1JSB-BlasterII on localhost [USB-1] device ID: 1instance ID: 0 name: jtaguart_0

Helloe from Nies IIIII!
writing ccm

readdata 1111111 from address ]
readdata £1111111 from address 4
readdata £1111111 from address g
readdata £1111111 from address c
readdata £1111111 from address 10
readdata £1111111 from address 14
readdata £1111111 from address 13
readdata 1111111 from address le
writing ddr3

readdata £ from address 2000000
readdata £ from address 2000004
readdata £ from address 2000008

from address 2000010
from address 2000014
from address 2000018

999999
ELLLLLL
4999999
ELLLLLL
999999
2222222
readdata £2222222 from address 200000c
readdata £2222222
readdata £2222222
readdata £2222222
PP
ELLLLLL

readdata L from address 200001c

razAddstrs £2222227 Ffram addvass 200000

Fig -2: Eclipse console window showing DDR3 read/write on specified addresses.
3. Throughput analysis of DDR3 SDRAM Controller:

We are designing a system to transfer the data in between the on-chip memory and the DDR3 SDRAM controller.

Firstly, we write our data on the on-chip memory.

Secondly, we initialized our DMA Controller by giving the read address (address of the memory from which the data is to
be read), write address (address of the memory from which the data is to be write), DMA transaction length (in bytes),
status register and control port register. In our case the reading memory is on-chip memory and the writing memory is
DDR3 SDRAM. After writing the control port command our data is transferred directly from on-chip memory to the DDR3
SDRAM.

Thirdly, reading and printing the data from DDR3 SDRAM serially.

© 2018,IRJET | ImpactFactorvalue: 7.211 | IS0 9001:2008 Certified Journal | Page 2963



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072
File Edit System Generate View Tools Help
B Pcatdog 2 = I: System Contents SSI AddressMap  E2 | Interconnect Requirements &5 ‘ =]
3 X @ x||a ' System: ddr3_newtest Path: dma_0
Project | se  Connections Name Description Export Clock Base End RQ Tag
.0 New Component... . | mp_Wnto_cK_1 Clock Input aK_0 i
System X mp_wfifo_reset_n_1 Reset Input
L'!bra ry E or_ck Clock Input ck_0
Basic Functions b ot _reset n Reset Input
o x status Conduit istatus
Interface Protocols A ot Conduit loct
Low Power
Memory Interfaces and Controllers o pl_sharng Condiat
Srocessors and Peripherds ¥ B onchip_memory2_0 (On-Chip Memary (RAM or ROM)
Qsys Intercomnect dkd Clock Input ok 0
University Program sl valon Memory Mapped Slave [ck1] 0x0000_0000 0x0007_£££E
resetl Reset Input [ck1]
=] E nios2_gen2_0 Niog IT Processor
dk Clock Input cdk_0
reset Reset Input (k] F
data_master Avalon Memory Mapped Master [ck]
Edt... & Add.. instruction_master Avalon Memory Mapped Master [ck]
g Interrupt Receiver [ck] IR0 0 IRQ 31—,
T e o e debug_reset_request Reset Output [ck]
ke - debug_mem_slave Avalon Memory Mapped Slave [ck] 0x0408_0800 0x0408_0££F
--CF! En - custom_instruction_master Custom Instruction Master
-k jtag_uart 0 B jtag_vart_0 TTAG UART
-0 mem_if_ddr3_emif 0 il & Clock Input dk 0 E
: :2-::” & reset Reset Input [ck]
- aﬁ_rese_t s avalon_jtag_slave valon Memory Mapped Slave [ck] 0x0408_1048 0x0408_104£
ol 3ff reset export i Interrupt Sender [ck] 1
o T I resEEEEEEEEETY VA Contoler
- pm cor_ck dk (Clock Input ck_0
- o resetn reset Reset Input Jlal3]
- W= global_reset contrel_port_slave ‘Avalon Memory Mapped Slave [kl 0x0408_1020 0x0408_103£
- memory g Interrupt Sender [ck] >—E| B
= mp_amd_d 0 read_master Avalon Memory Mapped Master [ck]
- = mp_cmd reset_n_0
¥ mp rfifo.ck 0 [_ write_master Avalon Memory Mapped Master [ck] -
i mp_sfifo_ck_1 ol i '
- mp_rfifo_reset_n_0 "‘I"' fI}_ W Current filter:
- mp_rfifo_reset_n_1 =
ity B il -9 8
ar = Iy ‘ Type Path Message @

0 Errors, 5 Warnings

Fig -3: Complete QSYS design for the transfer of data through DMA controller.

We have successfully transferred our data through DMA between the memories as shown in the figure 4 the console is
showing the read-data that is transferred in the DDR3 SDRAM. The main objective is to find the time taken in the transfer
of the data between the On-chip memory and the DDR3 SDRAM.

Register File
status
control
Address & period n >
Data Counter
Avalon-MM snap_n -
SIatve mte:ace oy S C | timeout_pulse
©on-cnip - ontrol _pulse
logic - resetrequest Logic >
(watchdog)

Fig -4: Interval timer core block diagram.
For the calculation, the time of the transfer we are using the interval timer in our design. There are following steps used in
this design:
1. Adding timer in the system integration tool of our later design. Initialization of the parameters for the interval timer.
2. Generation of the design and then integrating the QSYS design with the System design tool project.
3. Simulation and compilation of the final design.
3. Programming the design on the programmer.
4. Initializing the timer before the DMA controller control port command in embedded design suite processor.
5. Reading the counter snapshot before and after the transfer. This Timer works in countdown mode already.

© 2018,IRJET | ImpactFactorvalue: 7.211 | IS0 9001:2008 Certified Journal | Page 2964



’, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

File Edit Source Refactor Navigate Search Project NiesD Run Window Help
BN R AXAABRAC RS R R R T AR R A e R e RS | 2| [@NiosT) | QuickAcee

175 Project Explorer 52 = <§>| ¢ 7= 8 [dhdoworde ¥ =8 5 Outine &

) I ocm_ddid } 0 vEERY
) 125 ocm_ddrd_bsp [ddr_newtzst] herking Tanoth ki o stdioh

) (& RDWR { k 4 ioh

) (25 ROWR bsp [ddr3_netest]

EJ Problems m Tasks ] Console ?,thsHConsuIe 10w Properties ]
ocm_dar 3 Nios IT Hardware configuration - cable; USE-Blaster]l on locahost [USE-1] device ID: dinstance I0: 0 name: jtaguart 0

Hello from Nies II!

writing ocm

readdata 1128 from address 4090060

OCM write done!

read dra 4090000

read dma ]
read dma ch
read dma ge

comrand to dma i3 given!

read dma status reg 11

dra transfer done

dra transfer done

dma transfer done

dma transfer done

dra transfer done

dna transfer done

dnz transfer done

dra transfer done

dma transfer done

dma transfer done

dra transfer is OVER

readdata 1111 from ddr3address 2000000
readdata 1112 from ddriaddress 2000004
readdata 1113 from ddrJaddress 2000008
readdata 1114 from ddrJaddress 200000c
readdata 1115 from ddrdaddress 2000010
readdata 1116 from ddrdaddress 2000014
readdata 1117 from ddr3address 2000018
readdata 1118 from ddriaddress 200001c
readdata 1119 from ddrJaddress 2000020
readdata 111a from ddrJaddress 2000024
readdata 111k from ddrdaddress 2000028
readdata 111c from ddrdaddress 200002c
readdata 111d from ddr3address 2000030

Fig -5: Data transfer from On-chip memory to DDR3 through DMA Controller.

We are writing interrupt service routine (ISR) for the DMA Controller to put the status register zero after each DMA
transfer cycle completes to start new transfer again. Software often communicates with peripheral devices using
interrupts. When a peripheral asserts its IRQ, it causes an exception to the processor’s normal execution flow. When such
an IRQ occurs, an appropriate ISR must handle this interrupt and return the processor to its pre-interrupt state upon
completion. We are calling the alt_irq_register() function, which enables the interrupts.

DMA controller can signal an interrupt request (IRQ) when a DMA transaction completes. DMA transaction proceeds as
follows:

1. CPU prepares the DMA controller for a transaction by writing to the control port that transaction is starting.

2. The CPU enables the DMA controller. The DMA controller then begins transferring of data between the on-chip memory
and DDR3 SDRAM without additional intervention from the CPU. The DMA’s master read port reads data from the read
address which is OCM. The master write port writes the data to the destination address, which is DDR3 SDRAM. A shallow
FIFO buffers data between the read and write ports.

3. The DMA transaction ends when a specified number of bytes are transferred (a fixed-length transaction) or an end-of-
packet signal is asserted. At the end of the transaction, the DMA controller generates an interrupt request (IRQ).

4. The DMA controller has a single IRQ output that is asserted when the status register’s DONE bit equals 1 and the control
register’s I_EN (Enables interrupt requests)bit equals 1.

© 2018,IRJET | ImpactFactorvalue: 7.211 | IS0 9001:2008 Certified Journal | Page 2965



’, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

5. During or after the transaction, the CPU can determine if a transaction is in progress, or if the transaction ended (and
how) by examining the DMA controller’s status register. Writing the status register clears the DONE bit and acknowledges
the IRQ. We can also read the status register to cross-check our transaction.

The transaction can be burst or the normal mode. In burst transfer mode, the DMA controller performs the burst
transactions on its master read and write mode. Maximum burst transaction of DMA controller is 1024 words. We are
reading the timer snapshot before and after the transfer.

3. CONCLUSIONS

We can find out the transfer time taken by DMA controller using a timer. Every transferring of data takes a different period
of time because of the delay in the processing. We can calculate an average time of the transfer. We have calculated time of
the transfer in two different modes, the burst mode and the normal mode.

Although, the time calculated in two different modes is approximately same. The figure 6 and figure 7 shows the DMA
transfer time in two different modes.

File Edit Source Refactor Navigate Search Project NiosD Run Window Help
WA 5 AR R S R . [ s e R L

¥ | E ‘ Quick Access

DPjectBylorer 1 B %| @ 728 [0 helowolde 3 =8 5 Outne = £
) G5 dma timer N YR R
bc . Amet L //Initialize period register comand to tiner ] PERRY X
) e dma fimerl b (4 netes] TOHR_J2DIRECT (TIMER 0 BASE, 0B, BeFFFF); H sthioh
) 1 int fimer_dma T0WR_32DIRECT (TIMER @ BASE,BxdC, BxFFFF); U inh

B int timer_dma_bsp [ddr3 newtest]

I o o spstemh
| oom dd3 Jlstart command to tiner f
S oo 4 bep 46 et TOUR_32DIRECT (TIMER 0 BASE, 0xb4, @udd); . a‘tefﬂ'mm'nme"regs‘h
) .ddr3 bsp [ddr3 newtes U gfatigh
/[dummy write to timer snapshot register as suggested in document 6" dme capture: ol
TOWR_J20TRECT(TIMER B BAGE, 18, 6xdb); ® jiint
E  dmajrg):void
tval_ = T0RD_32DIRECT(TIMER @ BASE,0x18); H hendle dona ntemuptsivid®, at 32} i
tval_h = T0RD_32DIRECT(TIVER b BASE, Bxld); - TR, S
- dma_call): void
Tvall = (tval h << 16) + tval 1; o main):int
Hprintf("read snapshot total K8x\n",Tvall); 0 dmairg(): void
i call o dma_call): void
i call (); 0 handle dma_intermupts{void®, alt u32): voic

Hprintf("interrupt received\n);

//dummy write to timer snapshot register as suggested in document
TOHR_32DIRECT (TIMER_0_BASE, 0x18, 6va0);

tval 1 = T0RD_32DIRECT(TIVER 0 BASE,0x19);

tval_h = 108D 32DIRECT(TIMER b BASE, Ox1d);

Tval2 = (tval_h << 16) + tval 1;
printf("read snapshot total ¥x\n",Tval2);
nrintf("Total time taken ¥R¥\n".(Tvall-Tual?}):

2 Problems  Tasks B Console P Nios I Console 2 _)( ver
int_timer_dma Nios IT Hardware configuration - cable: US6-Blaster! on locahost [US8-1] device ID: {instance I0: 0 name: jtaguart 0

fello from Nies II!

writing ocm

readdata 1128 from address 100060

OCM write done!

fello rom Nies IL!

read anapshot total ffff38ecd
Total time taken  c7le

read j [}

readdata 1111 from ddr3address
readdata 1112 from ddr3address
readdata 1113 Crom ddr3address
readdata 1114 from ddrdaddress
readdata 1115 from ddr3address

Fig -6: DMA transfer in burst mode.

The estimated theoretical time calculated is 508 us, and we can see our result is nearly to this value. We have calculated
the time taken by the commands in one DMA transfer that is equal to 2.20 us in burst mode. By that we can calculate the

© 2018,IRJET | ImpactFactor value: 7.211 | IS0 9001:2008 Certified Journal | Page 2966



’, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

transfer time taken in 100 times running of DMA transfer commands as the DMA initialization commands is also taking
some unit of time in processing. And the rest of the time is taken by the DMA controller in the actual DMA transfer between
the On-chip memory and DDR3 SDRAM. We can calculate the throughput of our transfer process.

Table 1: Controller transfer timings in burst mode.

Average time in Avg. time taken by | Throughput
DMA transfer the commands of | obtained
DMA controller for
100times
initialization
510.12 us 220us 196
Mbytes/sec
File Edit Source Refactor Navigate Search Project NiosI Run Window Help
R N - RARERN R A R S T A e AR R A | 5| [TNsT) | i s
[P Project Explorer 57 B %| @ 7= 08 g helowordc 3 = 0 gEoutine 3 =
. Y]
B dma_t!merl { - PBE la! 1 \5\5 o ¥
125 dma timerl_bsp [dd3 newtest] unsigned int readdata,readdatal; Y stdioh
% int timer dma unsigned int ocm data =@x1111 ; 0 ioh
5 int_timer_dma_bsp [ddr? newtest] E:;i”tf(”HEHU from Nigs II!\n"); | U stemh
) 15 otm_dd3 int d;lay=9; & altera_avalon_timer_regs.h
2= ocm_ddr3_bsp [ddr3_newtest] /fint timeout= 5; U s/t i
//int, count_temp=0; ®" dma_capture : volatile int
ffunsigned int offset = exifee; @ jint
printf("writing ocm\n"); + dmairg(): void )
for (k=; k¢96;) +  handle_dma_interrupts(void®, alt_u32): vo
{ IOWR_32DIRECT(ONCHIP MEMORY3 BASE,k, ocm data); ++ dma_gall): void
readdata= I0RD_32DIRECT(ONCHIP_MEMORY3_BASE k); @ length:int
delay =4 ® it
\ghlle(delay < 200000) o man:int
delayH; o dma_irg(): void
o dma_call): void
ffprintf ("readdata ¥8x from address ¥x\n",rgaddata,ONCHIP MEMORY3 BASE+i); @ handle_dma_interupts(void®, alt_u32): vo
k=k+4;
ocn_data = ocm data+l;
}

printf ("readdata®sx from address %x\n",readdata,ONCHIP_MEMORY3_BASE+k);
printf("0CM write done!\n");

] b

&Pmblems nTasks El Console %Niusﬂ(unsa\e b Pk 7=
int_timer_dma Nios II Hardware configuration - cable: USB-BlasterIl on localhost [USB-1] device ID: 1 instance ID: 0 name: jtaguart_0

Hello from Nies II!

writing ocm

readdata 1128 from address 100060

from Nios II!
read snapshot tota
Total tire taken

read J (1]

read snapshot total £
Total time taken dd
readdata 111
readdata 1112
readdata 1113 from ddr3address 3000008

Fig -7: DMA transfer in normal mode.

Table 2: Controller transfer timings in normal mode.

Average time in | Avg. time taken by | Throughput
DMA transfer the commands of | obtained
DMA controller for
100times
initialization
511.17 us 227 us 195
Mbytes/sec

© 2018,IRJET | ImpactFactor value:7.211 | IS0 9001:2008 Certified Journal | Page 2967



’, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

To transfer the high speed data, we need data buffering in order to achieve the high data throughput. This work results the
transfer (read/write) of the high speed data at 400Mhz clock on DDR3 SDRAM. The transfer speed is very fast because the
DMA controller doesn't occupy the CPU in the processing. The average time of DMA controller in 100 times transferring of
1 Kbyte of data is 510 us. The throughput obtained by transferring 100Kbytes of data is 196 Mbytes/sec. This data is
further transferred over communication channel using PCI express.[3]

4. SUMMARY AND FUTURE SCOPE

In the present work we are transferring our data on a clock of 400Mhz on the DDR3 SDRAM. We can transfer this data on
higher clock frequency. Throughput can be increased by using efficient memory buffering technique. This work is
proposed to be used in data acquisition system for the accelerator which would collect data from the detectors which will
be sending over the high speed interfaces as PCI express. This analog data from detector is digitized using ADC, which
generate output data of 2Gbps.

So, the next target of this work is to transmit the data at high speed (2Gbps or more) from the DDR3 SDRAM depending on

the trigger condition to the PCI Express. This will reduce the hardware requirement and increase the throughput and
reliability of the system.

REFERENCES

[1] Reference Manual: Altera Cyclone V GT FPGA Development Board, Jan 2015.
[2] Internetworking Technology Overview, University of St. Andrews, June 1999
[3] User Guide: Triple-Speed Ethernet MegaCore Function, Corporation.

[4] Quartus Sytem Design Handbook: Corporation, Jun 2014.

[5] Tom Shanley, Ravi Budruk, and Don Anderson, “PClI Express System Architecture,” Mindshare, Addison-Wesley
publishing company, 2003.

[6] Altera Reference Manual: External memory interface handbook, corporation, Sept 2016.
[7] Bhasker, J., A VHDL Synthesis Primer, Allentown, PA : Star Galaxy Publishing, 1995.

[8] San Jose, “Avalon Interface Specifications”, 101 Innovation Drive, Software Version 13.1,December 2013.

© 2018,IRJET | ImpactFactor value:7.211 | IS0 9001:2008 Certified Journal | Page 2968



